Experimental and numerical study of flow around a wind turbine rotor
by Ivan Dobrev; Fawaz Massouh; Asif Memon
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 5, No. 1/2/3, 2013

Abstract: An improved model of an actuator surface is proposed, representing the flow around a wind turbine. This model was developed in conjunction with a Navier-Stokes solver using a blade element method for the calculation of power and wake development. Blades have been replaced with thin surfaces, and a boundary condition of 'pressure discontinuity' has been applied with rotor inflow and blade-section characteristics. The proposed improvement consists of applying tangential body forces along the chord, in addition to normal body forces resulting from pressure discontinuity along the blade cross-section. The proposed model has been validated for the flow around a horizontal-axis wind turbine. The results obtained from the proposed model are compared with the experimental results obtained from PIV-wind tunnel techniques. The comparison has displayed the necessity of the proposed model for accurate reproduction of the wake behind rotor. The rapidity of calculation, in comparison to full-geometry modelling, appears to be promising for wind farm simulations.

Online publication date: Fri, 29-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com