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Abstract: A mathematical model of artificial neural networks with hysteresis is
formulated using neutral delay differential equations. Hysteresis modifies the
systems such that they cannot produce unique output for any given input, rather
output is produced based on the past history of the system. Motivated by the
applications of complex valued neural networks in artificial neural networks,
we studied the global dynamics of complex valued neural network with
hysteresis. The result extends and improves the earlier publications due to the
fact that it removes some restrictions on the neural delay. In this paper
continuous hysteresis neuron model has been used to arrive at the sufficient
condition for global exponential stability of a unique equilibrium. The
hypothetical insight has been successfully applied and verified using relevant
numerical examples.
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1 Introduction

Hysteresis is normally observed in several engineering systems such as control systems,
electronic circuits, and piezoelectric actuator, etc. This phenomena also observed in
animals such as frogs (Didday, 1976) and crayfish (Hale, 1977). The hysteretic neural
network model is envisaged to be efficient and robust for various applications such as
medical image processing, military data processing, etc. Hysteretic feedback control
phenomena also manage glucose vs. lactose utilisation preference in Escherichia coli and
ensure unidirectional cell-cycle progression in eukaryotes. Activation models of neural
network with past history produce hysteresis effects and study of their dynamics has been
the subject of recent investigations. Hoffman (1986) has observed that there are several
possible biochemical schemes that lead to hysteresis. Continuous time dependent models
of hysteretic neural networks have also been identified by several researchers (Hoffman,
1986; Hoffman and Benson, 1986; Segundo and Martinez, 1985; Macki et al. 1993;
Gopalsamy and Liu, 2007; Krasnosel’skii and Pokrovskii, 1989; Feckan, 1999), which
can be mathematically described by the following state equations.

x/(t) = —aixi(t)+2bi,(fk (xk @) +cx, (t—1)+ p, );k (t-o)+q, j, t>0. @)
k=1
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M =[b;]
(a positive diagonal matrix) a; denotes the range of continuous variable,
¢ = diag{cy, c3, ...... ¢}, ¢; denotes the measure of the inhibitory influence of the past
information, p = diag{pi, p2 -..... Pm}, pi denotes the measure of rate of change
inhibitory influence of the past history due to deactivation. The functions f;, k=1, 2, ...n
are complex valued continuous and are defined on (—, ), g; denotes the external
input vector and the delays o > 0, 7 > 0 are positive. x,(f) in the argument of f;
function in (1) denotes a local positive feedback, in neural network literature these are
known as self excitations while in the biological literature which are known as
reverberations.

Complex valued neural networks have been found to be useful in extending the scope
of application in optoelectronics, imaging, remote sensing, quantum neural devices and
systems and artificial neural information processing. Applications of these networks can
be found in Hirose (2003). The difficulties that arise out of changing the real variables to
complex variables have been well explained by Georgion and Koutsougeras (1992)
(Sreeharirao and Ramamurthy, 2008). Complex-valued neural networks deal with
not only complex-valued signals but also have the following excellent properties
(Nitta, 1997).

assumed to be complex valued. In which passive decays a = diag{a; > 0}

mxm

1  the average convergence speed is two or three times faster than that of real-valued
neural networks

2 the number of required hidden parameters is approximately half that of real-valued
neural networks.

It is essential to obtain discretisation of the continuous-time neural network for real time
applications and implementation of computer simulations. Due to this, it is also necessary
to study the stability of discrete time neural networks from both theoretical and practical
point of view. By a proper approximation (Gopalsamy and Mohamad, 2003), obtained
the following discretisation scheme of system (1) and have shown that this discrete-time
analogue can preserve the convergence dynamics of the corresponding continuous-time
version (1).
Consider (1)

dx m
xcli(t) = —a,-x,-(l‘)+zbtkfk (7 ®),
t k=1

where v, () =x,(t)+c,x;(t—7)+ p; xi(t—0)+¢q;,i =1,2,...... m.
Which implies that

e ERH)
o [ )
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Since

x,(t—oc+h)—x,(t-o0)
h
rx(t-oc+)-x(t-0o)

i)

For ¢ e[nh,(n+1)h], ne Z; where h is a fixed positive real number denoting a uniform

xi(t—o)= }}_)r%

discretisation step-size and [r] denotes the integer part of the real number r. Clearly, for

€ [nh, (n + 1)h] we have {ﬂ —n.

Let | = =1, ol =¢" and |2 |=0".
h h h

Therefore foreachi=1, 2, ....... m,

v (®) =xi(nh)+cl.xi((n—rl)h)+p,- [xi((n_o-o)h)—x,-((n—o-')hﬂ+qi.

For convenience assume, x;(nh) = xi(n) foreachi=1, 2, ....... m, we have

y,-(t)=xi(n)+cixi(n—rl)+pi[xi(n—ao)—xi(n—a])}+qi:Z,-(n).
From(l)wehave ——ax(t)+z S (Zo (),
then {%wm(r)}% “Z i (Z,m).

Simplifying we have E[xi (e | = e“ff;bik 1 (Z, ).

Integrating over (nh, t), where t < (n + 1)h,

x. ()" —x.(nh)e"™ = {ea }Zblkfk Z,(n)).

i i

Letting ¢t — (n + 1)A, we can obtain

et (n+1)h %"

X, ((n+ ke " — x (nh)e™™ = {

}z kfk Z (”)

a;

—a.(n+)h .
a(mhh e can obtain,

}Zb,-kfk (Z, ().
k=1

After multiplication with e

—a;h

x,((n+1)h) = x,(nh)e” " = {1 —e€

1
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For convenience we can assume x;(nh) = x,(n),

x,((n+1)) = x,(nh)e™ " + ¢, (h)i by fi (Z,(n)), where ¢ (h)= ! ":_a'h )
= i
Thus we can obtain for eachi=1, 2, ....... m,
x,-(n+1):d[xi(n)+il;ikfk(2k(n)), )
k=1
where
Z,(n) = x(m+cpx; (n=7,)+ px; (n=0") - px; (n—=0') +q, 3)

and b, =b, ¢ (h).d, =e", i=12,..m, k=12,...m, 7, :{—}, o’ :[T} and

)

h is a fixed positive real number denoting a uniform discretisation and [7] denotes the
integer part of the real number 7.
Now the system (2) is discrete — time analogue of the continuous — time system (1).

Remark 1.1: Some differential equations with stable solution are unstable after
discretisation using ordinary discretisation method or standard discretisation method
rather solutions are stable by using proper approximation technique or non standard
method, for example, the ordinary differential equation y' = —2y has solution y(f) = ce >’
then y(f) — 0 as ¢t — o which is a stable solution. Using ordinary discretisation, discrete
equation is y(n + 1) + y(n) = 0, whose characteristic equation is A + 1 = 0,that is 4 = -1
and the solution is y(¢f) = c¢(-1)" and | A = 1. If the modulus of eigen values of the
characteristic equation is less than 1 then the system is stable. But here | 4| = 1. Therefore
y(n + 1) + y(n) = 0 has unstable solution. Using proper approximation method, the
discrete equation is y(n + 1) — e > y(n) = 0, whose characteristic equation is 1 — e " = 0,
that is A= e 2", thus we havel Al =|e ™| < 1. Therefore the system y(n + 1) — e y(n) =0
has stable solution. Due to this author felt that proper approximation technique is more
relevant to obtain stable solution even after discretisation.

2 Existence of unique equilibrium point
Consider the system (3)
Z;(n) =x;(n)+c.x; (nfrl)+pl.xl (n—ao)fp[xi (n—al) +q;, i=12,...m.

Note that Z(n) is governed by the neutral delay difference equation
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Z(n+l)—aZ(n)+z WAVAD)) +c2bkfk (n-1,))

+ Pikzzl:gikfk (Zk (”_00)) _Pikzzl:gikfk (Zk (”_01))"‘11':

where I, =¢q;,—q,a;,, i=12,...m

“

In this section, consider the generalised discrete hysteretic neuron model equation (4)
and guarantee the existence of a unique equilibrium to the system (4). Consider the
space C" of all m-vectors of real numbers and let | . | denote the norm of an m-tuple
2=z, 22y -eer Zy), defined by |z |= max |z |.

sism

Now list the following hypothesis on the response functions f;, k=1, 2, ..... m which
will be needed in our subsequent discussion:

H1 Vectors n,ce C", fi, k=1, 2, .....m, L; > 0 are constants, satisfies
|/ (D= £ < L [n—g]. Q)

H2 f,k=1,2, ... mare continuous, complex valued functions and f;(0) = 0,
k=1,2,...m.

H3 There exists a constant K, >0, k=1, 2, ..... m such that max | f, (z) |= K|
eom

From H1 and H2 we have
|fi(2)] < k=12,...m (6)

If z" is the equilibrium point of the system (4) then z" satisfies the equation

m

=az]+). ,kﬁ(z;)+cizm:@kﬁ(zz)+1i. ™)
k=1

k=1

If H1 and H2 hold good that

max

1<i<m

Z; ‘<a0‘ ‘+max|l+c|2‘b ‘

1<i<m

Z;|+|1l.

where q, —maxa,, and |/ |=max |/, |.
1<i<m

Thus Z" can also be represented through the following relation,

U

{l—a0 _gliiﬁ|l+ci|kZ;Lk ‘l;lkU

s

Z | <

*
R ‘Z ‘:max
1<i<m

Z| ®)

Provided

1<i<m

0<a0+max|1+ci|iLk‘b~ik‘<l. ©)
k=1
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Also, when H3 holds good if

0<a,=maxa, <1 (10)

1<i<m

then Z" satisfies the estimate

m -
|I| +f22<1§|1+ci|sz ‘bikU
* k=1

‘ZZ ‘s

an

1-a,

We note that the inequalities (8) and (11) provide two sets of estimates for Z* which are
valid under different conditions. From (7) we have

7' <(1-a,) {lﬂs Zb,,(fk( V) } (12)

We denote the minimum of the right hand estimates of |Z'| in the relations (9) and (10)
by a.
Let S={z/zeC",|z]= max | z; |< k}, for some k.
<i<m

Then Z" € S and hence S is non empty compact set of C".
Define a mapping 7 : S = S by T(z) = (Ti(z1), Ta(z2), -..... , Tu(zw)), where

Ti(z) = (=) "[(+¢)D by fi(z)+ 1], i=1,2,...m
k=1
Forany z € Swe have |z |=max |z |[< k
1<i<m

m

|T(z)| max|T(z )| max

I<i<m

(1-a,) {(Hci) l;i,(fk(z,()+1[}

k=1

1<1<m

< max l a {1+|c Z‘b “L ||zk|+|1|

1<i<m

<max(l a |:<1+|c kZ‘blk‘L +|]|_

Then T (z) € S and hence T (S) < S.
Now for Z, W e S,

I7(2)- T(W)|<max[l a; {|l+c|2‘b,k“fk z) fk(wk)|

Using H1,| T(z) - T(w) | < y| z—w| where y = max[(1-a,)"" |1+ci|2|l;ik|Lk].

1<i<m

If (9) holds we have 1-a; >1—a, > max |1+ | E L, |l;l.k [) then we have 0 < y< 1.
1<i<m
k=1
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Hence T'is a contraction mapping. According to Banach’s contraction mapping principle
there exists a unique Z in S, which satisfies 7(Z") = Z, which will be required unique
equilibrium pattern for the (4).

From the above discussion we can establish the following theorem.

Theorem 2.1: The system (4) possesses a unique equilibrium pattern if H1 and H2 hold
and the inequality (9) is satisfied.

3 Global exponential stability

In this section, we consider the model (4) and established conditions for the global
exponential stability of the equilibrium patterns. We shall tacitly assume that the network

(4) possesses a unique equilibrium Z° = (Zl* ,Z; , ..,Z;). Using the transformation
Z~i (n)=Z,(n)- Zl.* in equation (4) and utilising (7), we get foreachi=1, 2, ....... m,

m

Z<n+1)—a2(n>+2 i (Zem)+¢, ) bugi(Zi(n-1))

S [a (o) a2 )]

in which g, (Z, (n)) = f,(Z,(n)+ Z;)— fi(Z1), k=1,2,...m
Redesignating Z (n) as z(n), we finally obtain

z(n+1)—az<n)+2 w8 (2 () +c2b,kgk z(n-1,))
k=1

Sl el )]

Clearly stability of z* for the system (4) is equivalent to the stability of the trivial solution
for the system (13) and if H1 holds, then we have

(13)

|lgi (z(m)| < L | z(n)], k=1,2,...m. (14)

Definition 3.1 (Zhang et al., 2006): The trivial solution of equation (13) is said to be
globally exponentially stable if for any solution z(n, zi(ng)), with the initial condition
z{(ng) = z(0, ny), there exist constants p € (0, 1) and M > 1 such that

Dlam <Mmigl? p" nzn, (15)
i=1

where || ¢ ||* = max {z, (0),5:23 (0),5‘/5 (=D,...... Zm:zf (1)}
i=1 i=1

i=1

Lemma 3.1 (Liz and Ferreiro, 2002): Let r > 0 be a natural number, and let {Z(n)},>_, be
a sequence of real numbers satisfying the following inequality
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AZ(n) < —pZ(n)+qmax{Z(n),Z(n-1),...Z(n—r)},

where n > 0. If 0 < g <p < 1 then there exists a constant A, € (0, 1) such that
Z(n) <max{Z(0),Z(-1),...Z(-r)}Ay, n=0.

Moreover Ay can be chosen as the smallest root in the interval (0, 1) of the equation
A (p-DA —q=0.

Now we state and prove the main result in the foregoing sections.

Theorem 3.1: Assume that the condition H1 and (9) holds and that there exist positive
numbers 7, &, i=1,2, ..., 21. If

G = 4P L (e (€7€)+ A (7)) Ao (47 4)+ s (7B)
<p= Eg[l =Bl ~2BILL (A (A A) A (BTB))},

where A,.,(4) the largest eigen value of a matrix A, L__ = anx{Li}, L = diag{L,, L,,

max

Vg 4+ g+ 03 ) (L gy gy + 130+, ),
11 5 4 4 1+ T+ s )15+ 5 g+ )

L " 4 4+ o + 1 ) (175 + 0 +75 4757 +775 +11),

(
= max (1+776’1 1) e+ ++772’11),(1+5l +8,+ 0, + 6, +05+5,), (16)
(1487 +6,+8,+ 8, + 80+ ), (148, +8," +8, +85 + 84 +85 ),

87 +87 485 + 8 48+ 85 ), (140, + 5 46 +85 +8 + )

(1465 +80 + 03+ + 85+ ). (1485 +67 + 63+ + 8 +3 )

Then the equilibrium point of (13) is globally exponentially stable.

Proof: System (13) may be put in the following equivalent form

z(n+1) =az(n)+Mg(z(n)) + cMg(z(n - T]))
17
+ng[g(z(n—GO))—g(z(n—al))]. (7

¢ = diag{ci, ¢z, ...... Cny, a= diagla,,a,,...... a,}y, p = diagipi, ps ...... Pt
M = [bNik] and g is the m-vector with components g;, k=1, 2, ...m.

Let U(n) and V(n) denote the real and imaginary parts of z(n) so that z(n) = U(n) +
jV(n), in which j =+-1. Also, we express the other complex quantities in (17) by
separating the real and imaginary parts M = A + jB, g(z(n) = h(z(n)) + jk(z(n)). Here all
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the quantities 4, B, U, V, h and k are real. Now separating the real and imaginary parts in
(17), we obtain

Un+1)=aU(n)+ Ah(z(n))— Bk(z(n) +cAh z n— Tl) ch( n 71)
+pA—h( (n o’ ) ( 1

o

(=
V(n+1)=aV(n)+ Bh(z(n))+ Ak(z(n) + cAk(z (n 7 )) + cBh( (n 7 )

n(elr-o > < /)
+pB[h(Z(n—

Consider the following function

W(n)=l Z(n)[=Z"(n)Z(n)

DN HOEDWAD
i=1 i=1
=U" (MU )+ V" () (n),
in which 7T denotes the transpose of a vector, so that
Wn+)=U"(n+DUm+D)+V (n+1)V (n+1). (18)
We now compute the first term on the right hand side of (18) as follows

U'(n+D)U(n+1)

= [U’(n)af +h" (z(n) A" =k (z()B" +h" (z(n-7,)) A "

—k" (z(n-7)B"c"
o i (=) 1" (2{n=0")) a7
[ (o)) el o |
x (dU(n) + Ah (z(n)) - Bk(z(n) + cAh(z(n—7,)) = cBk (z(n—1,)
+pA[h(z(n—a°))—h(z(n—0'1))]
_pB[k(z(n_ao))_k(z(n_o—l))]]
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For convenience write

h(z(n—a)) =[h(z(”_°'0))_h(z(”_al ))J

and lg(z(n—a))=|:k(z(n_o-0))_k(z(n_61)):|. 19)

Clearly if H1 holds and from (14) we have | hyz(n)) | £ L; | z(n) | and | ky(z(n)) |
<Lilzim) |, k=1,2,...m.
And hence we can represent

‘max ‘max |Z(7’l—a)|,

‘ﬁ(z(n—a))‘ﬂ |z(n—a)|, and ‘l;(z(n—a))‘SL

(20)
where L, =max,_., {Li}'

Using (19) and simplifying we have

U'(n+D)U(n+1)

=U" (ma" (aU(n)+ Ah(z(n)) - Bk(z(n) + cAh(z(n-1,))
—cBk(z(n-1,)+ pAh(z(n-a)) - pBk(z(n-a))
+h" (z(n) A" (aU (n) + Ah(z(n)) — Bk(z(n)
+cAh(z(n-1,))-cBk(z(n-7,)+ pAh(z(n-a))
— pBk(z(n-a)) —k" (z(n)B" (aU(n) + Ah(z(n))— Bk(z(n)
+cAh(z(n-7,))~cBk(z(n-7,) —Bk(z(n)+ pAh(z(n-a))
— pBk(z(n—a))+ " (z(n-1,)) A " (@U(n)
+ Ah(z(n) +cAh(z(n-7,)) - cBk(z(n-1,)+ pAh(z(n-a))
— pBk(z(n—a)) —k" (z(n-7,)B"c" (aU(n)
+ Ah(z(n)) - Bk(z(n) + cAh(z(n—1,)) - cBk(z(n-1,)
+ pAh(z(n-a)) — pBk(z(n-a)) + i (z(n-a)) A" p" (U (n)
+ Ah(z(n)) — Bk(z(n)+cAh(z(n—1,))-cBk(z(n-1,)
+ pAh(z(n—a)) - pBk(z(n-a))
—k"(z(n—a))B" p" (aU(n) + Ah(z(n)) — Bk(z(n)
+cAh(z(n—z’l))—ch(z(n _71)
+ pAh(z(n—a)) — pBk(z(n—a)).

Rearranging the terms we obtain
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U'(n+1)U(n+1)

=la] UT (U (m) + [UT (n)a" Ah(z(n))+h" (z(n))ATaU(n)]
—[Ur(n)szBk(z(n)) + aU(n)kT(z(n))B’]

+[UT )@ cah(z(n=7,))+ " (2(n-7)) 4"¢"aU(n) |
—[UT(n)aTch(z(n —0,))+k" (z(n-7, ))BTcTaU(n)]
+[UT (n)a" pAh(z(n-a))+h" (z(n—a)) A" pTaU(n)]
—[UT(n)&T PBi(z(n-a))+ k" (z(n—a))B” pTdU(n)]

+h" (z(n)) A" Ah(z(n))

—[hT(z(n))hTBk(z(n)) +k" (z(n))BTAh(z(n))]

+[hT () A eAh(z(n—7,))+ " (z(n-7, ))ATcTAh(z(n))]
|1 A" eBk(2(n=1,)) + k" (2(n—17,)) B " Ah(z(n) ]

| W A" pAh (z(n-a)+ i (z(1—a) A p” Ah(z(n)) | @
—[hT(z(n))AT PBk(z(n—a))+ k" (z(n—a))B" pTAh(z(n))]
+k" (z(n))B" Bk(z(n))

—[kT(z(n))BTcAh(z(n —0))+ A (z(n-7)) ATcTBk(z(n))]
+[kT(z(n))BTch(z(n —0,))+k" (z(n-7, ))BTcTBk(z(n))]

—[kT(z(n))BT pAR(z(n—a))+ i (z(n—a)) A" pTBk(z(n))]

+ [kr (z(n))B” pBk(z(n—a))+k" (z(n— a))BTBk(z(n))]
+h" (z(n—1,)) 4" can(z(n-1,))

(W (2(n=7,)) A" Bk (z(n=1,))+ K" (2(n—1,)) B " cdh(z(n~7,))]

[ "(2(n-5,)) A" pAh(z(n-a)) +h" (z(n-a) A" p" cAh(z(n~1, ))]

[ (etan)
+k" (z(n-1,))B"c"cBk(z(n-17))

[ K" (2(n-1,))B" " pAh(z(n-a)) + " (z(n—e)) A" p" ck(z(n~ 1))]
+[kT (z(n—1,))B"¢" pBk(z(n—a)) +k" (z2(n—a))B” p" ck(z(n~1, ))]
+h" (z(n-a)) A" p" pAh(z(n- )

[ B (z(n-c)) " p" pBk(z(n—a))+ K" (z(n-)B" p' pAh(z(n-a))]

7)) B" ¢ pBk(z(n—a)+ k" (2(n-a)B p" cAh(z (n—z'l))]

+k" (z(n—a))B" p" pBk(z(n—a)).
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Using the inequalities x"y + y'x < mx’x + 77'y"y for any vectors x, y € R” and 7 > 0, for
the term in the square brackets on the right hand side of (21) we obtain

U'(n+DU(n+1)
<|af UT (U (n)+ [771 > U (U (n) + ﬂflhT(z(n))ATAh(z(n))J

[ la U 0 )+ W ()BT Bz |
_773 |d|2 U (m)U(n)+n;'n" (z(n -7, )) ATcTcAh(z(n -7, ))J
- _774 |d|2 U (m)U(n)+n;'k" (z(n -1, ))BrcTch<z(n T, ))J

+| m5[af UT U )+ 15T (n =) A7 pT pAi(zn-a2) |

+

- m,l FUT (U )+ 175 k" (2(n - ) B p” pBE(z(n-a))
+h" (z(n))A" Ah(z(n)) + k" (z(n))B" Bk(z(n))
~[m " ) AT An () + ;'K ()BT Bi(=(n) |
+[778hT(z(n))A Ah(z(n) +775' W (2(n—-1,)) A" eAh(z(n—1))
[77 0" () AT Ah(z(m) + 175 & (2(n~7,)) BT " eBk (z(n~7,)
+moh” () AT A(z() + g BT (20~ @) 4" pT pAh(z(n-)) |
[k ) A Az () + i K (20 =) B pT pBE(z(n-)) |
[nnkf(z(n))B Bk(z(m)) +miy h" (2(n—1,)) A"c" ch(z(n -1, ))]
+[7713k (2(n)B" Bk(z(m) + 713k (2(n—1,)) BT " cBk (z(n - ]))]

~[ k" (2B Bh(z(m) + i (z(n - ) 4" p pah(z(n-a)) |
+[ sk (2(0)B” Bh(z(m) + 12K (z(n—a))B" p” pBk(z(n-a) |
+h" (z(n—-7,)) A" " cAh(z(n—7,))+ k" (z(n—))B" p pBk(z(n—a))
~[meh" (z(n-,)) A" ¢ cah(z(n-=,))+ mok” (2(n—7,)) B " cBk(z(n-7))]
+[7717hT(z(n—q))ATcTcAh(z(n—rl))+n;;;?(z(n—a))ATprAﬁ(z(n—a))J
—[mghf (z(n-7,)) A" c"cah(z(n~1,))+ ny k" (z(n—a))B” p” pBk(=(n —a))]
+k" (z(n-7,))B " cBk(z(n-1,))+ h" (z(n—a)) A" p" pAh(z(n-a))

—[mng (2(n—1,))B"c"ck(2(n—1,))+ 7 h" (z2(n ) A" p” pAh(z(n -a))]
+[I720kT(z(n—rl))BTcTck(z(n—z'l))+7720k (z(n—a))B" p” pBk(z(n— a))]

" (201- ) A" p” pAl(z(n-)) + 1T (21— ) B pT pBR(Gz(n-a0)) ],
for, >0, i=12,...21.
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Simplifying we obtain,
U'(n+DU(n+1)
< |d|2[l+771 iy 0, 15+ 176 JUT (MU ()
[Ty g+ gy [ BT E00) A (AT A) (2 ()
[t g i + 1+ + s [T (200) A (BT B)k(2()
el [t et e g+ |
W (2(n=7)) Ay (47 4) (2 (n 7))
of [1emt + 5+ md g+ g+ 113 |
K7 (2(n1=7)) Aes (B"B) k(2 (n 1))
| [V ns" + g+ + 5+ + 03]
B (2(1= @) Ay (47 A) (20~ )
| [V ng +n + 5+ + 3 + 03 |
k" (2(1 = @) Ay, (B B)K(z(n —a2)).

(22)
+

Also adopting the similar procedure for computing ¥” (n + 1)V (n + 1) we obtain
Vi (n+ 1)V (n+1)
<[ [146, +6,+8,+8, +65+ 8, T (VW (n)
+[1+5“ +5,+ 8+ 5, +610+5“J
W (2(1) Ay (B B) h(z(m))
+[1+5’ +68 48, +0, +§]4+5]5J
KT (2(1) Ay (47 A) k(2 (0)
+|ef* [1+5’ +6; +51’21+§1;‘+517+§18J
(2(n=21)) A (B"B) A (2(n-17,)) (23)
+\c2[1+5 +6," +0,) +516+619+520}
(2(n1=7)) Aer (47 4) K (2(n=17,))
+‘p‘ [1+6 +5 +§];1+61’71+5[91+621J
BT (21 = @) Ay (BT B)h(z(n - )
+|p[ [1+5g +6), +055 +51;1+§2’01+52’11}
KT (z(n—a)A,,, (ATA)E(z(n ~a)).
for 5, >0, i=1,2,..21.

g

kT
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From (22) and (23), we have
UT(n+DU(n+1)
<|af {[1+77] + 17y + 135 417 + 15+ 136 JUT (m)U (n)
+[146, + 8, + 8 + 8, +65 +56]VT(n)V(n)}
+hT(z(n)){[l+77(1 175+ 17 + 16 + g +77”J/Imax (ATA)
(1487 48+ 8+ 8, +810+ 8y | A (B B) ()
KT GO [ 75"+ 05" 14 7 4+ s | (B7B)
+[1+52’1 +07' +8,, + 55+, +515}/1max (ATA)}k(z(n))
e {[1entng e e+ W (2(0=20)) A ( A)(z(n-1))
14846, 8 46,0 487 +8, |hT (2(n=1,)) Ay (B'B) 1(2(n -1, }
+|c|2{[1+n;1+n;1+771;1+7716+7719+n20JkT(z(n 7)) A (B"B)k(2(n-17,))
+[1+54’1+5;'+51’31+516+519+520JkT(z(n—rl))/1max(A A)k(z(n—z'l))}
o {[1+ns" 0+ [ (201 @) A (A7 A) (201 )
(1085 460 5 +87 48+ 8y [T (21— @) Ay (B"B) 1y (z(n—a))}
o {1+ ng" o+ s+ i) K 201 @) A (BT B) (20 = ).

1467+ 80 4 6+ 85+ 8+ 51 K] (2= )y (47 A )by (21~ )|
Using (16) we have
W+ <|af {BUT (U n) + BT (m)V (m)}
KT ) A (ATA)Mmax ( ))k(z(n))
+|e pn"

(2 (1= ) e (A7 A) A (B7B) ) (2(n 1)
+|c|2ﬂkT<z(n z’l)( A" 4 )+/1 (BTB))k n— rl
+lpf A (1)) (A ATA)MW(BTB))hI(zm—a))
o BT (2(1 =) (A (47 4)+ A (B7B) (212

Further from the relations (20), and (18) we have
W11 < Bl W (1) + 2B { A (A7 A) # A (B7B)| W (1)
4281 L { A (BT B)# A (47 )| (2(-7,))|
281 Lo | (B7B)+ A (47 4)} (20 )|

2
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Let 2(n — k) = max {z(n — 1), 2(n — @)}
W (n+1)< Blal° w(n)+ 281 {ﬂmax (A" A4)+ Ay (BTB)} W (n)
42B[1¢ P 41 PP ] L { s (47 4) + 2 (B7B)]

max (W (n), W (n—1),...W (n—k)}.

Since
AW (n) =W (n+1)—-W(n),
< —gg[l—m&f —28|Lf (ﬂmax (A7) Ay (BTB))}W(n)
4288 (A (7€) A (27 p))[(/zmax (A7 A) 4 A (BTB))]
x max{W (n),W(n-1),..W(n-k)}
<—pW(n)+gmax{W(n),W(n-1),..W(n-k)},

where

p=max| 1= B[ =25 |L [ (Zuss (474) + A (87B)) |

G =42 (¢"¢) A (17 P))| (A (47 4) # 20 (B7B)) |

From Lemma 3.1, if g < p there exist a constant A, € (0, 1) such that

W(n)=|z(n) P=2" (mz(n) = D_|z,(m)f
i=1

<max {W (0), W (=1),...W (—k)} A

< max {zi O EIO I ENCE) I Y (—k)|2}/1(;’
i=1 i=1 i=1

<M ¢l 4,

24

where || ¢ |F=max{0.} | z,(0)F. > | z,(-D ... ) | z(-K) [}, and M2 1.
i=1 i=1 i=1
Hence the relation (24) establishes that the equilibrium point of (13) is globally
exponentially stable.

Corollary 3.2: Assume that the conditions of Theorem 3.2 hold and | |< 1. Then (2) has
a unique equilibrium x" and it is globally exponentially stable as solution of (2).

Proof: From (2) we have
x(n+1) = ax(n) +bf (Z(n)).

Thus we have x(n+1)—ax(n) = bf (Z(n)).
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Using the method for solving non homogeneous difference equation, one can
establish that

n—1
x(n)=a"x,+ Yy @ bf (z(n)). (25)
k=0

We let n — oo to the equation (25) and obtain

n—>0

n—1
lim x(n) = lim @"x, + lim »_a"*~'bf (z(n)).
n—w n—ow —

Since z(n) — z" as n — oo and f is continuous we have f'(z(n)) — fz").

Thus lim x(n) = lim a"x, + Zd”l;f(z*).
n—0 n—o0 n:O

If |d|<1 then lim x(n)= % f(z"). We let x™ = lim x(n). Then it follows from (3)
n—o —a n—o©
that lim px(n—o")— px(n—oc') exists and equals to z — (1 + ¢) x — ¢. From the
n—0

boundedness of x(n) one can establish that lim px(n—c’)— px(n—oc')=0. Therefore

z —(1+¢)x +qand hence x” is equilibrium of (2).

In the above analysis, we have obtained sufficient condition for the asymptotic
stability of equilibrium pattern of discretised complex valued hysteretic neuron models.
However that much of complexity may not be adequate for certain neuron models. In the
next theorem we discuss about discrete-time real valued hysteretic neuron model.

From the system (13) we have

z(n+1) = az(n)+Mg(z(n))+cMg (z(n -7 )) + pMg(z(n—a))

26
whereg(z(n—a))=g(z(n—o-0))—g(z(n—o-')), (26)
Clearly if H1 holds and from relation (14) we have
|G| <Ll 2wl L = {L},_,, and
27

|g(z(n-a))| < Ly | 2(n—a)| and L, =max{L}.

1<i<m

Theorem 3.2: Assume that the condition H1 and (9) holds and that there exist positive
numbers 7, i=1,2,..., 6. If

G = Bl (P (€7€) = A (P"P)) Ao (M M)

<p= max{l—ﬂ&]2 = Bl (MTM)L?},

1<i<m

where Ay, (M) denotes the largest eigen value of a matrix M,
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5 (1 +my ot ), (1 + 03"+, o8
= max
(1+7]2 +1, +776_1),(1+773 + 175 +776)

and L, =max{L;}. Then the equilibrium point of (26) is globally exponentially stable.

I<i<m
Proof: Consider the following function W(n) = | Z(n) [, so that
Wn+)= | Zn+)[=Z"(n+DZ(n+1).
_ (z(n)TdT +a(z(n) M + g(z( n-z,) ) M7 1 §(z(n—a))' M! pT) (29)
x az(n)+Mg(z(n)) + Mg (z(n—1,))+ pMg(z(n—a))

Simplifying and using the inequalities xy + yx < mx* + i77'y? for any vectors x, y € R™ and
n>0, we get

W) <@ (1 40y 405" ) 2(n) P
(L 413" 75" ) A (M7 M) | g (2O P
+(1+772 +17, +r76_1)/1mX (cTc)/lmaX (MTM)‘g(z(n—r1 ))‘2

(1474205 4706 ) A (P 1) A (M7 M )| (2 - )]

(30

From relations (26) to (28) we have
~12
W(n+1)< Blal” | 2n) P+l (MTM)L2 | z(n) P

z(n-5)f

z(n —a)|2 .

max

+ Bl (P P) A (MM ) L2,

+ B (7€) A (MM

Assuming z(n — k) = max{z(n — 77), z(n — @)} hence
W (n+1)< B | 2n) [ + By (MM ) L7 | 2(n) [

4B Zo (7€) 2 (P P)) s (M7 M) 2 |21 = O

Thus
AW (n)=W((n+1)-W(n)
< —{I—ﬂ|&|2 - (M’M)LZ} W (n)
+ ﬁ’Lfnax (ﬂmax (cTc) + Anax (prp))/?.max (MTM)
x max{W(n),W(n-1),..W(n-k)}

where / denotes an identity matrix with appropriate dimension.
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Simplifying we have
AW (n) < —min{l —Bat - A, (M’M)Lf} W (n)

4 L (A (7€) 2 (27 ) P (M M)
max {W (n), W (n—1),...W (n—k)}
So AW (n) < —pz(n)+ G max (W (n), W (n~1),...W(n—k)}, where
5= min{[— Bl - pA_ (MTM)Lf},
G = Bl (P (7€) + A (P P)) 2 (M7 M),

From Lemma 3.1, if ¢ < p there exist a constant A, € (0, 1) such that

W(n)=|z(n)['=z" (n)z(n) = Z ()
i=1
<max{W(0),W (-1),...W(-k)} Ay

< max {zi (0),5}% (0),Zm:z3 (=D 2 (—k)} Al
i=1 i=1

i=1
<M1 4.
Hence the equilibrium point of (26) is globally exponentially stable.

Remark 3.1: Usually the delays in artificial neural networks are time varying due to the
finite switching speed of amplifiers. So we can consider (1) with varying time delays.
Assuming that the varying time delays o(¢), #«(¢) are bounded and non negative functions.
Therefore assuming the conditions of Theorem 3.1 hold and o(n), 7(r) are bounded,
following proof similar to Theorem 3.1 there exists global exponential stable equilibrium
point for discrete-time of (1) with varying delays.

Example.3.1: Consider the following network with z(r) = u(n) +jv(n)

Zoen=[025 0 Ty, ([ 0025 0017 fooos —o00])
+ — zZ\n
" 0o 005" | -0.004 0025| 70015 —0.003]]°
0.13 0 1([0025 0017 [0005 —0.002
+ + g(z(n—rl)
0 025|-0.004 -0.025|" 7{0.015 —0.003
009 0 J([0.025 0017 [0005 —0.002
+ + h(z(n—a))
0 003||-0004 —0.025|" 70015 —0.003

where h(z(n — @)) = [g(z(n — 6°)) — g(z(n — &))] and g(z(n)) = tanh(z(n)).
Network in Example 3.1 satisfies the 0 < ¢, = maxa, =0.25<1 and

1<i<m

0<ay +max I+, |;Lk‘bik‘ =0.25108125<1.
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Activation function g(z(n)) satisfies the hypothesis of Theorem 3.1 with L; = 1 and
m=1,06=1i=1,2,...21,s0 f=7 and

max

Ames (47 4) =0.001036, 4, (B"B)=0.000262.

80 Ay (A7 A)+ Ay (B"B)=0.001298.

mq

max

A (€7€) = 0.000625, 2, (P" ) =0.000081.

80 A (€7€)+ A (2 ) = 0.000706.

max

G4 (o (7)Ao (7)o (474) 5 20 (875
=0.000024 < 0.5457
_ min[l— Blaf ~2B|LF (A (A7 4)+ A, (BTB))}
=p.
Hence the network in Example 3.1 satisfies the conditions of Theorem 3.1.
Example.3.2: Consider the network
Z(n+1)= {0.3 0 }Z(n) .\ {0.125 -0.1 }g(z(n))
0 0.1 0.01 -0.25
+{0.3 0 }[0.125 —0.1 }g(z(n_rl)
0 0.05] 001 -025

0.01 O ||0.125 -0.1
+ h(z(n—a)),
0 0.02] 001 -0.25

where h(z(n — @)) = [g(z(n — 6°)) — g(z(n — 0))] and g(z(n)) = tanh(z(n)).

Activation function g(z(n)) satisfies the hypothesis of Theorem 3.2 with L; = 1 and
nm=1,06=1i=1,2,...6,s0 f=4.

Network in Example 3.2 satisfies the 0 < g, = maxa, =0.3<1 and

1<i<m

0<a,+max|1+c |iLk‘1§[k‘:o.573<1.
k=1

1<i<m
Since

A (M7 M) =0.0762, A, (P" P) =0.0004, 4, (c"c)=0.0025

§= B (27 D) A (M7 M)
=0.00088392 < 0.3286
= EIEX{I —ﬁ|5i|2 + Plinax (MTM)LI‘Z}
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Hence the network in Example 3.2 satisfies the conditions of Theorem 3.2.

Figure 1
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4 Concluding remarks

In this paper, we presented a discrete-time real and complex value hysteretic neuron
model by applying Mohamad and Gopalsamy (Gopalsamy and Mohamad, 2003)
discretisation technique on the continuous hysteretic neuron model. Global exponential
stability is much desired for systems operating in real world constraints. We have
obtained sufficient conditions for global exponential stability of a unique equilibrium and
showed that even after discretisation the equilibrium of the system is stable. The results
were demonstrated and verified with a set of practical numerical examples. The results
are explicit in the sense that the criteria obtained are easily verifiable as they are
expressed in terms of the parameters of the system. The hysteretic neural network model
is envisaged to be efficient and robust for various applications such as medical, image
processing, military data processing, etc. Hysteresis is a frequent phenomenon with
implications for both everyday life as well as life sciences. Some situations like traffic
jams occur when the car density exceeds a certain threshold value; return to free-flow
traffic requires the car density to drop beyond a jam-triggering level. Our results can
apply to verify the stability properties of the networks that arise both in the field of
biological and artificial neural networks.
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