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Abstract: Recognising people from their gait is a challenging problem in 
biometric research. In this paper, we address the problem of gait identification 
based on a novel approach of sub-vector quantisation (SVQ) technique.  
A silhouette-based algorithm is utilised to capture the spatial-temporal 
information of the gait. A sequence of temporally ordered outer contour widths 
of binarised silhouettes of a walking person represents the feature vectors set. 
The feature vectors are segmented into sub vectors and vector quantised 
independently to represent the gait signatures using low dimensional vectors. 
Dynamic time warping (DTW) technique is used for gait feature sequence 
matching. The proposed method is validated on several well known 
benchmarked databases as well as on our own database. The experimental 
results confirm the validity and robustness of the proposed SVQ method for 
gait recognition. 
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1 Introduction 

Person identification using biometric attributes such as voice, face, fingerprint, gait, etc. 
has always been attributed to human beings. Gait recognition is a non-invasive process 
which can be hard to be disguised or concealed. These prominent features have made gait 
recognition attractive alternative to the other biometric approaches. People identification 
was investigated in a series of early studies by Johansson (1973) and Cutting and 
Kozlowski (1977), which showed that gait signatures could be used as a reliable cue to 
identify people. 

Despite the efforts of many researchers, there are still many challenges in order to 
implement a gait-based person identification system. The limitations extend to capturing 
of video sequence in controlled or uncontrolled environments, the acceptable level of 
accuracy rate, the scalability or the size of the gait database, and the usability of the 
identification system (Nixon at al., 2006). 

The main purpose and contribution of this paper can be summarised as follows: 

• We developed a simple and effective method for gait-based-human identification 
using silhouette-based analysis. The silhouette boundary (i.e., outer contour) is 
analysed instead of silhouettes images usually used in silhouette-based work. This 
reduces the computational cost of the subsequent processes. We apply sub-vector 
quantisation (SVQ) technique to extract the gait features. 

• The proposed method implicitly captures the finer details of both structural and 
transitional characteristics of a gait through the use of sub-segmentation. Dynamic 
time warping (DTW) is used to measure the similarity between known and unknown 
sample of features. It is envisaged that time normalisation process achieved here will 
allow more accurate distance estimation and will yield a more accurate result. 
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• The performance evaluation, in terms of correct recognition and verification rate in is 
performed on three standard databases: the CMU MOBO database, SOTON database 
and CASIA-B image databases. The proposed algorithm is also evaluated on our 
own AUCKLAND image database. 

• Many literature reported good recognition results on the standard databases but lacks 
informed comparisons among different algorithms (Bashir et al., 2008; Yu et al., 
2006; Han and Bhanu, 2006; Phillips et al., 2002; Ekinci, 2006; Chai et al., 2006; Ye 
and Wen, 2006; Kale et al., 2003; Kusakunniran et al., 2009; Bouchrika and Nixon, 
2008; Iwashita and Petrou, 2008). Here, we provide some comparison of recognition 
results to examine the performance of the proposed approach and other recent 
approaches on the standard databases. 

This rest of the paper is organised as follows. The proposed approach and methodology 
are described in Section 2. Section 3 describes the experiments conducted and presents 
the results. In this section, we compare the recognition/verification accuracy rate of our 
algorithm against other works in this area using the benchmarked image databases. 
Finally, Section 4 concludes the paper. 

2 The proposed approach 

The proposed work is based on the implicit use of vector quantisation (VQ) technique. 
Specifically, we extract spatiotemporal information from the sub-vectors of the outer 
contour width (SVOCW) which is obtained from the silhouettes of the gait sequence. It is 
envisaged that our method for gait feature generation improves by encapsulating the finer 
details of the gait pattern and overcomes the data dimensionality issue without any loss of 
critical information. The aim is to exploit the redundancy in the gait data and to derive a 
compact representation of the gait signature. To obtain a compressed form of gait 
signature we have employed VQ technique using LBG algorithm (Linde et al., 1980). It 
is also envisaged that the unique codebook designed for each temporally aligned 
segmented data vector in a gait sequence will not only capture intricate details of gait 
pattern but will also produce uniquely quantised data representation. The quantised  
and non-quantised probe segment is matched against the quantised reference set.  
Inter-variation in gait results in varying lengths of walk-cycles. The challenge is to 
eliminate the timing differences between two gait sequences for matching. Hence, DTW 
(Sakoe and Chiba, 1978), which has a non-linear time-normalisation effect, is used as a 
pattern matching algorithm. The methodology has been described in Pandey et al. (2005, 
2007). 

Our goal is to capture the gait features, using the holistic-based approach, from the 
image data from a single viewpoint in a constraint environment using a non-calibrated 
camera. Recently, it is more common that several viewpoints image data are collected by 
placing multiple cameras at different angles. In this study, we also evaluate our algorithm 
over different viewpoints to extract gait features. An overview of the proposed method is 
illustrated in Figure 1. 
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Figure 1 Data processing steps of the proposed method 

 

The robustness of the gait signatures needs to be tested on benchmarked databases so that 
valid comparisons and conclusions could be drawn in relation to other reported research 
results. There are several commonly used image databases that are available to 
benchmark results and to compare with other researchers. In our research, we have used 
CMU (Gross and Shi, 2001), CASIA-B (Yu et al., 2006) and SOTON (small) (Shutler  
et al., 2002) image databases. To further explore and gain insight of the complete system, 
we have created our own AUCKLAND image database of 25 people. 

2.1 Silhouette extraction 

In vision-based systems, detection is usually carried out by using adaptive background 
subtraction method. It is normally assumed that the background is fixed and that 
differences are solely caused by foreground objects. A simple static background 
segmentation approach is extremely sensitive to dynamic scene changes due to lighting 
and extraneous events. More complex methods build a model of the scene background, 
and for each pixel in the image detect deviations of pixel feature values from the model to 
classify the pixel as belonging either to background or to foreground. 

In our research, we adopted an adaptive background subtraction method based on 
McKenna et al. (2000). We assume static camera and background. The method is capable 
of handling background changes that are relatively slow to the motion of people in the 
scene. We considered two aspects, the normalised rgb colour space and the edge for 
image extraction as we employ the method in a constrained environment. For each 
channel the models are generated and the current image is converted to the adequate form 
such as edge image and RGB image, which are used apart for the further classification. 
The combination of both classification results gives the final segmentation mask. 

The adaptive process is only performed in regions of the image which has  
higher-level grouping labelled as background. Given a new pixel value, (R, G, B), the 
following updates as shown in equations (1) and (2) are performed: 

(1 )r rμ r μ= + −α α  (1) 
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( )22 2(1 )r r rσ r μ σ= − + −α α  (2) 

where μr is the mean pixel value computed up to frame t, α is the learning rate of the 
model, and r is the red pixel value in frame t. Similarly, the update is carried out for the 
green (g) and blue (b) pixel values. The current pixel x(r, g, b) is compared to the model. 
If | r – u | > 3σ or a Euclidean threshold then the pixels are considered as true and set  
as foreground. Similar test for g and b is conducted. A mask is produced which is 
considered as a region of interest for further processing. 

Edge gradients are estimated using the Sobel masks in horizontal, x, and vertical, y, 
directions. Given a new pixel value x(r, g, b), its spatial gradients (rx, ry), (gx, gy), (bx, by) 
estimated using the Sobel operator. If 2 2( ) ( ) 3 ,x xr y yrr μ r μ σ− + − >  or if the similar test 
for g or b is true, then the pixel is set to the foreground. Otherwise it is set to the 
background. Figure 2 shows the extracted silhouette, edge gradient and the picture 
overlay extracted based on adaptive background subtraction method. Figure 2(a) shows 
the filled binary region of the silhouette based on the edge detection. Figure 2(b) shows 
the extraction of the actual image based on the binary silhouette which indicates the 
accuracy of the size of the extracted binary silhouette for the formation of the gait 
features. 

Figure 2 Extracted silhouette using adaptive background subtraction method  

  
(a)     (b) 

2.2 Gait signature representation 

The underlying principle used in our approach is that given a sequence of image features 
of a person, X = {x(1), x(2),…,x(T)}, we develop a gait signature for that person and use 
it to identify the person from a database of N different subjects. Fronto-parallel view of a 
person, which is illustrated in Figure 3, provides the most information on a person’s gait. 
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Figure 3 (a) Illustration of the fronto-parallel view and (b) the calculation of outer contour width  

  
(a)    (b) 

Features like the stride length, arm swing and physical structure are quite coherent in 
sequence of side-view images. Thus, extraction of feature set, while preserving the 
structural component and motion dynamics, is of great importance. The emphasis is that 
the side view provides crucial information on a person’s gait. However, other views 
could provide valuable complementary information. Gait features are extracted from 
heel-to-heel strike of sequence of silhouettes. 

2.2.1 Basic feature vectors set 

The basic feature vector set is derived from the width of the outer contour of the 
temporally ordered silhouettes (Kale et al., 2003). The width along a given row is simply 
the difference in the location of rightmost and leftmost boundary pixel in that row as 
shown on Figure 3(b). The gait signature aims to capture the static (structural) component 
that captures the physical build of a person, e.g., body dimensions, length of limbs, etc., 
and the motion dynamics of the body during a gait cycle. The physical structure of the 
subject, as well as the swing of the limbs and other details of the body, is retained in the 
width vector. The discriminatory features of the width vectors are directly dependant on 
the quality of the silhouettes. To reduce the noise effect of silhouettes, a 3 × 3 averaging 
filter is applied on the width vectors for smoothing. The width vectors as a function of 
time emphasises the individuality of the person. The overlay of the smoothed width 
vectors is shown in Figure 4 for one individual. 

 

 

 

 



   

 

   

   
 

   

   

 

   

   74 N.K. Pandey et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 Segmented blocks of width vectors  

 

2.2.2 Sub-vector extraction method 

The problem of finding and exploiting low-dimensional structures in high-dimensional 
data is arduous (Boulgouris et al., 2004). The curse of dimensionality is a challenge and 
we often need to conduct meaningful inference with limited number of samples in a very 
high-dimensional space. There are several motivations to reduce the number of 
dimensions such as: efficiency, classification performance and ease of interpretations/ 
modelling. 

In this study, the width vector dimension is the number of rows representing the 
silhouette. In other words for a given frame size, the width vector would be of a fixed 
dimension. In a multi-view environment where several cameras are placed at an angle, 
the size of silhouette image will change according to the projection geometry. To reduce 
the effect of changes in silhouette size, silhouette image is size-normalised. The  
size-normalisation proportionally resizes each silhouette image so that all silhouettes 
have the same height. The width-to-height aspect ratio of each silhouette remains 
constant throughout the sequence. If the original silhouette size is denoted as HoxWo and 
the normalised silhouette as HxW, then fh = H / Ho and fw = W / Wo. To keep the same 
aspect ratio we maintain fh = fw. In the case of height normalisation we keep the height at 
a constant pixel length, hence the width of silhouette is resized in the horizontal direction 
with a scale factor of fw = fh = H / Ho. Therefore, the width of the normalised silhouette is 
fhWo. We have selected to normalise the height to a length of 128 pixels. This means a 
silhouette image is normalised to a ratio of 128 / Ho. Empirically, we have found that a 
bounding box of size 128 × 88 pixels would incorporate all normalised images in a gait 
walk cycle. Hence, the normalised silhouette is aligned by shifting it horizontally to the 
centre of the image frame of size 128 × 88 pixels. 

We take this result further to represent our feature vector in a lower dimension space. 
In order to better model the signature of a sequence of silhouette without losing vital 
information, the image width vectors of size MxK are split into MxPxR blocks, where M 
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is number of width vectors (image frames); K is the dimension of each vector. P and R 
are the dimension and number of the sub-vectors block respectively. 

2.2.3 VQ of width vectors set 

The motivation of feature extraction is to exploit the redundancy in the gait data for 
dimensionality reduction and to derive a compact representation of the gait signature. We 
have employed VQ technique using LBG algorithm to obtain a compressed form of gait 
signature. By applying the VQ technique on several gait cycles of sub-width vector, we 
derive a codebook for each sub-width vector set that represents the gait signature in the 
compressed format while encapsulating the static and dynamic features. It is envisaged 
that by generating a codebook for each of the R blocks of P-dimension dataset, a better 
model of the signature is obtained by capturing the discriminatory features of each block. 
Each segment of the test and reference sequences is quantised against the corresponding 
codebook segment. The LBG algorithm is described in detail in the paper by Linde et al. 
(1980). Figure 4 illustrates the segmentation of a set of the un-normalised width vectors 
extracted from two-walk-cycle span of silhouette images. In this example the span size is 
61 × 128. The width vectors are segmented into eight sub-vectors, each of length 16 (i.e., 
61 × 16 × 8). 

2.2.4 Selection of the number of codevectors (codebook size) 

Heuristics approach is one of the methods which could be taken in selecting the size of 
the codebook. In order to select the codebook size with some objectiveness, mean 
squared error (MSE) for different codebook sizes (N) namely, 128, 64, 32, 8, 4, 2 and 1, 
were evaluated in this study. MSE provides a good measure in terms of closest 
representation of similarity between codevector x̂  and the vector x. The codebook size: 
(K = 32) was selected at knee-point of the quantisation vs. codebook size graph plot as 
shown in Figure 5. Empirically, the selected value is found to be a good compromise 
between the MSE and the exhaustive quantisation process. 

Figure 5 Codebook selection graph plot 
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2.3 Gait cycle detection 

The detection of gait cycle is also important in gait analysis processes. The gait sequence 
is partitioned into cycles that depict a complete walking period by locating the frame 
indices at which the temporal sum of the width vectors is maximised. A walk cycle 
comprises two consecutive double-support stances as shown in Figure 6. 

Figure 6 Illustration of a gait walk-cycle 

 

To derive the gait cycle length, temporal sum of the width vectors is performed. Since the 
width vectors are dependent on the quality of the silhouettes, sum of the width vectors 
with respect to time could be noisy. Hence, we use a simple two-element running average 
filter to clean any noisy signal. Figure 7 shows the variance-normalised temporal sum of 
the width vectors. We identify the cycle length TG from the local maxima, which is 
represented by two consecutive double-support stances. Image frame indices of peaks 
illustrated in Figure 8 represent the half-cycle double-support stance. 

Figure 7 Normalised plot of temporal width vectors indicating the walk cycle (see online version 
for colours) 
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Figure 8 Verification curves of using CASIA-B database for (a) VQ probe vs. VQ reference and  
(b) non-VQ probe vs. VQ reference condition for 90 degree view angle 

 
(a) 

 
(b) 

2.4 Template matching 

The collection of the gait width vector sequences, from which the codebook of a person is 
derived, will be termed gallery sequence. A walk-cycle sequence, which is a subset of 
gallery sequence, is used to represent the known gait sequence and will be termed 
reference sequence. The unknown test gait sequence will be termed probe sequence. 
After the extraction of outer-contour width vectors from the sequence of silhouette,  
the probe and the reference sub-segmented sequences are quantised against the 
corresponding codebook as described in Section 3.1. DTW is performed on sub-segment 
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sequences for matching. The final matching score in this experiment is the sum of all the 
sub-segments score for the given test sub-vectors set. 

Inter-variation in gait is a well known phenomenon and results in varying  
lengths of walk-cycles that requires elimination of the timing differences between two 
gait sequences. DTW (Sakoe and Chiba, 1978) is used to model the non-linear  
time-normalisation effect and pattern matching. Given two cycles of different duration, 
the warping function maps the time axis of the probe cycle to the time axis of the 
reference cycle. 

2.5 Classification 

A simple nearest neighbour (NN) classifier is used to perform classification in this  
study. To cater for any variation is the gait style and to increase the chances of  
correctly recognising a person, several walk-cycle sequences of a person can be 
employed to form a probe and reference sets. A probe set, which consists of several  
walk-cycles of probe sequences can be represented as: 1 2{ , , , },np

p p p pG X X X= …  np is  
the number of probe walk-cycles. Likewise, a reference set which consists of several 
walk-cycles of reference sequences can be represented as: 1 2{ , , , },nr

r r r rG X X X= …  
where nr is the number of reference walk-cycles and X represents one walk-cycle gait 
sequence data. 

DTW is applied between a probe sequence, p, and a kth reference sequence, r, in the 
database. The sum of scores for all combinations of sequences between the probe and 
reference set is calculated and can be represented as (3): 

( ) ( ), , ,  where 1, ,  and 1, ,jkk i
p r p rDist G G DTW X X i np j nr= = =… …  (3) 

The matching score for the given probe set with those of a given reference set is given as 
the minimum distance between the probe set and the reference set can be represented as 
(4). 

( )( ) ( )( ) , , jkk i
p r p rMatching score Min Dist G G Min DTW X X= =  (4) 

For classification, the probe set will be classified into class k if the kth reference set 
produces the minimum score, shown in (5). 

( )( 1 )arg min , k
n K p rk Dist G G== …  (5) 

where n = 1,…,K for K reference set in database. 
To elaborate the method using one of the experimental conditions used  

in this research, we used a probe set Gp which consisted of two probe sequences; each 
sequence is of a walk-cycle length. Likewise, the reference set Gr consisted of four 
reference sequences. We denote the probe set as 1 2{ , }p p pG X X=  and reference set as 

1 2 3 4{ , , , }.r r r r rG X X X X=  Table 1 illustrates the score set S = {S11, S12,…,S24} obtained 
from matching each of the probe sequence set to each of the reference sequence set using 
DTW. 
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Table 1 Score set for all combination of probe and reference set 

Reference set Gr 
Probe set Gp 

1
rX  2

rX  3
rX  4

rX  

1
pX  S11 S12 S13 S14 

2
pX  S21 S22 S23 S24 

Using the minimum method, the minimum score Si,j represents the matching score of the 
probe set with that to the reference set and can be represented as (6). 

( )( ) ( )( )  , ,

for 1, 2 and 1, , 4

ji
pr p r p rMatching score S Min Dist G G Min DTW X X

i j

= =

= = …
 (6) 

3 Experimental results 

The performance of our proposed SVQ-based gait algorithm has been tested on three well 
known gait databases, CMU Mobo gait database (Gross and Shi, 2001), CASIA-B gait 
database (Yu et al., 2006), SOTON small gait database (Shutler et al., 2002), and also on 
our own AUCKLAND database. The codebook was generated from the gallery 
sequences, and the reference sequences were represented by the trials of gait sequences 
within the gallery sequence. The probe and reference sequences are of one walk-cycle 
length. 

Given a probe sequence data, two conditions of experiments were conducted: 

1 vector quantised probe vs. vector quantised reference (VQ-VQ) 

2 non-vector quantised probe vs. vector quantised reference (non-VQ-VQ) dataset. 

In Phillips et al. (2002), a human ID gait challenge framework and a referential gait 
recognition baseline algorithm are proposed. For comparison of our results, we 
implemented the baseline algorithm and applied it to the same sets of gait sequences data 
as used on our proposed algorithm. We also compared our results of the proposed method 
with other well cited gait recognition approaches using the same gait databases used in 
this study. 

In order to study the efficiency of the gait recognition, we analyse the results in terms 
of 

a correct recognition rate 

b verification rate. 

Correct recognition rate is measured by finding the ratio of the number of correctly 
identified persons against the total number of persons in the database. Verification rate is 
measured using the area-under-the-curve (AUC) of the receiver operating characteristic 
(ROC), which is a plot of the probability of detection (i.e., correct recognition or true 
positive), p(true positive), vs. the probability of a false alarm (i.e., false acceptance or 
false positive), p(false positive), for the experiments. Equal error rate (EER), which is the 
threshold value where the probability of false rejection is equal to the probability of false 
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acceptance, is also obtained from ROC plot to provide an objective measurement for 
comparison between different systems. In general, the lower the EER, the more accurate 
the system is considered to be. 

Based on the outlined performance criteria, comprehensive experiments have been 
conducted to evaluate the algorithm using the standard databases. Since the focus of each 
database differed in terms of the co-variables such as the camera view angles, clothing 
and speed conditions, we evaluated the performance of our algorithm based on these 
covariates accordingly. The type of evaluation performed is as follows and will be 
detailed in later sections: 

• CASIA-B database: we evaluate our algorithm in terms of view-dependent 
recognition, view-invariance performance and shape invariance performance. 

• CMU and SOTON database: we evaluate our algorithm in terms of covariate 
analysis of shape invariance and gait speed invariance performance of a fixed view 
angle. A similar experiment was conducted for our locally produced AUCKLAND 
database. 

3.1 CASIA-B gait database 

The CASIA gait database is an indoor gait database consisting of 124 subjects captured 
from 11 different views simultaneously starting from 0 to 180 degrees with an increment 
of 18 degrees. For each view angle, each subject has ten gait sequences which comprise 
of six normal, two with a coat and two with a bag. In this experiment, gait data of  
105 people with view direction angle of 54, 72, 90, 108 and 126 degrees is used. This 
gives a view range of 36 degrees on either side of fronto-parallel (90 degrees) view. The 
experiments carried out using this database can be categorised in two ways: 

a the performance of algorithm based on acquisition of invariant gait features for 
different view angles and silhouette conditions 

b the study of the number of probes, references and the gallery size for feature 
extraction and recognition rate. 

For the case in experiment (a), with the five selected view angles of 54, 72, 90, 108 and 
126 degrees, we conducted the following experiments: 

• View-dependent performance: For each of the view angle image data, we recognised 
a probe sequence against each of the reference sequences, i.e., the same view angle 
for the probe and reference sequence. The recognition rate will give us the measure 
of the performance of the proposed algorithm for the same viewing condition. The 
results are presented in Table 3. 

• View-invariance performance: We conducted this evaluation by attempting to 
recognise a probe sequence of one view against reference samples of other view 
angles. For instance, a probe sequence of 90 degree view is tested against all other 
view angles reference sequences. The results are presented in Table 4. 

• Shape-invariance performance: We tested the two shape-differed probe sequences 
against normal reference sequences: one where the subject wears a coat and in the 
other the subject carries the bag. The results are presented in Table 5. 
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For the case in experiment (b), to study the effectiveness of algorithm due to limited 
sample size, we conducted the following experiments: 

• Leave-one-out method (condition 1): In this case, a codebook was generated by 
leaving one probe sequence out and using five normal sequences to form the gallery 
of sequences. Each reference sequence was vector quantised using the codebook 
generated. This method effectively gave six probe sequences and six sets of 
reference sequences. 

• Two probe sequences: In the first case (condition 2), we based our experiments using 
leave-one-out method but using only two probes as opposed to all six sequences as 
probe sequences. For instance, for the first probe sequence trial 1 data sequence was 
used as the probe sequence and trials 2 to 6 data sequences formed the gallery to 
generate the codebook and respectively formed the five quantised reference 
sequences, and for the second probe sequence trial 2 data sequence was used as the 
probe sequence and remaining five data sequences as the reference sequences. In the 
second case (condition 3), we took a simpler approach of selecting two probe 
sequences and the remainder of the four sequences formed the gallery to generate the 
codebook and respectively formed the four quantised reference sequences data. In 
this experiment, trials 1 and 2 data sequences formed the probe and trials 3 to 6 data 
sequences formed the reference sequences. The results of all experiments are 
summarised in Tables 3, 4 and 5. 

As seen in Table 3, the performance of our algorithm performs best when all probes are 
utilised using leave-one-method (condition 1). Although the proposed representation 
works best for condition 1, the difference in the performance, taking into account of  
the simpler approach of condition 3 is negligible and similar. The view dependent 
performance of the proposed algorithm seems to give better results for the case of  
non-VQ probe when compared to VQ-VQ probe and for the view angle of 90 degrees as 
reported in Table 3 and Table 4. This difference in performance between non-VQ-VQ 
and VQ-VQ could be attributed to the high distortion cost in the case of VQ probe tested 
against VQ reference if the compared vectors are assigned to different codewords. 

The high identification rate for 90 degree view reinforces the point that the  
fronto-parallel view angle captures the most gait information. Table 4 shows the variation 
of recognition rate with respect to different view angles. For the non-diagonal cases, the 
recognition rate within the 18 degree view range is an average of 40.5% and drops largely 
to an average of 11.8% outside this view range. This indicates that due to the excessive 
viewpoint difference between the reference and test sequence, the distortion on extracted 
feature vectors is quite considerable and has a detrimental effect on the recognition 
performance. 

Table 5 shows the covariate effects of clothing and carrying conditions affecting the 
silhouette shape independent from viewpoint. Based on the proposed approach for 
deriving the gait feature, an average recognition of 70.3% is achieved for bag carrying 
and 33.9% for coat wearing conditions. The results indicate that the algorithm is sensitive 
to structural changes and the unique dynamics features of the gait is better captured in 
bag carrying conditions when compared to coat wearing condition. However, it is 
important to note that gait information is compromised in both conditions. 
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The recognition rate results in Table 2 show that the proposed method performs better 
than the baseline method in all experiments for 90 degree view angle condition. The 
result of person wearing coat indicates that dominant features are occluded during feature 
extraction process, which has adverse effect when compared to person carrying bag. The 
proposed approach for non-VQ-VQ condition performed better than majority of the 
compared methods. Bashir et al. (2008) report higher recognition rate for supervised 
learning method, however, it comes with a computationally intensive feature extraction 
process due to the data dimension and the use of greedy search algorithm. The proposed 
method uses the sub-vector technique which not only overcomes the data dimension issue 
but is less computationally intensive. 
Table 2 Comparison of fronto-parallel view results 

Method NM-NM BG-NM CT-NM 

Bashir et al. (2008) (un-sup) 99.4 79.9 31.3 
Bashir et al. (2008) (sup) 98.6 85.5 88.8 
Yu et al. (2006) 97.6 52.0 32.7 
Han and Bhanu (2006) 99.4 60.2 22.0 
Phillips et al. (2002) 49.3 20.7 11.9 
Proposed method (VQ-VQ) 98.1 56.2 45.7 
Proposed method (non-VQ-VQ) 100 77.1 43.8 

Table 3 Summary results of view dependent recognition rate (%) 

View angle 

90 deg 108 deg 126 deg Condition 
Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
probe 

VQ 
probe 

Condition 1 100 98.1  97.1 88.6  91.7 89.5 
Condition 2 99.1 92.4  95.2 84.8  92.4 89.5 
Condition 3 97.1 87.6  94.3 85.7  88.6 84.8 

72 deg 54 deg Average results  

Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
Probe 

VQ 
probe 

Condition 1 98.1 96.2  100 100  97.4 94.5 
Condition 2 95.2 92.4  97.1 96.2  95.8 91.1 
Condition 3 94.3 88.6  96.2 93.3  94.1 88.0 

Table 4 Summary results of view invariance recognition rate (%) 

 126 deg 108 deg 90 deg 72 deg 54 deg 

126 deg 92.4 36.2 20 9.5 3.8 
108 deg 43.8 95.2 53.3 18.1 7.6 
90 deg 20 49.5 99.1 42.9 11.4 
72 deg 11.4 20 43.8 95.2 33.3 
54 deg 5.7 4.8 9.5 20.9 97.1 
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Table 5 Summary results of shape invariance recognition rate (%) 

View angle 

90 deg 108 deg 126 deg  
Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
probe 

VQ 
probe 

Coat vs. Nm 43.8 45.7  29.5 18.1  27.6 21.9 

Bag vs. Nm 77.1 56.2  62.8 31.4  73.3 36.2 

72 deg 54 deg Average results  

Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
probe 

VQ 
probe 

 Non-VQ 
Probe 

VQ 
probe 

Coat vs. Nm 32.4 36.2  36.2 38.1  33.9 32 

Bag vs. Nm 71.4 56.2  66.7 57.14  70.3 47.4 

The proposed approach was also evaluated in terms of verification performance. An EER 
plot is used to measure the verification performance in this study, as illustrated in  
Figure 8 for 90 degrees view. It can be seen that the proposed algorithm outperforms the 
baseline method for both conditions. An EER between 3.5–5.7% is obtained for the 
normal-to-normal condition testing and 3.5–11.9% is obtained for cross-condition testing 
compared to 29–35.5% for baseline method. The low EER values indicate the verification 
accuracy of the proposed algorithm when compared to the baseline algorithm. Therefore, 
a 3.5% EER indicates that there is a possibility of 3.5 people out 100 users who pose as 
intruders would be given a false acceptance and likewise 3.5 genuine users will be denied 
access to the system. Furthermore, an AUC of 0.992 and 0.984 is obtained in VQ-VQ and 
non-VQ-VQ testing for the normal-to-normal condition compared to 0.775 for the 
baseline algorithm. In the case of bag-to-normal condition, an AUC of 0.994 for VQ-VQ 
and 0.989 for non-VQ-VQ testing is obtained compared to 0.653 for the baseline 
algorithm. Similarly, for coat-to-normal testing, AUC of 0.968 for VQ-VQ and 0.947 for 
non-VQ-VQ testing is obtained compared to 0.747 for the baseline algorithm. The overall 
AUC results show a high classification performance using the proposed approach. 

3.2 CMU gait database 

To further study the effect of covariate factors in terms of shape and speed on view angle 
independent gait, experimental analyses were carried out on the CMU, SOTON and our 
own AUCKLAND database using only the fronto-parallel gait image data. CMU 
database has 25 subjects (23 males, 2 females) walking on a treadmill. There are about 8 
walk-cycles in each sequence and each sequence is recorded at 30 frames per second. It 
also contains six different views of simultaneous motion sequences of 25 subjects. The 
image size was 480 × 640 pixels. Each frame produced 1 × 640 width vector which was 
down-sampled by 5-pt to obtain 1 × 128 raw width vector. 

In this study, only six side-view walking sequences of each subject are considered. 
The probe and reference sequences were extracted and prepared as explained in  
Section 3. The following experiments for both VQ-VQ and non-VQ-VQ conditions were 
conducted using this database: 
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1 train on slow walk (SW) and test on SW 

2 train on fast walk (FW) and test on FW 

3 train on SW and test on FW 

4 train on FW and test on SW. 

From Table 6, it is clear that the recognition performance of the proposed method for the 
non-VQ-VQ condition is much better than that of the baseline algorithm and the other 
methods reported for fast-fast and slow-slow testing. 

Table 6 Gait recognition results of CMU database 

Method FW-FW SW-SW FW-SW SW-FW 

Ekinci (2006) 92 84 32 52 

Chai et al. (2006) 97 95 76 68 

Ye and Wen (2006) 96 96 64 48 

Kale et al. (2003) 68 72 58 32 

Kusakunniran et al. (2009) 100 100 92 92 

Phillips et al. (2002) 88 92 82 75 

Proposed method (VQ-VQ) 100 100 76 40 

Proposed method (non-VQ-VQ) 100 100 100 80 

Figure 9 Verification curves for (a) proposed algorithm for non-VQ vs. VQ condition and  
(b) baseline algorithm using CMU database 
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Figure 9 Verification curves for (a) proposed algorithm for non-VQ vs. VQ condition and  
(b) baseline algorithm using CMU database (continued) 

 
(b) 

The proposed method performs better (100%) when compared to Kusakunniran et al. 
(2009) (92%) and all the other methods for the fast-slow case. However, it is slightly 
down (80%) for slow-fast case in comparison to Kusakunniran et al. (2009) (92%). The 
slight difference in performance could be attributed to the difference in the selection of 
the silhouettes for gait feature representation, changes in body dynamics and stride 
lengths due to variation in walking speed. Figures 9(a) and 9(b) shows the proposed 
system evaluation in terms of verification performance using the EER plot. An EER 
between 1.44–2.4% is obtained for the same condition testing and 8.2–11.4% is obtained 
for cross-condition testing compared to 18.5–27.2% for the baseline method. The AUC 
between 0.992–0.998 is obtained for the same condition testing and 0.957–0.98 is 
obtained for cross-condition testing compared to 0.777–0.853 for the baseline method. 

3.3 SOTON gait database 

The SOTON-small gait database consists of 11 subjects filmed walking around the inside 
track, with a green chroma-key backdrop. Each subject was filmed wearing a variety of 
footwear, clothes and carrying various bags. They were also filmed walking at different 
speeds. Each subject’s data was captured during one long walking session. We used six 
side-view gait sequences for experimentation. The first three sequences of each 
individual are used as the probe sequences and the last three sequences are used as 
reference sequences. Experiments were carried out for two view-types: 

a person walking from left to right 

b person walking from right to left. 

The following experiments for both VQ-VQ and non-VQ-VQ conditions were conducted 
for each of the view-type using this database: 
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1 train on normal (NM) and test on NM 

2 train on fast (FT) and test on FT 

3 train on NM and test on FT 

4 train on FT and test on NM 

5 train on bag (BG) and test on BG 

6 train on NM and test on BG 

7 train on FT and test of BG. 

The average correct recognition results of both view types are summarised in Table 7. 
Table 7 Gait recognition results of SOTON database 

Method FT vs. 
FT 

NM vs. 
NM 

FT vs. 
NM 

NM vs. 
FT 

BG vs. 
BG 

BG vs. 
FT 

BG vs. 
NM 

Bouchrika and Nixon (2008) - 95.7 - - - - - 
Iwashita and Petrou (2008) - 94 - - - - - 
Phillips et al. (2002) 81.8 86.8 79.8 77.3 94.5 40.9 43.9 
Proposed method (VQ-VQ) 95.5 100 81.8 81.8 100 36.4 54.5 
Proposed method (non-VQ-VQ) 100 100 90.0 90.9 100 63.6 68.1 

The results of our proposed method compare favourably with others. Obviously, the 
performance decreases for cross condition testing when the person is carrying a bag. This 
indicates the change of dynamic and static information in the feature vectors caused by 
the bag carrying condition. However, the results for testing against different speed 
perform well. 

Figure 10 Verification curves for (a) proposed algorithm for non-VQ vs. VQ condition and  
(b) baseline algorithm using SOTON database 
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Figure 10 Verification curves for (a) proposed algorithm for non-VQ vs. VQ condition and  
(b) baseline algorithm using SOTON database (continued) 

 
(b) 

Figures 10(a) and 10(b) show the EER curves for the proposed algorithm for non-VQ-VQ 
condition and baseline method. The EER of the proposed method varies between  
2.2–16.2% compared to 20.4–27.7% for baseline method. The AUC between  
0.962–0.995 for same-condition testing and 0.906–0.982 for cross-condition testing is 
obtained, which again indicates a high classification rate. 

3.4 AUCKLAND gait database 

To gain a better understanding of the whole process of the gait recognition method, we 
created our own image database: AUCKLAND database. This database has 25 subjects 
(20 males, five females). Each subject is recorded performing two different types of 
walk: SW and FW. There are about two and half walk cycles in each sequence recorded 
at 25 frames per second. The database has 24 walking sequences for each individual 
consisting of six normal walking sequences and six fast walking sequences in right-to-left 
direction and vice-versa in fronto-parallel view. For each condition, the first three 
sequences of each individual are used as the probe sequences, and the last three 
sequences are used as reference sequences. 

Experiments were carried out for two view-types: 

a person walking from left to right 

b person walking from right to left and similar to those using CMU database. 

The correct recognition results are summarised in Table 8. Once again, the proposed 
method performs better than the baseline method. Figures 11(a) and (b) shows the EER 
curves for the proposed and baseline method. The EER for same condition ranges from 
2.75–3.35% and 6.3–6.9% for cross condition in non-VQ-VQ case. It can be seen  
that these results are significantly better than the baseline method which ranges from 
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19.2–25.8%. The AUC between 0.992–0.994 is obtained for the same condition testing 
and 0.974–0.983 is obtained for cross-condition testing compared to 0.819–0.852 for the 
baseline method. 
Table 8 Gait recognition results of SOTON database 

Method FT-FT NM-NM FT-NM NM-FT 

Phillips et al. (2002) 64.9 78.7 70 53.7 
Proposed method (VQ-VQ) 98 100 84 60 
Proposed method (non-VQ-VQ) 98 100 94 84 

Figure 11 Verification curves for (a) proposed algorithm for non-VQ vs. VQ condition and  
(b) baseline algorithm using MANUKAU database 
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(b) 
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4 Conclusions 

This paper has proposed a new gait recognition approach using SVQ technique for 
analysing sequence of width vectors obtained from the silhouette of the walking human. 
In order achieve the goals, we extracted outer contour width of silhouette and segmented 
it in to blocks (know as sub-vectors), while maintaining the data dimension and 
preserving all vital static and dynamic feature information. LBG VQ technique was 
applied to sub-vectors to obtain the compressed form of gait signature. The probe 
sequence and reference sequence are quantised using the trained codebooks. DTW was 
applied to find the match. The proposed approach was applied to three well known 
databases and on our own image database. 

Extensive experiments were carried on five different view angle gait datasets for a 
large CASIA-B image database. As validated experimentally, the drop in recognition 
performance is negligible using a simple approach for gait feature extraction when 
compared to the leave-one-out method. Furthermore, experiments were conducted to 
measure the performance of the proposed algorithm for different covariate factors such as 
speed, clothing and bag carrying. The proposed approach achieved a consistent overall 
recognition and verification performance when tested on the three standard databases and 
on our own database. This confirms the stability of the algorithm and is very promising. 
On average across the three standard databases and our own database, the proposed 
algorithm achieved 99.7% identification rate for same condition testing, 89.8% for 
different walking speed and 69.6% for different clothing and carrying condition testing. 

The work carried out thus far encourages further work to investigate the combination 
of different view angles score level fusion of results to improve the identification and 
verification rate. Moreover, further work also involves the implementation of the 
algorithm in a real-time system. The challenge envisaged is the efficiency of the system 
in identification of an unknown probe. As such, the system needs to be scalable relative 
to the size of the database. Different models of the real-time system, such as hardware 
implementation, and hybrid hardware-software co-design will be investigated. 
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