

 Int. J. Information Quality, Vol. 3, No. 1, 2012 49

 Copyright © 2012 Inderscience Enterprises Ltd.

The design and implementation of a software
infrastructure for IQ assessment

Morgan Ericsson*, Anna Wingkvist and
Welf Löwe
School of Computer Science, Physics, and Mathematics,
Linnaeus University,
351 95 Växjö, Sweden
E-mail: morgan.ericsson@lnu.se
E-mail: anna.wingkvist@lnu.se
E-mail: welf.lowe@lnu.se
*Corresponding author

Abstract: Information quality assessment of technical documentation is an
integral part of quality management of products and services. Technical
documentation is usually assessed using questionnaires, checklists, and
reviews. This is cumbersome, costly and prone to errors. Acknowledging the
fact that only people can assess certain quality aspects, we suggest
complementing these with software-supported automatic quality assessment.
The many different encodings and representations of documentation, e.g.,
various XML dialects and XML Schemas/DTDs, is one problem. We present a
system, a software infrastructure, where abstraction and meta modelling are
used to define reusable analyses and visualisations that are independent of
specific encodings and representations. We show how this system is
implemented and how it

1 reads information from documentations
2 performs analyses on this information
3 visualises the results to help stakeholders understand quality issues.

We introduce the system, the architecture and implementation, its adaptation to
different formats of documentations and types of analyses, along with a number
of real world cases exemplifying the feasibility and benefits of our approach.
Altogether, our approach contributes to more efficient information quality
assessments.

Keywords: information quality assessment; software-based analysis; technical
documentation.

Reference to this paper should be made as follows: Ericsson, M.,
Wingkvist, A. and Löwe, W. (2012) ‘The design and implementation of a
software infrastructure for IQ assessment’, Int. J. Information Quality, Vol. 3,
No. 1, pp.49–70.

Biographical notes: Morgan Ericsson is an Associate Professor in Computer
Science at Linnaeus University, Växjö, Sweden. After completing his PhD in
2008, he was a Postdoctoral Researcher at the Department of Information
Technology, Uppsala University, Sweden. His main research interest is how
methods and tools from software technology and database research can be used

 50 M. Ericsson et al.

to assess quality. As a skilled programmer, he has contributed to the
development of programming models and frameworks for software and
information analysis.

Anna Wingkvist is an Associate Professor in Computer Science at
Linnaeus University, Växjö, Sweden. Her academic background is in
information systems development, methodological and research methods
reasoning, and project management. Since completing her PhD in 2009,
her scientific interest and publications are mainly in the information
quality domain. In 2011, she was awarded a prestigious, multiyear research
grant from the Swedish Governmental Agency for Innovation Systems,
VINNOVA.

Welf Löwe is a Professor in Computer Science. He has held a Chair in
Software Technology at Linnaeus University since 2002. From numerous
projects in industry and research he has experiences in software and
information analysis as well as software and information quality management
in general. He is the co-founder of ARiSA, a spin-off company of his chair, that
maintains and provides the open source software and information analysis tool
VizzAnalyzer.

1 Introduction

Quality assessment and assurance is an important part of the documentation (technical
information) production process (Hargis et al., 2009). A lack of quality reduces not only
the value of documentation, but also that of the product (service and/or process) it is
attached to. A lack of quality can reduce the perceived quality of the brand or company
associated with it (Smart et al., 1996).

Quality depends not only on the documentation provided, but also the product and the
context it is used within. A change to the product will reduce the quality of the
documentation if it is not updated to reflect the change. Hence, it is important that quality
assessment and assurance are continuous processes. In this article we present a software
infrastructure that can be used to define analyses and visualisations to assess and
communicate the quality of documentation. The (software) infrastructure, VizzAnalyzer,
is available as Open Source Software and can be downloaded from the ARiSA website
(http://www.arisa.se/tools.php). VizzAnalyzer creates models of documentations
according to a Common Meta Model that describes a family of documentations. This
Common Meta Model is used to define analyses and visualisations, and mappings from
real world documentations.

The article is organised as follows. We begin by providing examples of how
information quality assessment can be supported by automatic analyses and
visualisations. We discuss lessons learned from implementing these, such as the need to
support different representations and encodings of documentation. We introduce
abstraction and meta modelling as tools to help define reusable analyses and
visualisations independent of encoding and representation. We define three levels of
abstraction, and discuss mappings between these. We then present the architecture of our
software infrastructure that is based on the three levels of abstraction. Further, we

The design and implementation of a software infrastructure 51

discuss the use of incomplete models and model evolution. Finally, we discuss related
work, present conclusion and outline future research directions.

2 Software-supported quality assessment in practice

In this section we present four real world examples where we use the software
infrastructure to automatically assess the quality of documentations. In our case we
had access to (non-classified parts of) a warship documentation and a mobile phone
documentation. Each example discusses a potential quality issue, the analysis we used
to detect it, how the results were visualised, and the outcome.

2.1 Text clone detection

A text clone is a block of text that is repeated in various degrees of similarity across
the documentation, i.e., redundant text. Redundant text is not necessarily an indication
of poor quality, since it can make the text easier to read and understand by providing a
context and thereby reducing the need for cross-references, for example. But, redundant
text can also increase the cost of storing, maintaining, and translating the documentation.

In order to investigate the degree of text clones, we implemented a clone detection
analysis and used it to assess (the non-classified parts of) a warship documentation. The
clone detection analysis determines how similar two parts of the documentation are by
comparing texts of the documentations’ substructures (referred to as sections).

We analysed 913 XML documents (sections) from the warship documentation and
found that only six of them were unique. 20 documents were exact clones of another
document, and the remaining were similar to some extent. On average, a document was
54% unique. Figure 1 depicts the result of the clone detection. Each box corresponds
to a section, the colour represents the degree of uniqueness of a section, and the edges
indicate similarities between sections.

In order to perform clone detection, we need the individual sections of a
documentation and the text these contain.

2.2 Reference analysis

Cross-references are used to relate different parts of a documentation to each other. If
too many cross-references are needed to understand the content, especially if non-local
and forward references are used, information in the sections is not self-contained.
Consequently, it can be difficult to read and understand the documentation. A
high degree of cross-references indicates that the documentation structure might be
suboptimal.

We applied a reference analysis to the warship documentation (which was also used
for text clones). Figure 2 shows the outcome of this analysis. Each box corresponds to
a section and the colour represents which substructure of the documentation (referred to
as chapters) it belongs to. The distance between two boxes is proportional to the number
of cross-references between them. The top figure shows the whole documentation
while the bottom figure shows a part of the documentation with a large degree of
cross-references across chapters. This part is problematic since it contains sections from

52 M. Ericsson et al.

eight different chapters of the documentation (eight different colours of boxes) with
many cross-references between them.

In order to perform a reference analysis, we need access to the individual sections
of a documentation, the chapters these are contained in, and the cross-references.

Figure 1 (a) The result of a clone detection analysis of the technical information of a warship
is visualised as clusters of similar documents (b) Each cluster can be viewed in
more detail (see online version for colours)

(a)

(b)

The design and implementation of a software infrastructure 53

Figure 2 Visualisations of cross-reference analysis results, (a) cross-reference cluster overview
and (b) detailed view zoomed into one problematic cluster (see online version
for colours)

(a)

(b)

2.3 Use of meta-information

Meta-information such as tags and keywords can be used to improve usability and
accessibility of documentations. However, improper definition of these, for example
attaching a keyword to the wrong section of the documentation, can reduce usability.

In order to investigate how well meta-information is used, we implemented a
meta-information analysis and applied it to the documentation of a mobile phone. In
this documentation, a section can have a number of applicability tags that describe the
content text. Each tag belongs to a category. The analysis extracts all the applicabilities

54 M. Ericsson et al.

for each category, and the applicabilities (and categories) for each section of the
documentation.

We analysed 12,286 XML documents from the mobile phone documentation and
found that some categories were concentrated to certain chapters of the technical
information, while other categories were spread out. This imbalance of tagging can
indicate quality issues, but in this case the technical writers confirmed that it was
intentional and part of the design. Figure 3(a) shows the applicability tags and the
categories, and Figure 3(b) shows applicability tags and sections of the documentation.

Figure 3 A meta-information analysis of a mobile phone technical documentation,
(a) the visualisations show the structure of the meta-information and
(b) the relation to information (see online version for colours)

(a)

(b)

Note: The colour of an applicability tag identifies the category it belongs to.

The design and implementation of a software infrastructure 55

In order to perform an analysis of the meta-information use, we need access to the
individual sections, the chapters they are contained in, and the tags attached to the
sections and their categories.

2.4 Test coverage

Certain qualities are hard to analyse fully automatically. These require (human) test
readers who approve sections of a documentation. The proofreading can be supported
by analysis tools that analyse the coverage of the proofreading as well as how much
time a test reader required to complete each of the sections of the documentation.

We implemented coverage analysis as an extension of a documentation browser;
each section entry and exit is logged with a time stamp. This log is later combined with
the documentation structure to form an understanding of how the test readers navigated
the documentation. The combined information shows, for example, which documents
are visited, for how long, in which order, and so on.

Figure 4 Visualisations of test coverage analysis, (a) statistics view and (b) graph view
(see online version for colours)

Visited

Unvisited

(a) (b)

We applied a test coverage analysis to a subset of 70 documents of the mobile phone
documentation where we asked the test readers to find information about a certain
use case (how to take a picture and send it as an MMS). The results are depicted
by Figure 4(b), which shows a test reader’s behaviour during testing. It depicts the
document structure (boxes correspond to individual sections belonging to chapters) and

56 M. Ericsson et al.

encodes the time spent on individual section with different colours: light-blue boxes
are sections not visited at all; the colour gradient from dark blue to red corresponds
to how long the sections are visited (dark blue representing the minimum and red the
maximum amount of time). In this example, the colour gradient represents the span from
1 to 20 seconds.

In a real testing situation it is possible to determine whether or not the documentation
is suitable for a certain uses case (a question that a user might want to get answers to),
whether or not a certain section is well-written and easy to grasp, or whether or
not the structure of the sections are appropriate for navigating the documentation.
However, any such conclusions about the whole documentation require that all intended
use cases are covered and that the whole documentation is (potentially) proofread.
Figure 4(a) shows the coverage of our use case for the mobile phone documentation.
Only 17 of the 70 sections were visited, which results in 20% test coverage. Hence,
80% of the documentation is not proofread. In a real testing situation, the quality of
this test would be considered insufficient due to low coverage of the documentation
system. Alternatively, if all intended use cases are covered, the documentation contains
redundant and ‘useless’ information. Figure 4(b) can be used to determine which parts
of the documentation system should be covered by other test cases (and excluded from
the system, respectively).

In order to support testing with the described analyses, we need access to the
individual sections and the chapters they are contained in, along with the time stamps
attached to the sections.

2.5 Lessons learned

We implemented the text clone, reference, meta-information, and coverage analyses
to investigate how software can be used to help automate quality assessment
[see Wingkvist et al. (2010a, 2010b) for a more detailed analysis]. We learned three
important lessons during this implementation that are summarised below.

First, documentations can be represented and encoded in different ways. For
example, the documentations we used in the examples use two different X(A)ML
dialects. Analyses should be possible to reuse regardless of the many documentation
encodings. We do not want to (re-)implement the analyses (and the visualisations) for
each possible documentation representation and encoding.

Second, certain entities and relations are of common interest to more than one
analysis (e.g., the sections and their containment in chapters) while others are unique
to a specific analysis (e.g., the tagging or the time logging). The entities and relations
extracted from the documentation (representation) that are of common interest can be
re-used across a set of analyses.

Third, it is difficult to define a fixed set of entities and relations that provide
sufficient information for all possible analyses. Consider the example in Section 2.1 as
an initial quality analysis tool and the examples in the subsequent Sections 2.2 to 2.4
as a series of tool extensions. While clone detection only required the section entities
and the text contained, we needed to add chapter entities and cross-reference relations
for the reference analysis, then meta-information, and then time log information. We are
certain that new analyses will require additional entities and relations. Hence, the set of
entities and relations that are extracted from documentations to support analyses should
be flexible and support future extensions.

The design and implementation of a software infrastructure 57

The three lessons learned can be considered requirements on software to support
quality assessment. We used these requirements to design and implement the software
infrastructure that is presented in this article.

3 Abstractions, models and meta models

The example analyses that we implemented (cf., Section 2) show that there is an overlap
of the parts of a documentation that we use to assess quality between different analyses.
However, the examples also show that different encodings and representations used by
different real world documentations make reuse difficult. For example, assume that we
want to apply the cross-reference analysis (cf., Section 2.2) to two XML-compatible
documents, one defined using a custom XML Schema and the other using XHTML.
The analysis needs access to sections and cross-references, and these are represented in
different ways in the two documents, so we cannot reuse the same implementation.

However, we can implement a reusable cross-reference analysis by defining
what entities and relationships in the documentation that it needs, and implement
mappings from the specific formats (the XML Schema and XHTML) to this ‘abstract’
documentation format that is specific to the analysis. We consider the abstract
documentation format an abstraction – a model – of the actual documentation format. In
most cases, documentation formats are already abstractions, for example, XML abstracts
layout information, such as font sizes and styles. We extend this idea, and consider any
documentation as a series of models, and mappings between these.

In order to be able to map between models, i.e., create new abstractions, there is a
need to define what elements are valid in the model. We rely on meta modelling, and
use higher level models, meta models, to define models on lower levels. For example,
an XML document is often defined by a specific XML Schema or Document Type
Definition (DTD). The XML document can be considered a model of a documentation,
and the XML Schema or DTD is the meta model, that defines what elements the model
can contain. Each model is defined by a meta model, so there is abstraction between
models and meta models.

We define abstractions of meta models as well as models, so there is a need to
map between meta models. Consequently, there is a need to define the valid elements
of a meta model, i.e., there is a need for a meta meta model. This meta meta model
defines what can be expressed by a meta model. For example, based on our experience
from the four example analyses in Section 2 we define three document models with
corresponding meta models. First, there is an actual document-specific model that
corresponds to the actual format/schema used. This model is mapped to a more abstract,
general model, that can represent (abstractions of) any document-specific model that we
need to support. Finally, we use an analysis-specific model to keep analyses reusable,
even if the ‘common’ model is changed to support other document-specific models. We
refer to the latter as (meta) model evolution, and describe it in detail in Section 6. Each
of the models represents documents that all have tree structures (a document contains
a number of sections) with relationships between the nodes (cross-references). So, any
meta model is defined by a specific tree grammar that determines which tree structures
are valid and a set of relationships between nodes. The meta meta model consists of
a definition of how a tree grammar is expressed and how relationships are defined.
Figure 5 depicts the model layers and the levels of abstractions within the model and
meta model layers.

58 M. Ericsson et al.

Figure 5 The three layers of models (meta modelling) and the three abstraction levels of the
model and meta model layers

Tree Grammars,
Relations

Common
Information
Repository,

Common Meta
Model

DT-spec.
data-structure

A-spec repository

D, a DT-spec.
document

Common model of
D

A-spec view of D

DT
reader

reads

A's

mapping

maps

A, an
analysis
/visual.

analyses
visual.

Meta Meta Model

Meta Model

Model

Note: Models are depicted by rectangles and mappings are depicted by circles. D represents a
documentation, DT a documentation type, and A an analysis.

The three meta models and the mappings between them are described in detail in
Section 4. Section 6 describes the meta meta model and meta model evolution. An
implementation based on these models is described in Section 5.

4 Meta models and mappings

This section discusses the Document-Specific, Common, and Analysis-Specific Meta
Models, as well as the mappings between these in more detail.

4.1 A Document-Specific Meta Model

A documentation follows specific rules and conventions, specified either implicitly
or explicitly. We refer to this as the Document-Specific Meta Model. In general, a
documentation consists of entities structurally contained in each other and relations
between them.

We define a Document-Specific Meta Model for a documentation type DT as
MDT = (GDT , RDT). GDT is a tree grammar that specifies the set of model entities
and their structural containment, and RDT is a set of relations over model entities.
Formally, GDT = (TDT , PDT , documentDT) where TDT is a set of model entity
types, PDT is a set of productions in Extended Backus-Naur Form (EBNF) that defines
the containment tree structures, and documentDT ∈ TDT is the root entity type of the
structural containment trees. The EBNF productions p ∈ PDT are of the form t ::= expr
where t ∈ TDT and expr is a regular expression over T ⊆ TDT . Regular expressions are

The design and implementation of a software infrastructure 59

either sequences (t1, . . . , tk), iterations (t∗), or selections (t1| . . . |tk). RDT denotes a
set of relations over model entities, RDT = RDT

1 , . . . , RDT
n , where each RDT

i is defined
over TDT , and String and Num entities. The latter represent general string and numerical
attributes, respectively.

Example 1: Let MDTD = (GDTD, RDTD) be the Document-Specific Meta
Model that corresponds to a specific XML DTD. The tree grammar
GDTD = (TDTD, PDTD, documentDTD) defines the containment structure trees of
the DTD (i.e., the information set regardless of their XML encoding). Figure 7(a)
depicts an example of a containment structure tree. GDTD contains entity types (TDTD)
for documents (documentDTD), (sub-)sections (sectionDTD and subsectionDTD),
paragraphs (paragraphDTD), and figures (figureDTD). Paragraphs contain text entities
of type textDTD and reference entities of type refDTD. The productions PDTD define
the structural containment between the entitiy types (TDTD) in structure trees with
documentDTD entities as root.

RDTD contains a binary refers relation refersDTD : refDTD × (sectionDTD ∪
subsectionDTD ∪ figureDTD) which states that a reference can refer to a section,
a subsection, or a figure. RDTD also contains caption and content text
relations captionDTD : (documentDTD ∪ sectionDTD ∪ subsectionDTD ∪ figureDTD ∪
refDTD)× String and contentDTD : textDTD × String. String represents the character
sequence of a caption or content.

4.2 The Common Meta Model

The Common Meta Model describes a family of models by abstracting
document-specific details. We denote the Common Meta Model by M = (G,R). The
only major difference between the Common Meta Model and a Document-Specific
Meta Model is that relations R must contain a 0th element, a numerical identifier to
maintain the document order of relation tuples.

Example 2: Let M = (G,R) be the Common Meta Model that we will use in our
running example. G = (T, P, document) defines the common containment structure trees
that can contain entities for document and section. Figure 7(b) depicts an example
of a such a tree. Productions P define the structural containment of these trees. R
contains relations refers : Num× section× section, caption : Num× (document ∪
section)× String and content : Num× section× String. These relations use String
to represent the character sequence of a caption or content, and Num to represent the
numerical type of an identifier that encodes document order.

4.3 Mapping from a Document-Specific Meta Model to the Common Meta Model

The Common Meta Model is an abstraction of different Document-Specific Meta
Models. For each such Document-Specific Meta Model, the abstraction is defined by
a Document-Specific Mapping, αDT . This mapping itself is defined by mapping the
grammar GDT to the Common Meta Model grammar G and relations RDT to the
Common Meta Model relations R.

60 M. Ericsson et al.

αDT is defined by mapping the entity types of a Document-Specific Meta Model
to those of the Common Meta Model, αDT : TDT → T . The Documentation-Specific
Meta Model entity type documentDT is always mapped to the Common Meta
Model document entity type, i.e., αDT (documentDT) = document. For selected
relations RDT

i ∈ RDT , we define mappings to corresponding relations Ri ∈ R, i.e.,
αDT : RDT → R.

In general, we do not require αDT to be surjective (an onto mapping) or complete,
since this would be unnecessarily restrictive. Some Common Meta Model entity and
relation types do not correspond to entity and relation types in every Document-Specific
Meta Model (i.e., not surjective), and some Document-Specific Meta Model entity and
relation types may be ignored (i.e., not complete).

Example 3: The mapping αDTD maps entity and relation types of the
Document-Specific Meta Model MDTD (Example 1) to the Common Meta Model M
(Example 2) as follows: αDTD(documentDTD) = document, αDTD(sectionDTD) =
section, and αDTD(subsectionDTD) = section. Entities of other types are
dropped. The relation types are mapped as follows: αDTD(refersDTD) = refers,
αDTD(captionDTD) = caption, and αDTD(contentDTD) = content.

4.4 Analysis-Specific Meta Models and their mapping from Common Meta Models

Analyses might directly traverse the documents represented by the Common Meta
Model, extract the required information, and perform computations. We introduce
analysis-specific views on the Common Meta Model, i.e., abstractions of the model. A
view provides the exact information required by a specific analysis. If a set of analyses
uses the same information, they share the same view.

Views are abstractions of the Common Meta Model. Formally, a view is a meta
model that is specific for an analysis, A, and is defined as V A = (GA, RA). GA is a
tree grammar that specifies the set of view entity types and their structural containment
required by A. RA is a set of relations over view entity types required by A.

View model construction follows the same principles as the mapping and abstraction
from Document-Specific to Common Meta Models. We ignore certain entity types,
which results in filtering of the corresponding nodes. We propagate relevant descendants
of filtered entities to their ancestors by adding them as direct children. Moreover, we
ignore some relation types and attach remaining relations defined over filtered entities
to the relevant ancestors of those entities. The numerical Depth-First-Search (DFS)
rank from the Common Meta Model may be copied or dropped depending on whether
document order plays a role or not for a specific analysis A. As in our mapping from
Document-Specific to Common Meta Models, the construction of a view is defined
using a mapping specification denoted αA, where A is a specific set of analyses.

Finally, analyses access the corresponding view and perform computations. We
deliberately skip a discussion on how to capture analysis results as part of the model
and display them [cf., Löwe and Panas (2005) for applicable strategies].

The design and implementation of a software infrastructure 61

Example 4: Define an analysis, Coupling, which computes the relative coupling
of a section. The analysis computes the ratio of references within section s
and its subsections, denoted localRefs(s) = |{refers(s1, s2) : contains∗(s, s1) ∧
contains∗(s, s2)}|, and all references incoming to and outgoing from s, denoted
allRefs(s) = |{refers(s1, s2) : contains∗(s, s1) ∨ contains∗(s, s2)}|. In short,
Coupling(s) = localRefs(s)/allRefs(s). An appropriate Analysis-Specific Meta
Model V Coupling contains the entity types documentCoupling and sectionCoupling,
and the relation type refersCoupling : Void× sectionCoupling × sectionCoupling with the
mappings αCoupling(document) = documentCoupling, αCoupling(section) = sectionCoupling,
and αCoupling(refers) = refersCoupling. Note that Coupling ignores the order in which
references occur and therefore drops the corresponding DFS id entity of type Num from
the Common Meta Model relation refers : Num× section× section, along with other
irrelevant entities and relations.

Figure 7 shows the Document-Specific Meta Model from Example 1, and how it
is mapped to the Common Meta Model (Example 2-3) and an Analysis-Specific Meta
Model for the Coupling analysis (Example 4). In this example, the Coupling is 0.5 for
Section 2 and 0 for all other sections.

5 An infrastructure for quality assessment

In Section 3 we introduced a system where we use abstraction and meta modelling
to to define analyses to assess and visualise quality. We defined meta models for the
Document-Specific, Common and Analysis-Specific models, and introduced mappings
between these in Section 4. In this section, we present a software infrastructure that is
an implementation of this system.

The infrastructure consists of three major components:

1 the Common Information Repository that captures models of the documentations

2 readers that map documentations to the repository

3 analyses that assess and modify the repository and visualisations that present
interactive views of the repository to stakeholders, e.g., technical writers, product
managers, etc.

5.1 The Common Information Repository

The Common Information Repository is the centre of the infrastructure. It captures
abstractions (models) of documentations, and any analysis or visualisation uses
data stored in it. As discussed in Section 3 there exist several different models
of a documentation. The Common Information Repository captures models of
documentations according to the Common Meta Model. Models that are described by
various Analysis-Specific Meta Models are computed from the repository (cf., Section 4
for details).

The meta models consists of entities and relationships, and we use
Entity/Relationship (E/R) diagrams to describe them (cf., Section 6 for details).
Figure 6 depicts the Common Meta Model for the analyses described in Section 2.
The implementation (classes and methods in Java) is automatically generated from

62 M. Ericsson et al.

such E/R diagrams. We use the Common Meta Model as a configuration parameter
to instantiation of the infrastructure. This way, the meta model can be adapted to the
actual documentation types that we want to analyse.

Figure 6 Entity/relationship diagram of the Common Meta Model used in Section 2

Note: Entities (boxes) with attributes (ellipsoids) and relations (diamonds) for capturing
documentation data (dark grey with white labels) and meta-data (light grey with
black labels)

Figure 7 Mapping of Document-Specific to Common (grey) and Analysis-Specific models

1, documentDT

2, sectionDT

3, sub-

sectionDT

8, sub-

sectionDT

4, para-

graphDT

5, textDT 5, refDT

Some

text

9, sectionDT

10, sub-

sectionDT

5, refDT

refersDT refersDT

contentDT

1, document

2, section

3,section 4, section

Some

text

5, section

6, section

refers(6, …)

content(5)

refers(7, …)

1, documentcoup

2,

sectioncoup

3,

sectioncoup

4,

sectioncoup

5,

sectioncoup

6,

sectioncoup

referscoup(…)

referscoup(…)

(a) (b) (c)

Note: Entities of the three models are labelled with their id (DFS rank) and type. Dashed edges
display structural contains, solid edges content and refers relations.

The design and implementation of a software infrastructure 63

The Common Information Repository can be considered as a database that captures
entities and relations between these entities (including the containing tree structure). The
Analysis-Specific Meta Model views are similar to views in SQL.

5.2 Readers that map documentations to the repository

To apply predefined analyses and visualisations, there is a need to map documentations
that are captured in a specific format, such as XML, to the Common Meta Model.
This process can be considered a two-stage process, where we first create a model of
the documentation according to the Document-Specific Meta Model. We then apply a
mapping to map this model to entities and relationships that exist in the Common Meta
Model. The mapping of the containment trees is defined recursively. Starting at the
root, we traverse the document-specific containment tree in DFS order. We create new
Common Meta Model entities for Document-Specific Meta Model entities of types that
have a mapping defined. These are referred to as the relevant entities. Any irrelevant
Document-Specific entities are ignored.

A generic event-based interface between Document-Specific and Common Meta
Models and an abstract algorithm to map model entities are given in Procedures 1, 2,
and 3. A tree-walker (cf., Procedure 1), initially called with the root entity of the specific
model, traverses the containment tree in DFS order and generates startNode-events on
traversal downwards and finishNode-events on traversal upwards, respectively. Entities
of the structural containment tree are pairs (id, t), with id ∈ Num and t ∈ T as the entity
identifier (a DFS rank representing the document order) and type, respectively.

The Common Model data structure is created by the corresponding event-listener,
startNode (see Procedure 2) and finishNode (see Procedure 3). They preserve the tree
structure but filter out irrelevant entities.

Procedure 1

 > *$#+,-.$, :&-&(+$&?(&&@<&-$'5n = (id; t);
A> '$+($B"3&5n;

C> /#$ c ∈ *%.,3(&-D#B"3&(n) -#
E> :&-&(+$&?(&&@<&-$'5c;

!> ,0- /#$

F> #.-.'%B"3&5n;

G> ,0- *$#+,-.$,

Procedure 2

 > *$#+,-.$, '$+($B"3&5n = (id; tDT);
A> %/ αDT (tDT) .' 3&#.-&3 &',0

C> *(&+$& -&2 &-$.$4 n
′
← (id;αDT (tDT))

E> +00&-3 n
′ $" *%.,3(&- "# 8$+*9=$"0

!> 8$+*9=0)'%5n′;

F> ,0- %/

G> /+05n; ← 8$+*9=$"0 . 3&#.-&' *,"'&'$ (&,&<+-$ +-*&'$"("# n

M> ,0- *$#+,-.$,

64 M. Ericsson et al.

Procedure 3

 > *$#+,-.$, #.-.'%B"3&5n = (id; tDT);
A> %/ αDT (tDT) .' 3&#.-&3 &',0

C> 8$+*9=0"0

E> ,0- %/

!> ,0- *$#+,-.$,

A Document-Specific relation is a set of tuples RDT
i (n1, . . . , nk) over structural

containment tree entities (and possibly string and numerical attributes). When
constructing the common model, we ignore the relations that are not mapped by
αDT . Let RDT

i : tDT
1 × . . .× tDT

k be a document-specific relation with a mapping
αDT (RDT

i) = Ri.
Assume that each entity type tDT

j is mapped by αDT . Then, each entity in tuples
RDT

j (n1, . . . , nk) will have a correspondence in the Common Meta Model and Ri

can be defined over those entities. However, the following three situations make this
mapping more complex.

First, if αDT is not defined for a type of an entity ni in RDT
i (n1, . . . , nk), we

will ‘lift’ the relation to ni’s closest relevant ancestor entity. That is the entity in the
Common Model corresponding to the closest transitive parent of ni, which is relevant.
It is captured by map(ni), defined in Procedure 2 and used in Procedure 5.

Second, the 0th element of any common relation Ri : Num× t1 ×
. . .× tk is a numerical identifier which we implicitly generate. Each tuple
RDT

i (n1 = (id, tDT) . . . nk) is mapped to Ri(id,map(n1), . . . ,map(nk)), i.e., we make
the entity identifier id of the first tuple element n1 in the target relation Ri explicit.
This is necessary, as n1 might be irrelevant and the relation can get lifted to a parent
p of n1. Another relation tuple with first element n′ = (id′, tDT), with id < id′, may
get lifted to the same parent p, but we still can sort the target tuples according to the
document order of their origins.

Third, if nDT
i is a String or a Num instance then ni is either the same String or

Num instance, or is explicitly dropped using a special entity called Void. It is never
transformed in any other way. The mapping of a specific to a common relation is
performed in a second pass after the creation of the common model structure tree. It uses
the event generator generateRelationEvents (see Procedure 4) and the corresponding
event listener newRelationTuple (see Procedure 5).

Procedure 4

 L *$#+,-.$, /(%(+20(H()20.#%A3(%0,IRDT K

=L /#$ 0!! RDT

i ∈ RS -#

ML %/ αDT (RDT

i) ., '(4.%(' &',1

JL /#$ 0!! RDT

i (n1, . . . , nk) -#
>L %(6H()20.#%D9-)(IaDT (RDT

i), (n1, . . . , nk)K
!L ,1- /#$

NL ,1- %/

OL ,1- /#$

PL ,1- *$#+,-.$,

The design and implementation of a software infrastructure 65

Procedure 5

 " *$#+,-.$, #$%&$'()*+#,-.'$/Ri, (n1, . . . , nk)0
1" /#$ 0!! nj ← (id, tDT

j) ∈ n1, . . . , nk -#

2" %/ 3 4 &',1

5" r0← id

6" ,1- %/ . 78$()$ 9): $'$;$#) +<)(8=$) 8$'()*+#

>" %/ (tDT

j = String ∨ t
DT

j = Num) ∧ tj = V oid &',1 . ?8+. @)8*#= +8 #-;$8*7('

A('-$

!" rj ← 3-%#

B" ,!2, %/ tDT

j = tj = String ∨ t
DT

j = tj = Num &',1 . 7+.C @)8*#= +8 #-;$8*7('

A('-$

D" rj ← nj

 9" ,!2, . '*<)):$ 8$'()*+#)+):$ 7'+@$@ 8$'$A(#) (#7$@)+8

 " rj ←)(*(nj) . ;(. 7(.)-8$@):$ 7'+@$@) 8$'$A(#) (#7$@)+8 +< nj (@ ?$<*#$? *#

E8+7$?-8$ 1

 1" ,1- %/

 2" ,1- /#$

 5" (??)-.'$ r0, r1, . . . , rk0)+ 8$'()*+# Ri

 6" ,1- *$#+,-.$,

Note that the abstract event generation (algorithm schema) and the event handlers work
independently of different real world documentation types and their mappings to the
current common meta model. The abstract event generation and the event handling do
not change when any of these components change. However, a concrete implementation
of the abstract event generation, i.e., the implementation of Procedures 1 and 4, are
document-specific and must obey its specific meta model implementation. Note that we
need not map all entities and relations that a documentation provides to the common
model. We may do that lazily when required by analyses.

The readers are defined using a program language, and anything that can be accessed
by software, e.g., text files, databases, web servers, can be mapped to the repository.
For many common formats, such as XML, there exist predefined processing libraries
and frameworks. In such cases, it is trivial to define a reader.

5.3 Reusable analyses and visualisations

Analyses such as the clone detection and reference analysis read from and write to
the repository. Since the repository and the models of the documentation it contains
are independent of the document format, analyses can easily be reused for several
documentations.

We use visualisations to communicate information to stakeholders about the
documentation and the analyses we perform. A visualisation defines a mapping from the
information contained in the repository to a visual domain. The visual domain contains
objects with various attributes, such as shapes, colours, patterns, and positions. The
mapping between the two brings meaning and context to the visual objects in terms of
documentation and quality.

66 M. Ericsson et al.

A visualisation is a specific kind of analysis that operates on specific views of
the repository. The mappings created by these analyses can be configured. We map
repository entities (of different types) to visual objects (of different shape or colour) and
map their quality attributes to visual attributes of these objects.

6 Meta model evolution

The initial Common and Analysis-Specific Meta Models are usually designed to be
suitable for a set of documentation types and analyses. New documentation types (and
analyses) that only provide (relies on) entities and relations contained in the current
Common Meta Model are trivial to add. In the general case, when a new documentation
type or a new analysis is added, the meta model needs to evolve. In this section we
show how to control and reduce the effect these meta model changes have on existing
analyses.

Assume that an analysis A cannot be applied to entity and relation types captured
in any of the existing Analysis-Specific Meta Models, but the required types are
already captured in the Common Meta Model. In this case, a new Analysis-Specific
Meta Model V A and a new mapping αA from the Common to this Analysis-Specific
Meta Model needs to be specified. There is no additional implementation effort since
event-generators and event-handlers that populate the new meta model are generated
automatically (see Procedures 1 to 5 in Section 5).

In the more general case, a new analysis also requires an extension of the
Common Meta Model that in turn implies that the common model creation is affected.
Furthermore, the documentations are either able to provide these extended types of
entities and relations, or else a new documentation type – along with the corresponding
document-specific mappings – needs to be integrated. In both cases, there is a need
to extend the Common Meta Model M and the Document-Specific Mapping(s), αDT .
Given that structure tree and relation event generators work according to Procedures 1
and 4, no additional programming is needed when reusing an existing documentation
type. We need to specify the missing entity and relation types as relevant in αDT ,
and the Common Information Repository and models are generated automatically. New
documentation types require specific implementations of Procedures 1 and 4.

Example 5: Assume the Common Meta Model from Example 2 that contains document
and section entities and refers and contains relations, and the Analysis-Specific Meta
Model from Example 4 for computing Coupling between sections. We can now
add a new Complexity analysis that counts paragraphs by introducing paragraph
entities to the Common Meta Model. We change the grammar productions accordingly
to capture the new structural containment: document ::= section∗ and section ::=
(section|paragraph)∗.

We can define a new Analysis-Specific Meta Model V Complexity with a corresponding
Analysis-Specific Mapping αComplexity from the new Common Meta Model. Based on
V Complexity, we can implement our Complexity analysis.

Note that our Analysis-Specific Meta Model V Coupling and its mapping αCoupling as
well as the Coupling analysis from Example 4 remain unchanged. The original Common
Meta Model relation refers : Num× section× section, becomes the new Common

The design and implementation of a software infrastructure 67

Meta Model relation refers : Num× paragraph× section, since paragraphs are now the
relevant ancestors of ref entities in the Common Meta Model. However, when applying
αCoupling to the new Common Meta Model, V Coupling remains unchanged, i.e., its
grammar productions are still: documentCoupling ::= sectionCoupling∗ and sectionCoupling ::=
sectionCoupling∗ and the refersCoupling relation type is still refersCoupling�Void×
sectionCoupling × sectionCoupling as before. This is because sectionCoupling entities are the
relevant ancestors of paragraph entities in the analysis-specific mapping αCoupling. Hence,
the old Coupling analysis can be reused and is applicable without any change.

The effects of changing the Common Meta Model are often filtered by subsequent
Analysis-Specific Meta Models. This should not comes as a surprise since the
Analysis-Specific Mapping is defined by explicitly declaring relevant entity and relation
types; newly introduced types were not known back then and, hence, could not have
been declared relevant in already existing analysis-specific mapping specifications. As
long as changes only extend the common model trees, analysis-specific mappings would
compensate for the change and (re-)produce the original Analysis-Specific Model for
the existing analyses. However, by changing the Common Meta Model and, thereby,
relevant entity and relation types, we can experience reuse problems. If formerly
irrelevant entities become relevant, mappings may create relations that no longer have
the same type as before. Practically, this would mean that a relation R that used to
be attached to an entity of type X is now attached to a descendant of that entity of
type Y . This, in turn, could lead to situations where analyses cannot work as before.
For instance, an analysis iterates all entities of type X and counts the number of times
that these entities occur in a relation R. Model extension changes the result of this
analysis: the count is now always 0 since only Y entities occur in R (and no X
entity anymore). Hence, analyses cannot be reused without (programmed) adaptation.
Fortunately, the effect of changes in the Common Meta Model is often not visible in
the existing Analysis-Specific Models and, hence, many analyses can be applied without
changes.

There are safe changes to the Common Meta Model guaranteed not to affect an
analysis A:

• adding a new type to a sequence expression on the right-hand side of a production

• adding an existing type X to a sequence if no other type relevant for A can
transitively be derived from X

• introducing a new production X ::= . . . if no type relevant for A can transitively
be derived from X

• adding a new relation R.

In all these cases, the entities and relations introduced to the common model will be
filtered by existing Analysis-Specific Mappings and the relations will be attached to
the original entity types in the Analysis-Specific Models (proofs are omitted here).
Conversely, if a meta model change is not safe for an analysis A, we should check and
potentially adapt A.

68 M. Ericsson et al.

7 Related work

Data and information quality are commonly considered multi-dimensional (Klein, 2001)
and context-dependent concepts. A common definition of (information) quality provided
by Juran (1998) is ‘fitness for use’.

Hargis et al. (2009) discuss quality of information and define nine quality
characteristics, for example, accuracy and clarity. These nine quality characteristics are
divided into three categories: easy to use, understand, and find. The characteristics are
quite broad, e.g., clarity does include concepts as conciseness and consistency.

Arthur and Stevens (1992) present a framework to assess the ‘adequacy’ of
software maintenance documentation. Their framework defines quality as four document
quality indicators (DQIs): accuracy, completeness, usability, and extendibility. The DQIs
are decomposed into factors that refine a quality, and factors are decomposed into
quantifiers that are used to measure a factor. A factor of accuracy is consistency,
which includes the quantifiers: conceptual and factual consistency. Wingkvist et al.
(2010b) present a similar model for technical documentation, which is based on the idea
of key performance indicators that are considered an application of the more general
Goal-Question-Metric (Basili et al., 1994) approach from (software) quality assessment.

There exist several quality frameworks for data and information quality, for example,
Wang and Strong (1996), Stvilia et al. (2007), Naumann (2002) and Chidamber and
Kemerer (1994). Knight and Burn (2005) provides an overview of some of these,
and Ge and Helfert (2007) provide a review of the research in information quality
(including frameworks). Most of the frameworks are hierarchical, and group information
quality dimensions. For example, the framework by Wang and Strong (1996) groups
16 quality dimensions, such as accuracy and relevance, into four dimensions (i.e.,
Intrinsic, Accessibility, Contextual, and Representational IQ). Many of the quality
dimensions are common to several frameworks. Knight and Burn (2005), for example,
discovered that out of 12 surveyed frameworks, eight included accuracy and seven
included consistency.

In many cases, information quality is assessed using surveys, e.g., Huang et al.
(1998) and Lee et al. (2002). The framework discussed by Arthur and Stevens (1992)
is assessed using a checklist approach, which is also used by Stvilia et al. (2007).
Hargis et al. (2009) suggests a combination of surveys and checklists. Wingkvist et al.
(2011) suggest to complement surveys and checklists with quality metrics (derived from
software quality metrics) to automate the quality assessment. They acknowledge that the
process cannot be fully automated, due to qualities such as ease of understanding, and
suggests information testing as a complement (Wingkvist et al., 2010a).

The tool set and meta models discussed in this paper are inspired by research on
software quality assessment. It relies on high-level abstractions, i.e., meta models, of
software that contains enough information to support analyses. Meta models relevant
in the software quality assessment community include the object-oriented FAMIX meta
model developed in the European Esprit Project FAMOOS (Bär et al., 1999), and the
Dagstuhl Middle Meta (DMM) model (Lethbridge et al., 2004). Strein et al. (2007)
presented the ideas of software meta model definition and evolution. It provides a sound
foundation that information quality assessment can relate to.

The design and implementation of a software infrastructure 69

8 Conclusions and future work

This article presents a software infrastructure for quality assessment and assurance
of (technical) documentation. The infrastructure is based on a Common Information
Repository and readers that map to it, analyses that access and update it, and
visualisations that help understanding the results it contains. We show how the use of
meta models and meta meta models allows us to automatically generate the readers and
the repository, and help make analyses and visualisations resilient to changes to the
readers and repository. As a proof of concept, we successfully applied instantiations
of the infrastructure to analyse and assess the quality of real world documentation,
including the documentation of a mobile phone and a warship.

We are currently adding new analyses from existing quality models, such as the
ones discussed in related work. We are also developing new analyses based on real
world requirements in collaboration with industry partners. We are also investigating
how analyses that operate on syntactic and semantic levels of language can be used to
complement analyses that operate on the structure of the information (e.g., XML). We
have integrated natural language processing toolkits in the readers and developed (meta)
models that support natural language structures. We are conducting evaluations of how
accurately our analyses can be used to detect quality defects, and if a continuous quality
assessment and assurance based on our infrastructure has any impact on the perceived
quality of the documentation.

Acknowledgements

The research presented in this article was in part funded by the Knowledge
Foundation (Grant No. 2011-0203) and Swedish Governmental Agency for
Innovation Systems (VINNOVA) (Grant No. 2011-01351). We would also like to
extend our gratitude to Applied Research in System Analysis AB (ARiSA AB,
http://www.arisa.se) for providing us with the VizzAnalyzer tool and to Sigma Kudos
AB, (http://www.sigmakudos.com) for providing us with their Content Management
System (DocFactory) and raw data.

A version of this article was presented at the 16th International Conference on
Information Quality.

References
Arthur, J.D. and Stevens, K.T. (1992) ‘Document quality indicators: a framework for assessing

documentation adequacy’, Journal of Software Maintenance, September, Vol. 4, No. 3,
pp.129–142. ISSN 1040-550X.

Bär, H., Bauer, M., Ciupke, O., Demeyer, S., Ducasse, S., Lanza, M., Marinescu, R., Nebbe, R.,
Nierstrasz, O., Przybilski, M., Richner, T., Rieger, M., Riva, C., Sassen, A., Schulz, B.,
Steyaert, P., Tichelaar, S. and Weisbrod, J. (1999) ‘The famoos object-oriented reengineering
handbook’ [online] http://www.iam.unibe.ch/ famoos/handbook/ (accessed October).

Basili, V.R., Caldiera, G. and Rombach, H.D. (1994) ‘The goal question metric approach’,
in Encyclopedia of Software Engineering, Wiley.

Chidamber, S.R. and Kemerer, C.F. (1994) ‘A metrics suite for object-oriented design’, IEEE
Transactions on Software Engineering, Vol. 20, No. 6, pp.476–493.

70 M. Ericsson et al.

Ge, M. and Helfert, M. (2007) ‘A review of information quality research – develop a research
agenda’, in Proceedings of the 12th International Conference on Information Quality,
November.

Hargis, G., Carey, M., Hernandez, A.K., Hughes, P., Longo, D. and Rouiller, S. (2009)
Developing Quality Technical Information? A Handbook for Writers and Editors, Pearson
Education, Upper Saddle River, NJ, ISBN 0131477498.

Huang, K-T., Wang, Y.R. and Lee, W.Y. (1998) Quality Information and Knowledge, Prentice
Hall, Upper Saddle River, NJ, ISBN 0-130101-41-9.

Juran, J. (1998) Juran’s Quality Control Handbook, 5th ed., McGraw-Hill, New York, NY, USA.
Klein, B.D. (2001) ‘User perceptions of data quality: Internet and traditional text sources’,

Journal of Computer Information Systems, Vol. 41, No. 4, pp.5–15.
Knight, S.A. and Burn, J. (2005) ‘Developing a framework for assessing information quality on

the World Wide Web’, Informing Science, Vol. 8, No. 1, pp.159–172.
Lee, Y.W., Strong, D.M., Kahn, B.K. and Wang, R.Y. (2002) ‘Aimq: a methodology for

information quality assessment’, Information & Management, Vol. 40, No. 2, pp.133–146.
Lethbridge, T.C., Tichelaar, S. and Ploedereder, E. (2004) ‘The dagstuhl middle metamodel’,

in Proceedings of the International Workshop on Meta-Models and Schemas for Reverse
Engineering (ateM 2003), May, Vol. 94, pp.7–18.

Löwe, W. and Panas, T. (2005) ‘Rapid construction of software comprehension tools’,
International Journal of Software Engineering and Knowledge Engineering, Vol. 15, No. 6,
pp.995–1026.

Naumann, F. (2002) Quality-driven Query Answering for Integrated Information Systems,
Springer-Verlag, Berlin, Heidelberg, ISBN 3-540-43349-X.

Smart, K., Madrigal, J. and Seawright, K. (1996) ‘The effect of documentation on customer
perception of product quality’, IEEE Transactions on Professional Communication,
September, Vol. 39, No. 3, pp.157–162, ISSN 0361-1434, doi: 10.1109/47.536264.

Strein, D., Lincke, R., Lundberg, J. and Löwe, W. (2007) ‘An extensible meta-model for program
analysis’, IEEE Trans. Software Eng., Vol. 33, No. 9, pp.592–607.

Stvilia, B., Gasser, L., Twidale, M.B. and Smith, L.C. (2007) ‘A framework for information
quality assessment’, JASIST, Vol. 58, No. 12, pp.1720–1733.

Wang, R.Y. and Strong, D.M. (1996) ‘Beyond accuracy: what data quality means to data
consumers’, J. Manage. Inf. Syst., Vol. 12, No. 4, pp.5–33, ISSN 0742-1222.

Wingkvist, A., Ericsson, M., Löwe, W. and Lincke, R. (2010a) ‘Information quality testing’,
Lecture Notes in Information Processing (LNBIP), September, Vol. 64, pp.14–26.

Wingkvist, A., Ericsson, M., Löwe, W. and Lincke, R. (2010b) ‘A metrics-based approach to
technical documentation quality’, in Proceedings of the 7th International Conference on the
Quality of Information and Communications Technology, pp.476–481.

Wingkvist, A., Ericsson, M. and Löwe, W. (2011) ‘Making sense of technical information
quality – a software-based approach’, Journal of Software Technology, Vol. 14, No. 3,
pp.12–18.

