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Abstract: Formants are regarded as the basic building blocks of vowels; 
however, they are very rarely used as features for difficult automatic speech 
recognition tasks. Formant-based research is generally focused on formant 
extraction, because of the assumption that a better formant extraction method is 
the only manner to increase the effectiveness of formants. We challenge this 
assumption by investigating a different use of formants following their 
extraction. By using the same principles of combining formants as observed in 
speech perception studies, we create features that show good recognition 
performance under noisy testing conditions. Improved recognition performance 
with the proposed formant features is demonstrated by comparing to  
Mel-frequency cepstrum coefficients and perceptual linear predictive coding 
features on a hidden Markov model-based automatic speech recognition 
system. 
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1 Introduction 

The most commonly used features in automatic speech recognition (ASR) systems are 
very sensitive to noise. Even small levels of noise have a large impact on the accuracy of 
speech recognition experiments. Several studies published in the past decade have 
focused on addressing this very issue. The method most commonly used to overcome the 
sensitivity to noise is to model and predict the noise in the noisy speech signal so that it 
can be removed. However, the model-and-predict approaches often are not able to detect 
the noise accurately resulting in the loss of useful information (Hermus et al., 2007). This 
approach is not in line with what we know about how humans hear and perceive speech 
in noisy environments. 

Humans are able to tolerate a lot more noise before recognition accuracy deteriorates 
and do not use such forms of speech enhancement at the sensory processing level. The 
ability of humans to concentrate on the speech signal while ignoring the noise content 
questions the very logic of including noise removal in ASR systems. We recognise this 
important and practical aspect in our study to develop features that are robust to noise 
that are inspired by human speech perception studies. 

Formants are considered important in defining voiced speech signals (Peterson and 
Barney, 1952). They can be used as the fundamental features in computerised and 
biological speech production for voiced speech signals. In voiced signals, formants are 
the basic building blocks of speech and are known to tolerate noise. Several challenges 
arise when attempting to utilise formants for ASR systems. The greatest challenge is the 
extraction of the raw formants with a method that is consistently accurate under noisy and 
clean conditions. Once the formants are extracted, the next challenge is to utilise the raw 
formants in the most advantageous way. We focus on the latter of the two described 
challenges by combining the formants in a manner that emulates the feature extraction 
process in humans. 

Much of the work on formants has, in recent times, been focused on simpler speech 
recognition problems – either small speaker dependent databases or on larger databases 
where the test signal has not been significantly corrupted (Yan et al., 2004; Thomas et al., 
2008). Further, this work has been largely limited to the extraction of raw formants with 
greater accuracy, with little emphasis placed on how to best use the raw formants 
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following their extraction. This work has resulted in many methods to extract raw 
formants, which range from very complex methods to very simple methods. The more 
complex methods were created to overcome the difficulties of raw formant extraction in 
the presence of noise (Niederjohn and Lahat, 1985; Welling and Ney, 1998). One work 
that attempts to address this problem is by Holmes et al. (1997). They investigate formant 
use by combining raw formants with MFCC features and show better recognition 
accuracies when compared to increasing the number of MFCC features. This is a separate 
idea from the proposed features in this paper where we combine raw formants with one 
another to increase recognition accuracies. 

In this paper, we examine the effect of combining raw formants to create new and 
useful features for ASR in a noisy environment on continuous speech signals. This 
approach differs from previously published works in that it is not a new method for raw 
formant extraction. 

2 Proposed features 

2.1 Background 

The use of formants, for vowel classification can be traced back to the days when the 
objective was the study of vowels rather than ASR. Peterson and Barney (1952) use 
formats in the analysis of vowels, where they find that it is possible to relate a plot of F1 
versus F2 to create what is referred to as a vowel loop. Ten separate vowels are shown to 
lie on or in the vowel loop, with minimal overlap between them, thus showing good 
discrimination for the given dataset. 

Ohl and Scheich (1997) show that, although there is no direct mapping in a 
mammalian brain for F1 versus F2, it was possible to directly map F1 versus F2 – F1 in the 
auditory cortex of a bat. The auditory cortex of most mammals is similar, which makes 
this study very relevant for understanding speech recognition in humans. Their 
comparison of F1 and F2 – F1 also showed that such features have a good discrimination 
ability for the given vowels. 

Tanji et al. (2003) performed a human listening experiment using Japanese vowels. 
The experiment was performed on a brain-damaged patient. The damage was such that it 
made it difficult for the patient to comprehend spoken language, while preserving his 
ability to speak, read, and write. They showed, in their study, that F1 – (F2 – F1) 
correlated much better with the recognition accuracies obtained by the patient than  
F2 – F1, suggesting that 2F1 – F2 is a useful feature for recognition of phonemes. 

These three papers indicate that raw formants and formant combinations could 
accurately and effectively discriminate between different vowels. They clearly show that 
classification of vowels can be achieved using the information present in just the first two 
formants and their combinations. 

2.2 Method 

The incoming speech signal is separated into overlapped frames with each frame having a 
length of 25 ms and an overlap of 10 ms with the neighbouring frames. A short time 
Fourier transform (STFT) is created by applying a discrete Fourier transform (DFT) on 
each frame: 
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where N is the total number of frequency bins, j is the jth frame, t is the tth time sample 
and k refers to the kth frequency bin. An example STFT is shown in Figure 1. Each of the 
STFT frames are passed through a second order low pass Butterworth filter with a 
normalised cut off frequency of 0.0112, where 1 corresponds to half the sampling 
frequency. The spectral peaks of the power spectrum generated from the low pass filtered 
(LPF) signal (XLPF) are detected as formants. The peaks of the LPF signal were detected 
by the following equation, 
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where θ is a threshold used to define the peak, k is the kth frequency bin, Mk is the 
frequency that corresponds to bin k, F is an array of peaks, and h is an index that is 
increased by 1 whenever Fh ≠ 0 and indicates the formant number. 

Figure 1 shows the location of formants as obtained by applying the process 
described using Fourier transform, low pass filtering and peak detection. A shift is 
present in the LPF signal, due to the length of the filter, however, as it is a constant shift 
its impact is negligible. Only the first two extracted formants are used as it has been 
shown that the first and second formants are sufficient for the recognition of vowels. 

Figure 1 A graphical illustration of formant detection as the peaks of an output obtained from a 
low pass filter (LPF) 

 

Peterson and Barney (1952) suggest that the first two formants, F1 and F2, can be used as 
features for vowel classification. Ohl and Scheich (1997) give evidence that the features 
of F1 and F2 – F1 are represented in the mammalian auditory cortex, suggesting that  
F2 – F1 gives a better interpretation of what is occurring inside humans than F2 on its 
own. Tanji et al. (2003) showed in a human listening experiment on Japanese vowels that 
F1 – (F2 – F1) correlates much better with recognition accuracies obtained by the patient 
than F2 – F1, suggesting that 2F1 – F2 is a useful feature for recognition of phonemes. 
From a mathematical perspective each feature combination can be looked upon as the 
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weighted addition of formants F1 and F2. Therefore, in addition to these features, we also 
propose F1 + F2 as the simplest formant combination feature with weights equal to one. It 
should be noted that although these combinations of features have been suggested as cues 
to speech perception, they were not tested or attempted in ASR environments prior to 
their use in this paper. 

3 Experimental setup 

3.1 Database 

The phoneme recognition task was performed using the TIMIT database (Fisher et al., 
1986). It is a standard practice to remove the sa1 and sa2 sentences because their 
inclusion can bias the performance of context dependent systems. The total number of 
uniquely labelled phoneme classes in the TIMIT database is 61, however, they can be 
combined together by folding (Lee and Hon, 1989), giving a total of 39 classes for 
recognition. The database consists of 630 speakers, speaking American English in eight 
dialects, with each speaker reading ten phonetically rich sentences. The recordings are 
sampled at 16 kHz. 

In order to test the recognition results under noisy conditions, artificially created 
white Gaussian noise was added in the time domain. To remove the possibility of bias 
due to changing noise conditions, the corrupted signals were saved to files so that the 
same noise conditions could be tested on different methods. 

3.2 Setup 

The recognition experiments were performed using the HTK framework (Young et al., 
2006). The MFCC and PLP results reported were obtained by using the HTK HCopy 
software to create the features. The parameters of both MFCC and PLP features were set 
so that a Hamming window length of 25 ms was applied, with a window shift of 10 ms. 
Pre-emphasis was applied to each frame, using a coefficient of 0.97. 

For MFCC and PLP features, the results with five and 12 features were obtained by 
varying the number of output coefficients. The MFCC and PLP results reported using  
39 features were obtained by using 12 MFCC or PLP features plus the energy of each 
frame, the first and second derivatives of these 13 features were calculated, giving a total 
of 39 features. The performance of the proposed features is compared to the standard 
mentioned above. We propose the use of a total of five features for recognition: 

• F1 

• F2 

• F2 – F1 

• 2F1 – F2 

• F1 + F2. 
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4 Experimental results 

Figure 2 shows that the proposed formant features outperform both PLP and MFCC 
features when only five features are considered under noisy speech recognition 
conditions. The speech recognition problem shown is difficult as there is a wide variety 
of white Gaussian noise being added to the test speech signals. The average recognition 
accuracies for the three tested SNRs are given in Table 1. The proposed biologically 
inspired features correspond to higher recognition accuracies than MFCCs or PLPs. This 
result demonstrates that the formant features represent important information that is 
useful for ASR and that is robust to varying noise levels in the speech. 

Figure 2 Comparison of recognition accuracies of the five proposed formant-based features with 
five MFCC features and five PLP features 

 

Table 1 Average recognition performance with five features in noisy conditions 

Features Recognition accuracy (%) 

Proposed 18.09 

PLP 10.79 

MFCC 8.20 

Table 2 shows that in very noisy conditions (0 dB) the five formant features outperform 
the 39 MFCC and PLP feature sets. The performance of the ASR system implemented 
using the proposed features is less sensitive to the presence of noise than the MFCC and 
PLP features. When the 0 dB and the clean recognition accuracies are compared, the 
proposed features have a drop of 13.34%, while a drop in accuracy of 34.53% and 
34.50% is seen for five MFCC and five PLP features, respectively. As the number of 
MFCC and PLP features increases the drop in recognition accuracy increases. 
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Table 2 Phoneme recognition results on the entire TIMIT speech database 

Recognition accuracy(%) 

MFCC PLP Formants SNR 
(dB) 5 

features 
12 

features 
39 

features 
 5 

features 
12 

features 
39 

features 
 5 

features 

0 0.78 1.84 11.03  2.01 3.06 6.78  14.68 
10 6.65 9.34 29.30  8.32 11.49 23.95  18.24 
20 17.04 26.18 51.23  21.04 28.27 46.41  21.34 
Clean 35.31 48.72 71.26  36.51 49.46 70.95  28.02 

As was shown by Holmes et al. (1997), it is possible to improve the performance of PLP 
and MFCC-based speech recognition systems by combining them with raw formants. In 
Table 3, we show that this is also the case for our proposed features. Table 3 shows the 
performance improvement when the proposed formant features are added to the first 
seven MFCC and seven PLP features. It can be seen, that by combining the proposed 
features with MFCC or PLP features, there is an improvement in recognition 
performance under noisy conditions. The recognition performance under clean conditions 
does not change with the addition of formant features, demonstrating that the addition of 
formant combinations is useful mostly in noisy test conditions. Further, it should be noted 
that clean conditions rarely occur in realistic speech environments and the speech 
recognition results in clean conditions are generally not a good measure of system 
performance. 
Table 3 Phoneme recognition results for combined features 

Recognition accuracy(%) 
SNR 
(dB) 7 MFCC 

+5 formants 12 MFCC 7 PLP 
+5 formants 12 PLP 

0 5.83 1.60 2.28 3.11 
10 15.33 7.02 15.31 11.02 
20 27.13 20.77 27.86 27.43 
Clean 46.61 46.36 47.52 48.25 

Table 2 shows results obtained by the entire TIMIT database, as distinct from the results 
shown in Table 3 that were obtained on a smaller subset. 

5 Discussion 

ASR under noisy testing conditions remains a challenge even when speech enhancement 
and noise cancellation methods are utilised. Further, only a noisy speech recognition task 
reflects a realistic speech recognition problem. We propose and test a premise that 
biologically inspired features that are based on formants can be more effective and a 
better match for the human speech recognition processes. 

Formants are known as an important cue for speech perception in humans, however, 
their specific role in ASR is not well understood. The robustness of the formant features 
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under noisy test conditions confirms that combinations of bio-inspired features are 
fundamental to speech recognition. 

Combining formant features with other features such as MFCC and PLP can improve 
the robustness of ASR systems. The disadvantage of the formant features is the 
comparatively lower recognition performance in clean conditions, which can be 
overcome by combining features. Further, by combining features, the robustness of the 
conventional features such as MFCC or PLP under noisy test conditions are shown to 
improve. 

It has to be noted that it is possible that there are many more formant feature 
combinations that may help to improve the reported results. This topic therefore remains 
open and requires further studies on speech perceptions in the human brain, and is an area 
of future research. 

6 Conclusions 

In conclusion, it is demonstrated that the use of formant-based features, which are 
inspired from studies in speech perception, shows robust ASR performance under noisy 
speech conditions. The ASR system implemented with as few as five formant-based 
features outperforms the conventional features such as MFCC and PLP when noise levels 
are high. Using the proposed features along with MFCC or PLP features improves the 
overall performance of both MFCC- and PLP-based ASR systems. 
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