Improvement of greenhouse by reducing gas emissions using replacement policy
by Yousif Al Ali; Meftah Hrairi; Ibrahim Al Kattan
International Journal of Energy Technology and Policy (IJETP), Vol. 8, No. 3/4/5/6, 2012

Abstract: This study aims to build a vehicle replacement model for air quality improvement by reducing the emission of greenhouse gases. The model based on linear programming with the objective to reduce the total cost considering different depreciation methods. The decision variables are; the mileage of the vehicles, age of the vehicles, the annual operating and maintenance costs, and the estimated cost of emissions hazard. The application of the proposed model is based upon the fleet replacement model for mid-sized vehicles in the transportation department of Dubai municipality in the United Arab Emirates (UAE). Retaining the current fleet policy without implementing a new replacement model will continue to increase the rate of CO2 emissions. The proposed replacement model has been tested using three different depreciation approaches. The results show that the proposed replacement model has reduced the gas emissions and improved air quality. This application could be used as a benchmark for many other transportation departments in the UAE. The model shows promising results for improvement of the fleet performance including the reduction of greenhouse emission.

Online publication date: Wed, 27-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Energy Technology and Policy (IJETP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com