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Abstract: Case-based reasoning (CBR) is a recent approach to problem solving 
and learning for computers and humans. In this paper, we introduce a finite 
Markov chain on the main steps of the CBR process. Using this approach we 
succeed in calculating the probabilities for the CBR process to be at a certain 
step in a certain phase of the solution of a real-world problem and we obtain a 
measure of the effectiveness of a CBR system in solving similar new problems. 
Next, the steps of the CBR process are represented as fuzzy subsets of a set of 
linguistic labels characterising the success of the CBR process in each of the 
above steps. Thus, we build a fuzzy model for the representation of a CBR 
system and we use the total possibilistic uncertainty as a measure of its 
effectiveness in solving new related problems. Examples are also given to 
illustrate our results. 
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1 Introduction 

Case-based reasoning (CBR) is a recent approach to problem-solving and learning for 
computers and people that has got a lot of attention over the last few years. Broadly 
construed, CBR is the process of solving new problems based on the solutions of similar 
past problems. The term problem-solving is used here in a wide sense, coherent with 
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common practice within the area of knowledge-based systems in general. This means that 
it is not necessarily the finding of a concrete solution to an application problem, it may be 
any problem put forth by the user. For example, to justify or criticise a solution proposed 
by the user, to interpret a problem situation, to generate a set of possible solutions, or 
generate explanations in observable data, are also problem-solving situations. 

A lawyer, who advocates a particular outcome in a trial based on legal precedents, or 
an auto mechanic, who fixes an engine by recalling another car that exhibited similar 
symptoms, or even a physician, who considers the diagnosis and treatment of a previous 
patient having similar symptoms to determine the disease and treatment for the patient in 
front of him, are using CBR; in other words CBR is a prominent kind of analogy making. 

In CBR’s terminology, a case denotes a problem situation. A previously experienced 
situation, which has been captured and learned in a way that it can be reused in the 
solving of future problems, is referred as a past case, previous case, stored case, or 
retained case. Correspondingly, a new case, or unsolved case, is the description of a new 
problem to be solved. The CBR systems expertise is embodied in a collection (library) of 
past cases rather, than being encoded in classical rules. Each case typically contains a 
description of the problem plus a solution and/or the outcomes. The knowledge and 
reasoning process used by an expert to solve the problem is not recorded, but is implicit 
in the solution. A case-library can be a powerful corporate resource allowing everyone in 
an organisation to tap in the corporate library, when handling a new problem. CBR 
allows the case-library to be developed incrementally, while its maintenance is relatively 
easy and can be carried out by domain experts. 

CBR’s coupling to learning occurs as a natural by-product of problem-solving. When 
a problem is successfully solved, the experience is retained in order to solve similar 
problems in future. When an attempt to solve a problem fails, the reason for the failure is 
identified and remembered in order to avoid the same mistake in future. This process was 
termed as failure-driven learning (Schank, 1981). Thus, CBR is a cyclic and integrated 
process of solving a problem, learning from this experience, solving a new problem, etc. 
Effective learning in CBR, sometimes referred as case-based learning, requires a well 
worked out set of methods in order to extract relevant knowledge from the experience, 
integrate a case into an existing knowledge structure and index the case for later matching 
with similar cases. 

For more details about the history, methodology, applications and development trends 
of CBR the reader may look at Voskoglou (2008, 2011) and their references. 

2 CBR in computers and human cognition 

The first trails into the CBR field have come from the study of analogical reasoning 
(Gentner, 1983) and – further back – from theories of concept formation, problem-
solving and learning within philosophy and psychology (e.g., Wittgenstein, 1953; Smith 
and Medin, 1981; etc). For example, Wittgenstein observed that concepts, which are part 
of the natural world, like bird, tree, chair, car, etc., are polymorphic and therefore it is not 
possible to come up with a classical definition, but it is better to be defined by their sets 
of instances, or cases. 

Memory is the repository of knowledge and therefore the question is what kind of 
memory accounts for observed cognitive behaviours. A leading theory has been the 
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semantic memory model. Psychologists devoted much attention to this theory (Collins 
and Quillian, 1969; Rumelhart et al., 1972; Kintsch, 1972; etc.), as have artificial 
intelligence (AI) researchers (Quilliam, 1968; Woods, 1975; etc.), who attempted to 
create computer programmes that model cognitive processes. The semantic memory 
model typically represents static facts about the world and therefore this type of 
knowledge does not change over time. However, it was observed that this model did not 
account for all the data; e.g., it does not explain how knowledge is incorporated into 
memory and where does the information come from. 

To address these and other questions Tulvin (1972, 1983) proposed a theory of 
episodic memory as an adjunct to semantic memory. Episodic memory receives and 
stores information about temporally dated episodes or events. The retrieval of 
information from the episodic store serves as a special type of input into episodic 
memory and thus changes the contents of the episodic memory store. 

CBR traces its roots in AI to the work of Roger Schank and his students at Yale 
University, USA in the early 1980s. Schank (1975) proposed a conceptual memory that 
combined semantic memory with Tulvin’s episodic memory. Scripts (Schank and 
Abelson, 1977) were proposed as a knowledge structure for the conceptual memory. The 
acquisition of scripts, which are analogous to Minsky’s (1975) frames, is the result of 
repeated exposure to a given situation. As a psychological theory of memory scripts 
suggested that people would remember an event in terms of its associated script. 
However, an experiment by Bower et al. (1979) showed that subjects often confused 
events that have similar scripts: e.g., one might mix up waiting room scenes from a visit 
to a doctor with a visit to a dentist. These data required a revision in script theory. Schank 
(1979, 1980) postulated a more general structure to account for the diverse and 
heterogeneous nature of episodic memory, called memory organisation packet (MOP). 
MOP’s can be viewed as metascripts; e.g., a professional office visit MOP can be 
instantiated and specified for both the doctor and the dentist, thus providing the basis for 
confusion between these two events. 

However, more important than the MOP knowledge was the new emphasis on the 
basic memory processes of reminding and learning. Schank proposed a theory of learning 
based on reminding, according to which we can classify a new episode in terms of past 
similar cases. Schank’s model of dynamic memory (Schank, 1982) was the basis of the 
earliest CBR systems that might be called case-based reasoners: Kolodner’s CYRUS 
(1983) and Lebowitz’s IPP (1983). The basic idea of Schank’s model is to organise 
specific cases, which share similar properties, under a more general structure called a 
generalised episode (GE). During storing of a new case, when a feature of it matches a 
feature of an existing past case, a new GE is created. Thus, the organisation and structure 
of memory is dynamic, i.e., changes over time. Similar parts of two case descriptions are 
generalised in to a new GE and the cases are indexed under this GE by their different 
features. Concerning CYRUS, it was basically a question-answering system with 
knowledge of the various travels and meetings of former US Secretary of State Cyrus 
Vance and the case memory model developed for this system has later served as basis for 
several other CBR systems including MEDIATOR, PERSUADER, JULIA, etc. 

An alternative approach for the representation of cases in a CBR system is the 
category and exemplar model, produced by the work of Bruce Porter and his group at the 
University of Texas. In this model the case memory is embedded in a network of 
categories, cases and index pointers. Each case is associated with a category. Finding a 
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case in the case library that matches an input description is done by combining the 
features of the new problem case into a pointer to the category that shares most of these 
features. A new case is stored in a category by searching for a matching case and by 
establishing the appropriate feature indices. The above model applied first to the 
PROTOS system (Porter and Bareiss, 1986; Bareiss, 1989), where emphasis is given to 
the combination of the general with the specific knowledge obtained through the study of 
cases. 

An alternative case memory model was produced by the work of Edwina Rissland 
and her group at the University of Massachusetts, interested in the role of precedence 
reasoning in legal judgements (Rissland, 1983). This work resulted in the HYPO (Ashley, 
1991) and CABARET (Skalak and Rissland, 1992) systems, where cases are grouped 
under a set of domain-specific dimensions. Another early significant contribution to CBR 
is the memory-based reasoning (MBR) model of Stanfill and Waltz (1988), designed for 
parallel computation rather than knowledge-based matching. 

3 The steps of the CBR process 

CBR has been formalised for purposes of computer and human reasoning as a four-step 
process, known as the ‘dynamic model of the CBR cycle’. These steps involve: 
1 Retrieve the most similar to the new problem past case, or cases. 
2 Reuse the information and knowledge in that case to solve the problem. 
3 Revise the proposed solution. 
4 Retain the parts of this experience likely to be useful for future problem-solving. 

In more detail, an initial description of a problem defines a new case. This new case is 
used to retrieve the most similar case, or cases, from the library of previous cases. The 
subtasks of the retrieving procedure involve: Identifying a set of relevant problem 
descriptors, matching the case and returning a set of sufficiently similar cases, given a 
similarity threshold of some kind, and selecting the best case from the set of cases 
returned. 

Some systems retrieve cases based largely on superficial syntactic similarities among 
problem descriptors, while advanced systems use semantic similarities. 

The retrieved case (or cases) is combined, through reuse, with the new case into a 
solved case, i.e., a proposed solution of the initial problem. The reusing procedure 
focuses on identifying the differences between the retrieved and the current case, as well 
as the part of the retrieved case which can be transferred to the new case. CBR methods 
are implemented by retrieval methods (to retrieve past cases), a language of preferences 
(to select the best case) and a form of derivational analogy (to reuse the retrieved method 
into the current problem). 

Through the revising procedure this solution is tested for success, e.g., by being 
applied to the real world environment, or a simulation of it, or evaluated by a teacher, and 
repaired, if failed. This provides an opportunity to learn from failure. 

Finally, during the retaining procedure useful experience is retained for future reuse, 
and the case base is updated by a new learned case, or by modification of some existing 
cases. The above process involves deciding what information to retain and in what form 
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to retain it, how to index the case for future retrieval, ant integrating the new case into the 
case library. 

The ‘general knowledge’ usually plays a part in the CBR cycle by supporting the 
CBR process. This support however may range from very weak (or none) to very strong, 
depending on the type of the CBR method. By general knowledge we mean general, 
domain-dependent knowledge, as opposed to specific knowledge embodied by cases. For 
example, in the case of the lawyer, mentioned in our introduction, who advocates a 
particular outcome in a trial based on legal precedents, the general knowledge is 
expressed through the existing relevant laws and the correlations between them and the 
case of the trial. A set of rules may have the same role in other CBR cases. 

According to the above description one can design the ‘flow-diagram’ of the CBR 
process shown in Figure 1. 

Figure 1 CBR flow-diagram 

 

Notice that Riesbeck and Bain (1987), Slade (1991), Lei et al. (2001), Aamodt and Plaza 
(2004), Voskoglou (2008, 2011) and others presented detailed flowcharts illustrating the 
basic steps of the CBR process. However, the simple flow-diagram of Figure 1 is very 
useful in helping us to build a stochastic (Markov chain) model that enables a 
mathematical representation of the CBR process. 

4 THE Markov model 

Roughly speaking, a Markov chain is a stochastic process that moves in a sequence of 
phases through a set of states and has a ‘memory’ of only one state. This means that the 
probability of entering a certain state at a certain phase, although it is not necessarily 
independent of previous phases, depends at most on the state occupied in the previous 
phase (Kemeny et al 1964). This property is known as the ‘Markov property’. When its 
set of states is a finite set, then we speak about a ‘finite Markov chain’. For special facts 
on such type of chains we refer freely to Kemeny and Snell (1976). 

We shall construct a Markov chain model for the mathematical description of the 
CBR process. For this, assuming that the CBR process has the Markov property, we 
introduce a finite Markov chain having as states the four steps of the CBR process 
described in the previous section. The above assumption is a simplification (not far away 
from the truth) made to the real system in order to transfer from it to the ‘assumed real 
system’. This is a standard technique applied during the mathematical modelling process 
of a real world problem, which enables the formulation of the problem in a form ready 
for mathematical treatment (Voskoglou, 2007, Section 1). 

Denote by pij the transition probability from state Ri to Rj, for i, j = 1, 2, 3, 4, then the 
matrix A = [pij] is said to be the transition matrix of the chain. 
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According to the flow-diagram of the CBR process shown in Figure 1 we find that 

1 2 3 4

1

2

3 31 33 34

4

0 1 0 0
0 0 1 0

0
0 0 0 1

R R R R
R
R

A
R p p p
R

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

In fact, starting from R1 the chain moves at the next phase to R2. Therefore,  
p11 = p13 = p14 = 0 and p12 = 1. Similarly, being at R2 the chain moves at the next phase to 
R3. Therefore, p21 = p22 = p24 = 0 and p31 = 1. Also, being at R3 the chain at the next phase 
either remains there, or it returns to R1, or it proceeds to R4. Therefore, p32 = 0, while the 
probabilities p31, p33 and p34 are unknown, with p31 + p33 + p34 = 1 (probability of a certain 
event). Finally, when chain reaches R4 it is impossible to leave it, because the solution of 
the new problem by the CBR approach finishes there. In other words, R4 is an absorbing 
state of the chain. Therefore, p41 = p42 = p43 = 0 and p41 = 1. 

Further, let us denote by ϕ0, ϕ1, ϕ2,….. the successive phases of the above chain, and 
also denote by 

( ) ( ) ( ) ( )
1 2 3 4

i i i i
iP p p p p= ⎡ ⎤⎣ ⎦  

the row-matrix giving the probabilities pj
(i) for the chain to be in each of the states  

Rj, j = 1, 2, 3, 4, at phase ϕi, i = 1, 2 ,.... of the chain. We obviously have that 
4

( )

1

1.i
j

j

p
=

=∑  

The above row-matrix is called the ‘probability vector’ of the chain at phase ϕi. 
Figure 2 Tree of correspondence among states and phases of the Markov model 
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From the transition matrix A and the flow-diagram of Figure 1 we obtain the ‘tree of 
correspondence’ among the several phases of the chain and its states shown in Figure 2. 

From this tree becomes evident that 

[ ] [ ] [ ] [ ]0 1 2 3 31 33 341 0 0 0 , 0 1 0 0 , 0 0 1 0 , and  0  .P P P P p p p= = = =  

Further it is well known that 

1 ,    0,1, 2,.....   .i iP P A i+ = =  

Therefore, we find that 

( )2
4 3 33 31 31 33 34 33   1P P A p p p p p p= = +⎡ ⎤⎣ ⎦  

( )2 3 2
5 4 33 31 33 31 31 33 34 33 33  1P P A p p p p p p p p p⎡ ⎤= = + + +⎣ ⎦  

and so on. 
As we have seen above R4 is an absorbing state of the chain. Further, from the  

flow-diagram of Figure 1 it is easy to observe that from any other state of the chain it is 
possible to reach R4, not necessarily in one step. Thus, we have an ‘absorbing Markov 
chain’ with R4 being its unique absorbing state. Applying standard techniques from the 
theory of finite absorbing chains we bring the transition matrix A to ‘its canonical (or 
standard) form’ A* by listing the absorbing state first and then partition it as follows: 

4 1 2 3

4

1

2

3 34 31 33

                
1 | 0 0 0

* .0 | 0 1 0
0 | 0 0 1

| 0

R R R R
R

A R
R
R p p p

⎡ ⎤
⎢ ⎥− − − − − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Symbolically, we can write 

| 0
* | ,

|

I
A

R Q

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

 

where Q stands for the transition matrix of the non-absorbing states. 
Let I3 denote the 3 × 3 unitary matrix. Since we work with an absorbing chain, the 

matrix I3 – Q has an inverse (Kemeny and Snell, 1976; Theorem 3.2.1), say N, which is 
called the ‘fundamental matrix’ of the chain. Using the well-known from linear algebra 
method of determinants in calculating the inverse of a non-singular matrix we can write 

( ) ( )
( )

31
3

3
.

adj I Q
N I Q

D I Q
− −

= − =
−

 

In the above formula adj(I3 – Q) denotes the adjoint matrix of I3 – Q (i.e., the matrix of 
the algebraic complements of the entries of the transpose matrix of (I3 – Q) and D(I3 – Q) 
denotes the determinant of I3 – Q. A straightforward calculation gives that 
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[ ]
33 33

31 33
31 33

31 31

1 1 1
1 1 1

1
1

ij

p p
N p p n

p p
p p

− −⎡ ⎤
⎢ ⎥= − − =⎢ ⎥− −
⎢ ⎥⎣ ⎦

 

It is well-known that the entry nij of N gives the mean number of times in state Rj when 
the chain is started in state Ri (Kemeny and Snell, 1976; Theorem 3.2.4). Therefore, since 
the present chain is always starting from R1, the sum 

33
11 12 13

31 33

3 2 
1

pt n n n
p p
−

= + + =
− −

 

gives the mean number of phases of the chain before absorption. In other words,  
the mean number of steps for the completion of the CBR process is t + 1. It becomes 
evident that, the bigger is the value of t, the greater is the difficulty encountered for the 
solution of the given problem via the CBR process. The ideal case is when the CBR 
process is completed straightforwardly, i.e., without ‘backwards’ from R3 to R1, or ‘stays’ 
to R3 (see Figure 1). In this case we have that p31 = p33 = 0 and p34 = 1, therefore t = 3. 
Thus, in general we have that t ≥ 3. 

The following simple example illustrates our results: 

Example: Consider the case of a physician, who takes into account the diagnosis and 
treatment of a previous patient having similar symptoms in order to determine the disease 
and treatment for the patient in front of him. Obviously the physician is using CBR. If the 
initial treatment fails to improve the health of the patient, then the physician either revises 
the treatment (this means stay to R3 for two successive phases), or, in more difficult 
cases, gets a reminding of a previous similar failure and uses the failure case to improve 
its understanding of the present failure and correct it (this means transfer from R3 to R1). 
The process is completed, when the physician succeeds to cure his patient. 

Assume that the recorded statistical data show that the probabilities of a 
straightforward cure of the patient and of each of the above two reactions of the physician 

in case of failure are equal to each other. This means that 13 33 34
1
3

p p p= = =  and 

therefore t = 7, i.e., the mean number of steps for the cure of the patient is 8. 
Further, one finds that 

3 4 5
1 1 1 1 1 1 4 1 1 4 130 , ,
3 3 3 9 3 9 9 27 9 9 27

P P P⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

and so on. Observing for example the probability vector P5 one concludes that the 
probability for the CBR process to be at the step of revision (R3) in the sixth phase after 

its starting is 4 ,
9

 or approximately 44.44%, the corresponding probability to be at the 

step of retaining the acquired experience (R4) is 13 ,
27

 or approximately 48.15% (in this 

case it is possible that the CBR process has arrived to the absorbing state R4 in an earlier 
phase), etc. 
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Note: Knowing the exact ‘movements’ during the CBR process one can calculate the 
number of steps needed for the absorption of the chain directly from the flow-diagram of 
Figure 1. For example, considering the above case of the physician, assume that the 
initial treatment given to the patient failed to cure him and the physician got a reminding 
of a similar failure in the past in order to correct it. Assume further that the new treatment 
did not give the expected results and the physician revised it again succeeding in this way 
to cure the patient. According to the assumptions mentioned above it is easy, through the 
flow-diagram, to find that the number of steps needed for the absorption is exactly 8. 

5 Measuring the effectiveness of a CBR system 

The challenge in CBR is to come up with methods that are suited for problem-solving 
and learning in particular subject domains and for particular application environments. In 
line with the main steps of the CBR process, core problems addressed by CBR research 
can be grouped into five areas: Representation of cases and methods for retrieval, reuse, 
revision and retaining the acquired experience. A CBR system should support the 
problems appearing in the above five areas. A good CBR system should support a variety 
of retrieval mechanisms and allow them to be mixed when necessary. In addition, the 
system should be able to handle large case libraries with the retrieval time increasing 
linearly (at worst) with the number of cases. 

Let us consider a CBR system including a library of n recorded past cases and let ti, 
as it has been calculated in the previous section, be the mean number of steps for the 
completion of the CBR process for case ci, i = 1, 2, …, n. Each ti could be stored in the 
system’s library together with the corresponding case ci. We define then the system’s 
effectiveness (in solving new related problems), say t, to be the mean value of the ti’s of 
its stored cases, i.e., we have that 

1 .

n

i
i

t
t

n
==
∑

 

The more problems are solved in future applications through the given system, the bigger 
becomes the number n of the stored cases in the system’s library and therefore the value 
of t is changing. As n increases it is normally expected that t will decrease, because the 
values of the ti’s of the new stored cases would be decreasing. In fact, the bigger is n, the 
better would be the chance of a new case to ‘fit’ well (i.e., to have minor differences) 
with a known past case, and therefore the less would be the difficulty of solving the 
corresponding problem by the CBR process. Thus, we could say that a CBR system 
‘behaves well’ if, when n tends to infinity, then its effectiveness t tends to 3. 

Example: Consider a CBR system that has been designed in terms of Schank’s model of 
dynamic memory for the representation of cases, as we have briefly described it in the 
second section of this paper. In order to calculate the effectiveness of a system of this 
type we need first to calculate the effectiveness of each GE contained in it and then take 
the mean value of them. 

For example, assume that the given system contains a GE including three cases, say 
c1, c2 and c3. Assume further that c1 corresponds to a straightforward successful 
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application of the CBR process, that c2 is the case described in the example of the third 
section of this chapter, and that c3 includes one ‘return’ from R3 to R1 and two ‘stays’ to 

R3. Then t1 = 3 and t2 = 7, while for the calculation of t3 observe that 31 34
1
4

p p= =  and 

33
1 ,
2

p =  therefore t3 = 8. Thus, the effectiveness of this GE is equal to 3 7 8 6.
3

t + +
= =  

Notice that a complex GE may contain some more specific GE’s (e.g., see Figure 3 in 
page 12 of Aamodt and Plaza, 2004). In this case we only need to calculate the efficiency 
of the complex GE by considering all its cases, regardless if they belong or not to one or 
more of the specific GE’s contained in it. 

Note: As we have seen in the second section, an alternative approach for the 
representation of cases in a CBR system is the category and exemplar model of Porter 
and Bareiss. The process of calculating the effectiveness of a system of such type is 
analogous to the process described in the above example, the only difference being that 
one has to work with categories rather, instead of GE’s. In a similar way one may 
calculate the effectiveness of systems corresponding to the other case memory models 
(Rissland’s and MBR) that we have described in the second section. 

6 A fuzzy model for the representation of a CBR system 

They are often situations in everyday life in which definitions have not clear boundaries; 
e.g., this happens when we speak about the ‘high mountains’ of a country, the ‘good 
players’ of a football team, etc. The fuzzy sets theory was created (Zadeh, 1965) in 
response to have a mathematical representation of such kind of situations. For special 
facts on fuzzy sets and on uncertainty theory we refer freely to Klir and Folger (1988). 

Let us consider a CBR system whose library contains n past cases, n ≥ 2. We denote 
by Ri, i = 1, 2, 3, the steps of retrieval, reuse and revision and by a, b, c, d, and e the 
linguistic labels of negligible, low, intermediate, high and complete degree of success 
respectively for each of the Ri’s. Set 

{ },  ,  ,  ,  U a b c d e=  

We are going to represent Ri’s as fuzzy sets in U. For this, if nia, nib, nic, nid and nie 
respectively denote the number of cases where it has been achieved negligible, low, 
intermediate, high and complete degree of success for the state Ri, i = 1, 2, 3, we define 
the membership function mRi in terms of the frequencies, i.e., by 

( ) ix
Ri

nm x
n

=  

for each x in U. Thus, we can write 

  , : ,  1, 2,3ix
i

nR x x U i
n

⎧ ⎫⎛ ⎞= ∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 

The reason, for which we did not include the last step R4 of the CBR process in our fuzzy 
representation, is that all past cases, either successful, or not, are retained in the system’s 
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library and therefore there is no fuzziness in this case. In other words keeping the same 
notation we have that n4a = n4b = n4c = n4d = 0 and n4e = 1. 

In order to represent all possible profiles (overall states) of a case during the CBR 
process, we consider a fuzzy relation, say R, in U3 of the form 

( ) ( ){ }3,  ( )  :  ,  ,   RR s m s s x y z U= = ∈  

To determine properly the membership function mR we give the following definition: 

Definition: A profile s = (x, y, z), with x, y, z in U, is said to be well ordered if x 
corresponds to a degree of success equal or greater than y, and y corresponds to a degree 
of success equal or greater than z. 

For example, profile (c, c, a) is well-ordered, while (b, a, c) is not. 
We define now the membership degree of s to be 

1 2 3( ) ( ) ( ) ( )R R R Rm s m x m y m z=  

if s is a well-ordered profile, and zero otherwise. In fact, if for example (b, a, c) possessed 
a non-zero membership degree, given that the degree of success at the step of reuse is 
negligible how the proposed solution could be revised? 

In order to simplify our notation we shall write ms instead of mR(s). Then the 
possibility rs of the profile s is given by 

max{ }
s

s
s

mr
m

=  

where max{ms} denotes the maximal value of ms, for all s in U3. In other words, rs is the 
‘relative membership degree’ of s with respect to the other profiles. 

During the CBR process it might be used reasoning that involves amplified 
inferences, whose content is beyond the available evidence and hence obtain conclusions 
not entailed in the given premises. The appearance of conflict in the conclusions requires 
that the conclusions be appropriately adjusted so that the resulting generalisation is free 
of conflict. The value of total conflict during the CBR process can be measured by the 
strife function S(r) [Klir, (1995), p.28] on the ordered possibility distribution 

1 2 1: 1 . n nr r r r r += ≥ ≥…… ≥ ≥  

of the profiles defined by: 

( )1
2

1

1( ) log
log 2

n

i i i
i

j
j

iS r r r
r

+

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

 

In general, the amount of information obtained by an action can be measured by the 
reduction of uncertainty that results from the action. Thus, the total possibilistic 
uncertainty T(r) during the CBR process can be used as a measure for the system’s 
effectiveness in solving new related problems. The value of T(r) is measured by the sum 
of the strife S(r) and non-specificity N(r) [Klir, (1995), p.28], defined by: 
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( )1
2

1( ) log
log 2

n

i i
i

N r r r i+

=

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

In contrast to strife, which, as we have already seen, expresses conflicts among the 
various sets of alternatives, non specificity is connected with the sizes (cardinalities) of 
relevant sets of alternatives. The lower is the value of T(r) (i.e., the greater is the 
reduction of the initially existing system’s uncertainty), the higher is the effectiveness of 
the CBR system in solving new related problems. In fact, the higher is the reduction of 
system’s uncertainty, the greater is the amount of information obtained by the 
implemented action (solution of the new given problem). 

Assume now that one wants to study the combined results of the behaviour of k 
different systems, k ≥ 2, designed for the solution of the same type of problems via the 
CBR process. Then it becomes necessary to introduce the fuzzy variables R1(t), R2(t) and 
R3(t) with t = 1, 2, …, k. The values of the above variables represent the steps of the CBR 
process for each of the k CBR systems as fuzzy sets in U; e.g., R1(2) represents the step 
of retrieval for the second system. In order to measure the degree of evidence of the 
combined results of the k systems, it becomes necessary to define the possibility r(s) of 
each profile s with respect to the sum of the membership degrees of s for all systems. For 
this, we introduce the pseudo-frequencies 

1

( ) ( )
k

s
t

f s m t
=

=∑  

and we define 

( )( )
max{ ( )}

f sr s
f s

=  

where max{f(s)} denotes the maximal pseudo-frequency. Obviously, the same method 
could be applied when one wants to study the behaviour of a system during the CBR 
process for the solution of k different related problems. 

7 An application of the fuzzy model 

Let us consider a CBR system with an existing library of 105 past cases, where in no case 
there was a failure at the step of retrieval of a past case for the solution of the 
corresponding problem. More explicitly, let us assume that in 51 cases we had an 
intermediate success in retrieving a suitable past case, in 24 cases high, and in 30 cases 
we had a complete success respectively. Of course the existence of a certain criterion is 
necessary in order to be able to characterise the degree of success of retrieval for each of 
the past cases. Thus, the step of retrieval can be represented as a fuzzy set in U as 

1
51 24 30( ,0), ( ,0), , , , , ,

105 105 105
R a b c d e⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
 

Assume further that in a similar way we obtained that 
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( )2
18 18 48 21, , , , , , , , ,0
105 105 105 105

R a b c d e⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

and 

( ) ( )3
36 30 39, , , , , , ,0 , ,0

105 105 105
R a b c d e⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
 

It is a straightforward process now to calculate the membership degrees of all the possible 
profiles [see column of ms(1) in Table 1]. For example, if 

( , , )s c b a=  

then 

1 2 3
51 18 36( ) ( ) ( ) 0.029.

105 105 105s R R Rm m c m b m a= ⋅ ⋅ == ≈  

It turns out that (c, c, c) is the profile with the maximal membership degree 0.082 and 
therefore the possibility of each s in U3 is given by 

0.082
s

s
mr =

 
For example, the possibility of (c, b, a) is 

0.029 0.353
0.082

≈  

while the possibility of (c, c, c) is of course equal to 1. 
The total number of the system’s profiles is equal to 53 = 125 (ordered samples with 

replacement of 3 objects taken from 5). Calculating the possibilities of these profiles [see 
column of rs(1) in Table 1] one finds that their ordered possibility distribution r is: 

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21 22

2

1,  0,92,  0,768,  0,512,  0,476,   0, 415,  0, 402,
0.378, 0.341, 0.329, 0.317, 0.305, 0.293,

0.256,  0.20,  0.195,  0.171,  0.159,

r r r r r r r
r r r r r r r
r r r r r r r r
r

= = = = = = =
= = − = = = =
= = = = = = = =

3 24 25 1250.134,  .. 0r r r= = = =…… = =

 

Therefore, the total possibilistic uncertainty of the system is 

( ) ( ) ( ) 0.565 2.405  2.97T r S r N r= + = + = =  

Next we shall study the combined results of the behaviour of the above system and of 
another system, designed for the solution of the same type of problems via the CBR 
process, with an existing library of 90 past cases. Assume that working as before we 
found for the second system that 

1
18 45 27( ,0), , , , , , , ( ,0)
90 90 90

R a b c d e⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
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2
18 24 48, , , , , , ( ,0), ( ,0)
90 90 90

R a b c d e⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

and 

3
36 27 27, , , , , , ( ,0), ( ,0)
90 90 90

R a b c d e⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

The calculation of all possible profiles gives the results shown in column of ms(2) in 
Table 1. It turns out that (c, c, a) is the profile possessing the maximal membership 
degree 0.107 and therefore the possibility of each s is given by 

0.107
s

s
mr =  

[see column of rs(2) in Table 1). 
Table 1 Profiles with non zero pseudo-frequencies (the outcomes are of accuracy up to the 

third decimal point) 

A1 A2 A3 ms(1) rs(1) ms(2) rs(2) f(s) r(s) 

b b b 0 0 0.016 0.150 0.016 0.087 
b b a 0 0 0.021 0.196 0.021 0.115 
b a a 0 0 0.016 0.150 0.016 0.087 
c c c 0.082 1 0.080 0.748 0.162 0.885 
c c a 0.076 0.927 0.107 1 0.183 1 
c c b 0.063 0.768 0.008 0.075 0.071 0.388 
c a a 0.028 0.341 0.040 0.374 0.068 0.372 
c b a 0.028 0.341 0.053 0.495 0.081 0.443 
c b b 0.024 0.293 0.040 0.374 0.064 0.350 
d d a 0.016 0.495 0 0 0.016 0.087 
d d b 0.013 0.159 0 0 0.013 0.074 
d d c 0.021 0.256 0 0 0.021 0.115 
d a a 0.013 0.159 0.024 0.224 0.037 0.202 
d b a 0.013 0.159 0.032 0.299 0.045 0.246 
d b b 0.011 0.134 0.024 0.224 0.035 0.191 
d c a 0.031 0.378 0.064 0.598 0.095 0.519 
d c b 0.026 0.317 0.048 0.449 0.074 0.404 
d c c 0.034 0.415 0.048 0.449 0.082 0.448 
e a a 0.017 0.207 0 0 0.017 0.093 
e b b 0.014 0.171 0 0 0.014 0.077 
e c a 0.039 0.476 0 0 0.039 0.213 
e c b 0.033 0.402 0 0 0.033 0.180 
e c c 0.042 0.512 0 0 0.042 0.230 
e d a 0.025 0.305 0 0 0.025 0.137 
e d b 0.021 0.256 0 0 0.021 0.115 
e d c 0.027 0.329 0 0 0.027 0.148 
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Finally, in the same way as above, one finds that 

( ) ( ) ( ) 0.452 1.87  2.322 T r S r N r= + = + = =  

Thus, since 2.322 < 2.97, the effectiveness of the second system in solving new related 
problems is better than that of the first one. This happens despite to the fact that the 
profile (c, c, c) with the maximal possibility of appearance in the first system is a more 
satisfactory profile than the corresponding profile (c, c, a) of the second system. 

Notice that in general, the more are the stored past cases in the system’s library, the 
greater is expected to be its effectiveness in solving new related problems. In fact, the 
more are the past cases, the greater is the probability for a new problem to fit 
satisfactorily to one of them. Therefore, the fact that the second system was found to be 
more effective than the first one, although not impossible to happen, it is rather 
unexpected in general. 

We introduce now the fuzzy variables R1(t), R2(t), and R3(t), with t = 1, 2. Then the 
pseudo-frequency of each profile s is given by 

( ) (1) (2)s sf s m m= +  

(see the corresponding column of Table 1). It turns out that (c, c, a) is the profile with the 
highest pseudo-frequency 0.183 and therefore the possibility of each profile is given by 

( )( )
0.183
f sr s =  

The possibilities of all profiles having non-zero pseudo-frequencies are given in the last 
column of Table 1. 

8 Discussion and conclusions 

CBR is one of the central ideas in the nowadays AI. Its applications are especially 
efficient in helping information managers to increase efficiency and reduce cost by 
substantially automating processes. Detailed flowcharts illustrating in the traditional 
(descriptive) way the basic steps of the CBR process have been designed during the last 
25 years by several researchers (see the references given in Section 3). 

In the present article, based on a simple flow-diagram of CBR (Figure 1), we 
developed an innovative stochastic model for a more effective description and 
mathematical formulation of the CBR process. The model was built by introducing a 
finite, absorbing Markov chain on the major steps of the CBR process. By applying 
standard results of the relevant theory we succeeded in calculating the probabilities for 
the CBR process to be at any of its steps at a certain phase of the solution procedure of a 
given problem. We also obtained a measure for the effectiveness of the corresponding 
CBR system in solving this problem. Mathematics does not explain the natural behaviour 
of an object, it simply describes it. This description however is so much effective, so that 
an elementary mathematical equation can describe simply and clearly a relation, that in 
order to be expressed with words could need entire pages. We believe that this is exactly 
the main advantage of our Markov model compared with the above referred traditional 
methodologies. Similar Markov models have been also derived by the author in earlier 
papers for the description of several situations appearing in Mathematics Education and 
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Management. For example, see Voskoglou and Perdikaris (1991), Voskoglou (1996a, 
1996b, 2000, 2007, 2009), etc. 

Fuzzy logic is widely used in machine learning and control (e.g., see Mamdani, 1974; 
Hajek, 1998; Gerla, 2005; etc). In fact, although genetic algorithms and neural networks 
can perform just as well as fuzzy logic in many cases, the former has the advantage that 
the solution to the problem can be cast in terms that human operators can understand. 
This makes it easier to mechanise tasks that are already successfully performed by 
humans. Our innovative fuzzy model for the description of a CBR system presented in 
this paper was developed by representing the steps of retrieval, reuse and revision of the 
CBR process as fuzzy subsets of the set U of the linguistic labels of negligible, low, 
intermediate, high and complete success of the CBR system in each of the above steps. In 
this fuzzy environment we used the total possibilistic uncertainty T(r) on the ordered 
possibility distribution r as a measure of the CBR system’s performance in solving new 
related problems. In fact, the lower is the final value of T(r) after the solution procedure, 
the greater the reduction of the initially existing T(r) and therefore the greater the new 
information obtained. Analogous fuzzy models have been constructed by the author for 
representing the processes of learning (Voskoglou, 1999, 2009), of mathematical 
modelling (Voskoglou, 2010), of problem-solving (Voskoglou, 2012a) and of analogical 
reasoning (Voskoglou, 2012b). 

There are also other fuzzy measures in use for the assessment of a system’s 
performance. One such is the well-known Shannon’s entropy (Shannon 1948). For use in 
a fuzzy environment, this measure is expressed in terms of the Dempster-Shafer 
mathematical theory of evidence in the form 

1

1 ln
ln

n

s s
s

H m m
n

π
=

= − ∑  

where n is the total number of the system’s profiles [Klir, (1995), p.20]. The value of H 
measures the system’s total probabilistic uncertainty and the associated information. 
Therefore, similarly with T(r) above, the lower is the final value of H, the better the 
system’s performance. It should be mentioned here that in evaluating fuzzy data the 
probability of a system’s profile s is calculated in terms of the membership degrees of all 
system’s profiles by 

3

.s
s

s

s U

mp
m

∈

=
∑

 

The above fuzzy measure has been used in assessing students’ analogical problem-
solving skills (Voskoglou, 2012b), to determine the continuity of the van Hiele levels of 
geometric thinking (Perdikaris, 2011), etc. An advantage of adopting H as a measure 
instead of T(r) is that H is calculated directly from the membership degrees of all profiles 
s without being necessary to calculate their probabilities ps. In contrast, the calculation of 
T(r) presupposes the calculation of the possibilities rs of all profiles first. However, 
according to Shackle (1961) human reasoning can be formalised more adequately by 
possibility rather, than by probability theory. 

Another popular approach is the ‘centroid’ method, in which the centre of mass of the 
graph of the membership function involved provides an alternative measure of the 
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system’s performance ( ). As we have seen above, in an earlier paper (Voskoglou, 1999) 
we have formalised the process of learning a subject matter by the individuals (and 
especially the process of learning mathematics by students) using a fuzzy logic approach 
similar to that described in this paper for CBR. Later (Voskoglou, 2009) we expanded 
this argument by using the T(r) of a student group as a measure of its learning skills. 
Meanwhile, Subbotin et al. (2004), based on our fuzzy model for the learning process 
(Voskoglou, 1999), they used the ‘centroid’ method for measuring students learning 
skills. Recently, together with Prof. Subbotin, we have applied this approach as an 
assessment tool of students’ analogical problem-solving abilities (Voskoglou and 
Subbotin, 2012). 

We emphasise that the above, three in total, fuzzy measures ‘are treating differently 
the idea of a system’s performance’. In fact, in the first two cases [T(r) and H] the 
system’s uncertainty is connected to its capacity in obtaining relevant information. In 
contrast, the weighted average plays the main role in the third case, i.e., the result of the 
performance close to the ideal performance has much more weight than the one close to 
the lower end. In other words, while the first two cases are looking to the average 
performance, the third one is mostly looking at the quality of the performance. 
Consequently, some differences could appear in boundary cases in evaluating a system’s 
performance by these two different approaches. Therefore, it is argued that a combined 
use of them could help the user in founding the ideal profile of performance according to 
his/her personal criteria of goals. This could help him/her in choosing the appropriate 
system among the existing ones for solving his/her problems. 

Analogous attempts to use the fuzzy logic in the area of student modelling and 
student diagnosis in particular and in education in general have been attempted by other 
researchers as well, e.g., Perdikaris (1996), Espin and Oliveras (1997), Ma and Zhou 
(2000), Ajello and Spagnolo (2002), etc. Spagnolo and Gras (2004) have also used 
analogous methods in studying fuzzy through statistic implication. This is a new 
approach in Zadeh’s (2001) classification of the various approaches of fuzzy logic 
(possibilistic, probabilistic, veristic) that can possibly have some interesting applications 
in AI. 

In conclusion, our fuzzy model for the CBR is not restricted in providing quantitative 
information only [value of T(r), etc.], but it also gives a qualitative view of a CBR 
system’s behaviour. In fact, through it one studies the possibilities of all system’s profiles 
and gets – in terms of the linguistic labels – a comprehensive idea about the degree of 
success in each step of the CBR process. Another advantage of this model is that it gives 
to the user the possibility to study the combined results of the behaviour of two, or more, 
CBR systems designed for the solution of the same type of problems, or alternatively the 
behaviour of the CBR system in use during the solution of two, or more, new related 
problems. On the other hand, the characterisation of the system’s performance in terms of 
a set of linguistic labels which are fuzzy themselves is a disadvantage of the fuzzy model, 
because this characterisation depends, as we have seen above, on the user’s personal 
criteria. 

Concerning our Markov model, although it looks rather easier to be applied in 
practice by a non-expert, it is self- restricted to provide quantitative information only for 
the corresponding situations, i.e., a measure of a CBR system’s efficiency in solving 
related problems and short-run forecasts (probabilities) for the evolution of the CBR 
process. Because of this, this model is helpful only in understanding the ‘ideal behaviour’ 
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of a CBR system proceeding linearly from real-world problems to acceptable solutions 
and reports on them. However, the common experience shows that things are not always 
like that in practice, especially when dealing with complicated problems depending upon 
a large number of variables and/or parameters. In these cases a system’s qualitative study, 
provided only by the fuzzy model, becomes necessary in comparing and validating the 
results obtained Therefore, a combined use of the fuzzy and stochastic models seems to 
be the best solution in achieving a worthy of credit mathematical analysis of the CBR 
process. 

Finally, we ought to notice that, although we have presented some examples in both 
cases (Markov and fuzzy models) to illustrate our results, further study and research are 
needed in order to expand these models to work over some more complex real world 
problems (e.g., diagnostic and control systems, help desk applications, decision-making, 
systems supporting architectural and industrial design, learning and knowledge based 
systems, etc.) and prove their efficiency over them. 
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