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Abstract: Past few years have seen exhaustive research in the field of camera
localisation. As the era changed from single to multiple cameras, so is the
paradigm shift from centralised to distributed algorithms. Euclidean geometry
has been explored and the concept of Lie algebra has been touched for more
subtle and non-Euclidean details. View overlaps in vision-based algorithms
have been optimised and several depth measurement techniques have been
implemented to extend the localisation from 2D to 3D space. LED-based
techniques like triangulation and LED triangle have given depth measurement
alternatives for 3D localisation whereas epipolar geometry has localised
cameras with only image information. Multilateration-based approach has used
anchor nodes for camera localisation whereas a few distributed algorithms (viz.
DALT, DILOC) have used iterations for refinement of estimated locations. As
the area under cover increased, wireless network has taken over and many
algorithms have been developed for wireless networked cameras. Simultaneous
existences of diverse algorithms belonging to different paradigms are needed to
meet the requirement of deployment in diverse scenarios. This paper discusses
the evolution from the localisation of non-camera equipped sensor network to
the smart camera localisation in 3D environment that spans more than a decade.
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1 Introduction

The mode of vision-based security in the past decade has been centred with operation
through single camera in small indoor environments. However, single camera
surveillance gradually evolved to multi-camera sensor network due to following factors:

1 growing importance of video surveillance
2 environment of coverage areas becoming larger and more complex
3 decreased hardware cost of sensors.

For the operation of multi-camera sensor network, knowledge of location of other
cameras is the pre-requisite for every camera. This process of establishing a relation
among the camera coordinates is termed as camera localisation. Manual localisation
methods of multi-camera network failed to handle large number of cameras in network.
Automation of the localisation process started gaining importance to ascertain accuracy
and real-time localisation. One of the primitive automated solutions to localisation has
been through GPS (Hofmann-Wellenhof et al., 1997), but it has failed mostly due to the
need of open environment having line-of-sight. Efforts have also been made towards
developing localisation algorithms on single processor after collecting images from all
the networked cameras in a single room (Davis et al., 1999; Kanade et al., 1997). But in
practical scenario, large number of cameras producing high volume of images and video
data makes the analysis time-consuming on single processor. The subsequent attempts of
developing localisation algorithms deploy more than one processor concurrently to
achieve real-time localisation. These approaches differ in variety of coverage areas,
assumptions made on deployment of the nodes, and the way sensors work (Piovan et al.,
2008).

The paper is organised as follows: Section 2 reveals the need and evolution of
multi-camera network as an independent field of research followed by Section 3
describing main techniques that localised cameras based on vision captured from
a camera. This section also describes formation of epipolar geometry. GPS- and
LED-based techniques are discussed in this section and their bottlenecks are also
discussed. Hence, evolved another genre of localisation techniques as illustrated in
Section 4. Section 5 emphasises on recent need of localising wireless cameras and to
solve the localisation in 3D plane. 3D localisation is more complex as it contains
more number of unknown parameters. Latest techniques applied to partially solve 3D
localisation are discussed concluding with a comparative analysis of existing works.

2 Pioneer works

Early automated localisation techniques for static sensors, viz. non-camera equipped
networks have used ultra-sound, radio, or acoustic signals (Taylor et al., 2006). Likewise,
moving sensors like robots have exploited LED-based techniques for their localisation.
However all the methods proposed have been based on heuristic approaches and lagged
theoretical foundation of network localisation until Aspnes et al. (2006) have identified
specific problems and solved them theoretically. This work, motivated by previous work
in Eren et al. (2004), has attempted to give systematic answer to the following questions:
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1 conditions for unique network localisability
2 computational complexity of network localisation
3 complexity of localisation in typical network deployment scenario.

The authors have established the localisation problem in sparse graphs to be NP-hard
unless P = NP. For dense graphs, localisation has been shown to be possible as explained
by Biswas and Ye (2004).

The notion of centralised processing has been predominant in early camera sensor
localisation techniques. Davis et al. (1999) have analysed human action in a closed
environment. Stereoscopic reconstruction of virtual world based on depth calculation
from multiple real scenes captured through multiple cameras has been attempted in
Kanade et al. (1997). Aforementioned experiments revealed the importance of proper
positioning and orientation of cameras for best coverage of view area. Various researches
have attempted to solve the pose (location and orientation) (Funiak et al., 2006) of all
cameras in the network. Funiak et al. (2006) have proposed a novel approach of relative
over parameterisation (ROP) of the camera pose. However, some approaches have been
successful to calculate relative locations only, but failed to estimate orientation of each
camera. GPS-based approach (Hofmann-Wellenhof et al., 1997) have been successful in
finding approximate relative location of cameras but the reasons of its failure were:

1  inability to resolve camera orientation
2 need of direct line-of-sight to satellites
3 costly hardware requirement

4 high power consumption.

Work in Liu et al. (2006) have presented a protocol that utilises GPS- and LED-based
localisation. But this protocol needed human-assistance, which failed for large number
of cameras deployed in a wide coverage area. Hence, several distributed computing
algorithms (Mantzel et al., 2004; Funiak et al., 2006; Devarajan and Radke, 2007; Tron
et al., 2008) have come into play to produce accurate and real-time localisation solution
to large number of networked cameras.

3 Vision-based localisation

A stringent requirement of vision-based approach has been foreseen by the researchers as
localisation through GPS was neither accurate nor able to provide orientation. The appeal
of vision-based localisation is that it requires image data only. However, vision-based
localisation algorithms impose a deployment constraint that there must be an overlap
between view of cameras in the network. This constraint is analogous to the constraint in
general transreceiver sensor network. Inspired by the graph theoretic representation
(Bondy and Murty, 1982) of connectivity among sensors (as depicted in Figure 1), vision
graph (Mantzel et al., 2004) with M networked cameras was introduced to be G(V, E)
defined on V'={V;|i=1,...M},and E = {E; | E; € {0, 1}; i, j = 1,...,M} representing
cameras as vertices and vision overlap as edges respectively. Kurillo et al. (2008)
introduced the concept of weighted vision graph, where each e; has been assigned a
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weight w;; corresponding to the number of common points between i™ and /™ cameras. To
serve the purpose of realigning all camera pose to a single network-wide coordinate
frame, some researchers have come up with solutions that require triple-wise camera
overlaps (Lowe, 2004; Mantzel et al., 2004), implying the need of densely deployed
network, where as some researchers have proposed to position a camera in the network
such that it is in view-overlap with all other cameras in the network (Lymberopoulos
et al., 2005). Some researchers have used an LED-lit rod of known length to be placed at
a position visible from all cameras to establish consistent scale (Medeiros et al., 2008;
Kaurillo et al., 2008). As the densely deployed network is not cost-optimised, researchers
have come up with localisation solution for relatively sparsely deployed network (Kurillo
et al., 2008; Ellis et al., 2003), and subsequently also for networks with non-overlap
(Marinakis et al., 2005; Rahimi et al., 2004). The following Sections 3.1 and 3.2 explain
visible and invisible LED-based techniques, and the formation of epipolar geometry
behind resolving view-overlap respectively.

Figure 1 Analogy between formation of sensor connectivity graph and vision graph,
(a) transreceiver range overlap of sensors (b) sensor connectivity graph
(c) view overlap of networked cameras (d) vision graph
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3.1 LED-based approaches to minimise view-overlap

Techniques based on LED (emitting visible or infrared spectrum) have reduced the view
overlap leading to relatively sparsely deployed network. Use of LED reduces the
view-overlap to be pair wise. A few recent works based on epipolar geometry have been
done to reduce the density of overlap while maintaining the localisability of each camera.

In Medeiros et al. (2008) and Kurillo et al. (2008), two LED markers are placed on
both ends of a fixed metal rod of known length. The time synchronised detection of LED
provides correlated feature points. From the known length of the rod, unknown scale
factor is resolved to consistent scale. Barton-Sweeney et al. (2006) and Farrell et al.
(2007) have also exploited LEDs for modulated emission.

Depth measurement is required for 3D localisation. Since a camera cannot fetch depth
information from a perspective view, hence an explicit distance measurement technique
is essential. Lymberopoulos et al. (2005) have used three LED markers to form a triangle
pattern to estimate distance measurement needed for 3D localisation. Barton-Sweeney
et al. (2006) have experimentally verified that three LEDs in a triangle pattern with
known dimensions can avoid explicit distance measurement, which had been in common
practice before devising the said approach (Goldenberg et al., 2005; Sturm and Triggs,
1996). In Liu et al. (2006), global coordinates are taken from GPS-based calibration
device for computing pose of camera, while image coordinates are calculated from LED
of the camera.

While most of the researches towards this direction employ visible LEDs to mark
location and general cameras to sense the LEDs, techniques for localisation through
invisible markers (sensed with IR sensors) also gained its importance as invisibility of
markers do not impair the scenery. The invisible markers are made of translucent
retro-reflectors which are visible only in IR illumination (Nakazato et al., 2005a).
Localisation techniques through invisible markers are costlier than localisation through
visible markers as they employ extra IR sensor along with general cameras that are
intended to be localised (Nakazato et al., 2005b). Early invisible marker techniques have
used infrared markers for estimating positions while orientations have been estimated
through gyro meter only (Tenmoku et al., 2003; Maeda et al., 2004). However, later the
known geometry of the invisible markers has been exploited to estimate both the position
and orientation of the markers from its view projection (Kato and Billinghurst, 1999).

3.2  Epipolar geometry to resolve view-overlap

Epipolar geometry (Chum et al., 2003; Zhang, 1998) provides a 3 x 3 singular matrix
describing the relation between two perspective images of the same rigid object from two
cameras. Epipole is the line connecting any two cameras seeing the same object (depicted
in Figure 2). The point where epipole meets the camera frame is epipolar point and hence
epipole can also be realised as a collection of epipolar points between corresponding
frames of two cameras [shown in Figure 2(a)].

Epipolar geometry has the basis that any object (in 3D coordinate) observed by two
cameras and their projections are co-planar (Hartley and Zisserman, 2004) [shown in
Figure 2(b)]. The essential matrix formulated from epipolar geometry is further used for
localisation and camera calibration (Kurillo et al., 2008; Ma et al., 2004). Medeiros et al.
(2008) and Kurillo et al. (2008) have employed epipolar geometry to resolve point
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correspondence problem (Liu et al., 1990) and unknown scale factor (Xu and Zhang,
1996).

Figure 2 Formation of epipolar geometry, (a) epipole as a collection of epipolar points
(b) epipole and epipolar plane
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In decentralised and distributed communication paradigm of multi-camera network, point
correspondence problem can be solved through:
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1  measurement correspondence (where features of an object seen from different
cameras are wrapped into a common view prior to state estimation)

2 trajectory correspondence (where state estimates are computed independently in each
view) (Spurlock and Souvenir, 2012; Taj and Cavallaro, 2011).

A recent work of Anjum (2011) exploits correspondence among trajectories estimated by
Kalman filter to recover poses of non-overlapping cameras. Table 1 summarises few
landmark researches towards solving point correspondence problem.

Table 1 Different approaches to solve point correspondence problem
Year Author Approaches
2004 Mantzel et al. Time-synchronisation correlation of feature points

(extracted by tracked motion)

2005 Lymberopoulos et al.  Deploying nodes with self-identifying lights
(fails in bright or specular-filled environment)

2006 Devarajan et al. Scale invariant feature transform (SIFT)-based
feature point correlation

2008 Medeiros et al. Time-synchronisation correlation of feature points
(using LED rod) + recursion on fundamental
matrix to refine camera positions

2008 Kurillo et al. Time-synchronisation correlation of feature points
(using LED rod) + bundle adjustment (Triggs et al., 1999) to
refine camera positions

2010 Kassebaum et al. 3D target of known geometry and pairwise projection
matrix estimation for point correspondence

Kurillo et al. (2008) have used it for camera position and orientation. Researchers in
Mantzel et al. (2004) and Bulusu et al. (2000) have also used epipolar geometry for
camera localisation. Lymberopoulos et al. (2005) have proposed sensor assisted camera
localisation and have examined measured epipoles (ME) (Taylor, 2004) and estimated
epipoles (EE) (Hartley and Zisserman, 2004). They have also formulated a more
constrained optimisation problem [optimised estimated epipole (OEE)] to reduce the
error in noisy EE.

4 Consensus and belief propagation-based localisation

A consensus algorithm is an interaction rule that specifies the information exchange
between an agent and all of its neighbours on the network. Consensus algorithms are used
in many situations, viz. distributed formation control, synchronisation, rendezvous in
space, distributed fusion in sensor, flocking theory (Olfati-Saber et al., 2007).

Consensus algorithms are used for getting global pose of a camera in a network, and
have been used for localisation with range measurements (Gotsman and Koren, 2004;
Khan et al., 2009). Tron and Vidal (2009) have generalised the consensus algorithm for
estimating pose of each node from noisy and inconsistent measurements.

On contrary to this, notion of belief propagation have also been proposed for
establishing localisation (Devarajan and Radke, 2007). Belief propagation is a message
passing technique for graphical network model which have been applied for scene
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estimation, shape finding, image segmentation, restoration, and tracking (Isard and Blake,
1998; Freeman and Pasztor, 1999; Coughlan and Ferreira 2002; Felzenszwalb and
Huttenlocher, 2004; Sudderth et al., 2005). Belief propagation has originally been
developed for trees. When applied for graphs with cycles, inferences (belief) might not
converge, and even if convergence occurs, density is not guaranteed (Murphy et al.,
1999; Pearl, 1988). The non-convergent form of belief propagation [loopy belief
propagation (LBP)] (Murphy et al., 1999) is used in sharing localisation parameters in
multi-camera localisation.

Figure 3 Simultaneous localisation techniques, (a) SLAM (b) SLAT (¢) SPLAM
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Paskin and Guestrin (2004) have presented a more robust algorithm than BP in several
aspects. This approach has been extended by researchers in Dellaert et al. (2005) for
localisation of robot in multi-camera scenario (SLAM: simultaneous localisation and
mapping) (Paskin, 2003) where a robot observes all the landmarks and estimates its
location and position of the landmarks. A similar concept has been proposed by Funiak
et al. (2006) for camera localisation (SLAT: simultaneous localisation and tracking),
where the camera replaces the landmarks and robot is replaced by a moving object. Robot
observes the landmarks in SLAM [shown in Figure 3(a)], whereas cameras observe the
object in SLAT [shown in Figure 3(b)]. Funiak et al. (2006) has also proposed ROP to
represent the distribution in SLAT problem using single Gaussian.

There had been efforts to find the trajectory of object and pose of camera
simultaneously (Funiak et al., 2006; Lee and Aghajan, 2005). In particular, Rekleitis et al.
(2006) have addressed the issue of localisation in hybrid context of robot-camera network
system, where object localisation takes place along with camera localisation (SPLAM:
simultaneous planning localisation and mapping) [shown in Figure 3(c)]. Here, robot can
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localise itself treating cameras as its landmarks (similar to SLAM). Likewise, cameras
can localise themselves treating the robot as moving object (similar to SLAT).
Estimation, local planned behaviour, and data fusion are done for effective collaboration
of camera network and robot in SPLAM.

5 Wireless and 3D localisation

With increasing coverage area and no. of cameras in a network, wireless mode of
communication has grown its significance. Even though much work has been done over
wireless sensor network, their localisation algorithms (Savvides et al., 2001; Savarese
et al., 2001; Capkun et al., 2002; Galstyan et al., 2004; Moses et al., 2003; Patwari et al.,
2003; Shang et al., 2003; Patwari and Hero, 2004) do not hold good for camera network
due to two main reasons:

1  they do not achieve required accuracy for computer vision tasks
2 they do not provide orientation of a sensor.

Lee and Aghajan (2005) have proposed a wireless camera (connected by IEEE 208.11b
protocol) localisation algorithm capable of estimating both camera pose and trajectory of
the object. This work has been experimented in 2D plane with only five cameras, while
Medeiros et al. (2008) have proposed four different localisation approaches simulated in
a 20 x 20 x 20 m® 3D region with 50 randomly placed cameras. The system developed in
Medeiros et al. (2008) can perform in fully-distributed scenario, and does not require
anchor-nodes. This approach employs feature-based object trajectory estimation, and
hence performs depending on robustness of the used feature-extraction algorithm.

3D image reconstruction has remained an active research area in computer vision
for many years. Tomassi and Kanade (1992) have used matrix factorisation as a way for
reconstructing a scene, as well as to estimate camera parameters and frame point
localisation. This work has employed orthographic projection whereas Poelman et al.
(1997) have used perspective projection to serve the same. Sturm and Triggs (1996) has
also proposed more complete solution for measuring camera depth. Rahimi et al. (2004)
have pre-computed the homographies between image plane of each camera, and a
common ground plane leading to 3D localisation of cameras.

Lymberopoulos et al. (2005) have proposed an algorithm that combines a sparse set
of distance measurements with image information from image planes of each camera. It
uses three LED triangle of known geometry for depth measurement. Tron and Vidal
(2009) have taken the work to distributed level, they have applied distributed consensus
algorithm that enhances the work of Piovan et al. (2008) and have generalised it from 2D
to 3D.

Latest works on 3D camera localisation include the work of Kassebaum et al. (2010).
Kassebaum et al. (2010) have used 3D target. This is similar to the 2D targets like
checker boards used earlier in Zhang (2000) and Heikkila and Silven (1997). The
advantage of 3D target is that in one frame it provides all the feature points needed by a
camera to determine its position and orientation relative to the target. On detected feature
points, DLT (Hartley and Zisserman, 2000) is used to estimate projection matrix. The
algorithm reduces the cost of feature point detection, number of overlaps and eliminates
the unknown scale factor problem. Kassebaum et al. (2010) have experimented with error
less than 1in when 3D target feature point fills only 2.9% of the frame.
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Review of related researches on multi-camera localisation (continued)
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Review of related researches on multi-camera localisation (continued)
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6 Conclusions

Networked communication in early days used to exploit sound, radio and other acoustic
signals for localisation of static sensors. However, with the development of multi-camera
network, it gradually became stringent to localise the nodes for initialisation of a
camera-network. There are several method devised depending on different types of
coverage area, different strength (number) of cameras in network, different types of
camera used, and different purpose of the camera-network. The variation has been as
wide as ranging from the work of Mantzel et al. (2004) using 2D object (checkerboard) to
be feature for localisation till latest work of Kassebaum et al. (2010) employing 3D target
with error less than 2.9% and with decreased cost of feature point detection. Table 2
illustrates and compares few landmark researches to portray the variety of algorithms
used, assumptions, experimental setups and results thus obtained. There has also been
change in application domain of camera-localisation and hence the need of precise
localisation. 3D localisation addresses the issue of localising more number of unknown
parameters, whereas previous 2D localisation dealt with less number of unknown
parameters considering few parameters to be known. Sensing the availability of low-cost
cameras, parallel research is going to make the localisation algorithms distributed rather
than centralised. Researches have also been perceived in the direction of accurate
localisation in presence of noisy environments, e.g., less number of available feature
points, feature points on the visual boundaries of the cameras, etc. These kind of
algorithms are useful when number of cameras in a network is very high. There is still
research going on whether all the unknown parameters (including intrinsic and extrinsic)
to determine 3D pose of a camera can be localised.
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