Reliability prediction and testing plan based on an accelerated degradation rate model
by H.T. Liao, E.A. Elsayed
International Journal of Materials and Product Technology (IJMPT), Vol. 21, No. 5, 2004

Abstract: Accelerated Degradation Testing (ADT) is a viable alternative to accelerated life testing with censoring to estimate reliability without waiting for actual failures to occur. However, the estimation accuracy relies greatly on both precise representation of covariates' impacts on degradation behaviour and a carefully designed ADT plan. In this paper, an ADT model, called Accelerated Geometric Brownian Motion Degradation Rate (AGBMDR) model, is proposed by modelling degradation rate in order to explain covariates' effects and inherent degradation rate variation precisely. Based on baseline parameter estimates of the model through a pilot ADT experiment, a local optimum ADT plan is developed to refine estimation accuracy of interests. The objective considered is to minimise the generalised variance (GV) of parameter estimates. A numerical example is provided to demonstrate the reliability inference procedure and the optimum ADT design methodology. The result shows that the optimum ADT plan leads to a more efficient experiment than the traditional ADT plan in terms of relative efficiency criterion.

Online publication date: Wed, 11-Aug-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com