

 6 Int. J. Agile and Extreme Software Development, Vol. 1, No. 1, 2012

 Copyright © 2012 Inderscience Enterprises Ltd.

Rescue of a whole-farm system: crystal clear in
action

Pablo Mangudo* and Mauricio Arroqui
Universidad Nacional del Centro de la Provincia de Buenos Aires
(UNCPBA), Campus Universitario (CP 7000),
Tandil – Bs. As., Argentina
E-mail: pmangudo@gmail.com
E-mail: mauriarroqui@gmail.com
*Corresponding author

Claudia Marcos
ISISTAN Research Institute,
Facultad de Ciencias Exactas,
Universidad Nacional del Centro de la Provincia de Buenos Aires
(UNCPBA), Campus Universitario (CP 7000),
Tandil – Bs. As., Argentina
E-mail: cmarcos@exa.unicen.edu.ar

Claudio F. Machado
Universidad Nacional del Centro de la Provincia de Buenos Aires
(UNCPBA), Campus Universitario (CP 7000),
Tandil – Bs. As., Argentina
E-mail: cmachado@vet.unicen.edu.ar
Abstract: This paper presents a case study of an agricultural project. From a
desktop research model (stage 1), a web-based whole-farm simulator was
developed applying a waterfall life cycle (stage 2) but several problems were
detected and the project failed. The project was continued (stage 3) applying
crystal clear agile method, which suited better the requirements. An efficient
team communication and the frequent delivery of usable code increasingly
contributed to the sponsor’s satisfaction. It was positively concluded that
crystal clear was able to rescue the project and that it could be applied in a
short-term period without major difficulties.

Keywords: agile method; AM; agricultural system; study case; experience.

Reference to this paper should be made as follows: Mangudo, P., Arroqui, M.,
Marcos, C. and Machado, C.F. (2012) ‘Rescue of a whole-farm system: crystal
clear in action’, Int. J. Agile and Extreme Software Development, Vol. 1,
No. 1, pp.6–22.

Biographical notes: Pablo Mangudo is a System Engineer, graduated on 2008
at the Faculty of Exact Sciences of the Nacional University of the Centre
of Buenos Aires Province (UNCPBA). This paper reports his shared
undergraduate thesis with Mauricio Arroqui. At present, he is contracted by the
project, and also a Software Entrepreneur in the agricultural domain, through a
FONSOFT Project (http://www.agencia.mincyt.gov.ar).

 Rescue of a whole-farm system 7

Mauricio Arroqui is a System Engineer, graduated on 2008 at the Faculty of
Exact Sciences of the Nacional University of the Centre of Buenos Aires
Province (UNCPBA). This paper reports his shared undergraduate thesis with
Pablo Mangudo. At present, he is contracted by the project, and also a Software
Entrepreneur in the agricultural domain, through a FONSOFT Project
(http://www.agencia.mincyt.gov.ar).

Claudia Marcos is a Senior Lecturer at the Faculty of Exact Sciences of the
Nacional University of the Centre of Buenos Aires Province (UNCPBA). She is
a Researcher at Comisión de Investigación Científica de la Provincia de Buenos
Aires (CIC). She graduated as a System Engineer on 1993 and obtained her
PhD on 2001 in the same institution. Her main research interests are aspect-
oriented development, UML and agile methods.

Claudio F. Machado is a Senior Lecturer at the Faculty of Veterinary Sciences
of the Nacional University of the Centre of Buenos Aires Province (UNCPBA).
He graduated as a Veterinarian on 1990 in the same institution. He obtained his
MSc in Animal Production on 1993 at University of Chile, and PhD in Animal
Science on 2004 from Massey University New Zealand. Actually, he is leading
different project associated to simulation of agricultural systems.

1 Introduction

Software as a research support tool is being increasingly used in different domains and
agricultural systems are not the exception. Pastoral agriculture occupies around 20% of
the land surface of the globe, and is directly or indirectly responsible for meeting the
economic and material needs of a substantial proportion of its human population (Illius
and Hodgson, 1996). In Argentina, ruminant productive systems are primarily under
grazing conditions, which represents the cheapest source of available nutrients for
ruminant production, and in consequence, the greater the control the livestock producer
exerts over forage production, consumption and matching animal requirements to
seasonal forage production cycles, the better are the chances that the operation will be
profitable (Forbes, 1988).

Agricultural systems are complex (Pearson, 1997) as their different components
(climate, land, pasture, animal intake, animal growth, market, management, etc.) interact
in time (Pannell, 1999). Consequently, in order to gain insights about the whole system,
simulation has been used to study such systems (McCall et al., 1994) and decision
support systems (DSSs) for whole-farms have been developed for different conditions
from those Argentina’s (Doyle et al., 1989; Loewer, 1998). Based on some local research
models (Berger et al., 2002; Machado, 2004) a project (PICTO 22926, 2006) was carried
out to develop a web-based DSS by inclusion of existing or extended procedural modules
following initially a waterfall life cycle. Due to increasing problems in the project
development process, it was submitted to a revision. This article presents the experience
case of such a whole-farm simulator project. The paper is structured as follows: Section 2
presents the development stages of the simulator, including detected problems. Section 3
describes the application to the simulator of a particular AM, called crystal clear (CC)
and some properties of the methodology are summarised. Section 4 shows an assessment

 8 P. Mangudo et al.

of the system and the first four iterations. Lesson learned and conclusions are presented
in Section 5.

2 Stages of a grazed-based beef cattle simulator

The development of this simulator can be divided into three stages. At stage 1, the project
was initiated (2002–2004) using the modular-based simulation shell provided by a fourth
generation language, 5.0 Extend (Krahl, 2002). Extend™ had been used previously to
develop whole-farm models (Brennan and Gooday, 1998). This stage was successful
regarding the initial research objectives, which were basically to develop a simple
simulation research tool directly by the expert domain to gain further insights about
pastoral systems (Machado, 2004).

On February 2005 the stage 2 of the project started when it was decided to increase
system usability for educational purposes. The Extend™ simulator was licensed, too
sophisticated and poorly intuitive for novice users; hence, different technologies were
selected and incorporated. A web-based system, with its views and outcomes divided by
user profile (e.g., researcher, advanced student, etc.) were considered for the selection of
those technologies. A team including a project manager and three developers with a
weekly workload of 30-hours per member using a waterfall life cycle was organised for
stage 2. Software development was carried out all over 2005 and 2006, but different
increasing problems threatened the project continuity. The team had difficulties to follow
defined plans and the client was unsatisfied with the progress of the system. The
following main (and related) deficiencies were detected:

• Deficient communication. Expert domain (and sponsor) was present only six-hours
per week. Telephone and e-mail were also used, but these means did not result
efficient.

• Developers were novices on the domain. Associated to the previous point, this
caused some tasks were too partitioned and not adequately integrated to the whole
system requirement.

• Requirements resulted highly dynamic. Therefore, most of the tasks required
modifications and re-implementations, causing continuous delays to the development
process.

• Deficient documentation of both, the development process and available
functionalities.

• No working software was available.

The objectives of the stage 2 of the project were clearly not met. After a meeting between
the team and the sponsor, the last decided to continue the project but with adjustments to
downgrade possible failure risks. The team requested access to the expert user on a daily
basis. On January 2007, the stage 3 of the software development finally started. The team
was partially renewed (two developers were contracted by other project, and a new
developer was incorporated). Based on the previous experience on the domain and the
system, the team worked out a requirement list to identify a proper development
methodology for this stage 3, which might be able to:

 Rescue of a whole-farm system 9

• cope with changing requirements

• be oriented to small teams

• privilege an efficient communication within the team and client/domain experts

• frequently deliver of usable code to users

• develop a sound documentation of the development process.

Based on the previous list and available options, it was decided to use an iterative and
incremental life cycle, as is the case of agile methods (AM) (Larman, 2004). Within
them, particularly CC was applied (Cockburn, 2004).

3 Application of CC agile method to the simulator

CC is based on a development team with a leader and several developers (two to seven),
in a close seating and direct communication environment, using design sketches, notes
and screen drafts (Cockburn, 2004). Frequent testing and deliveries of running versions
of the system are also key points of the method. At first, the project required to define
short-term objectives to sort out those functionality deficiencies described previously,
thereafter to progress to others long-term objectives. CC is based on fixed iterations,
therefore, it fitted to the project characteristics and was efficient with requirement
changes as new functionalities were available. The application of the different practices
of CC to the simulator is summarised below.

3.1 Roles and development environment

The system development team was integrated by four people with the following roles:

• Developers: within this role, CC defines specific categories lead designer,
designer-programmers, coordinator, tester and writer. In this case, these roles were
played by only two people; hence, they were allocated dynamically depending on
particular needs of the running iterations.

• Sponsor: administrates the project budget.

• Expert user: a domain expert with expertise in the use of the system.

In this project, the roles of sponsor and expert user were represented by the same person.
Research funding was provided by a project of the Argentinean National Agency of
Research (PICTO 22926, 2006) leaded by the sponsor. He has a vast expertise on domain
and domain modelling with fourth generation languages (as the used during stage 1).

• Software technology consultant: a computing domain expert familiarised with
current available technology and the project who helped developers when required.
The former during stage 2 manager played this role.

• Friendly user: domain experienced people, who can evacuate doubts or give a rapid
opinion as required by developers. Different users carried out this role during the
development depending on the issue under review.

 10 P. Mangudo et al.

The workplace was a 21 m2 office room, and its layout was changed by the development
team in order to match better some of the CC properties (Figure 1). The new arrangement
established two well-defined sectors, a meeting area and desk/computer area for
developers. Information radiators were in front and back of developers, which were
highly visible within the development environment. From stage 3 of the project, the
expert user/sponsor shared the office room daily.

Figure 1 Office layout

3.2 Life cycle and properties

AM (including CC) use iterative and incremental life cycle. Iterations are organised in a
sequence to achieve an Incremental Rearchitecture strategy. Time horizon is fixed for
each iteration and defined at its planning time (time-boxing practice). Therefore,
sometimes it is necessary to suppress part of a planned functionality to keep the
time-schedule. Similarly, planned tasks are stable, therefore, new requirements are
included in future iterations (do not add to Iteration practice). When an iteration is
finished, a complete analysis of its outcomes is required in the shape of a reflection
workshop, involving the whole team. These workshops allow improving the development
by the technique methodology shaping.

Different practices (strategies and techniques) are collected to promote core
properties of CC: frequent delivery, osmotic communication and reflective improvement.
These properties ensured a safety zone for the projects were achieved in the following
way:

• Frequent delivery: CC suggests a software delivery interval no longer than three
months. Iterations do not necessarily include working code as output (its
convenience is evaluated at each iteration planning); however, at least an internal
release for the team is usually advised. Planned tasks during an iteration are stable
(do not add to iteration) therefore, new requirements are left for next iterations. This
allowed to keep focus, avoiding reprogramming needs (as in the case of stage 2 of
the project) and their inefficient consequences. Additional sources of information for

 Rescue of a whole-farm system 11

the sponsor were the iterations plans, represented by Gantt charts using Open
Workbench tool (2009).

• Osmotic communication: CC takes advantage of small team size and proximity to
strengthen close communication into the more powerful ‘osmotic’ communication
property. The new office layout (Figure 1) helped team interaction and cooperation
by improving knowledge transfer. The practice side by side programming was
successfully applied. Information radiators like whiteboards and flipcharts on the
wall, design sketches and notes (like story cards from XP agile method (Beck,
2000)) contributed positively to this property and to the awareness of the project
progress. In order to avoid unplanned interruptions, the cone of silence practice was
also used.

• Reflective improvement: This property aims to identify what is and is not working,
and then selecting and applying best corrective actions. Reflection may involve
diverse topics, like office layout, a new work-product, a new development habit, etc.
Reflection may be formal, as the case of reflection workshop. Under the shape of this
property, changes in technologies, definition of coding standard and other required
conventions were part of the activities carried out by the team. This property was
very important particularly during methodology training. Additional practices were
gradually selected and applied by developers (self-directed and self-organised)
according different to project needs (methodology shaping).

Additionally, CC highlights other properties that may decrease the failure risk of a
project. They reinforce CC core properties:

• Personal safety: Some of CC properties are based on the fact that the team shared a
close and continuous working environment. Both developers had worked together
previously therefore they knew their skills and limitations.

• Focus: This property highlights the importance of keeping direction and priorities for
any programmed task. The work-product mission statement (developer by the
sponsor) resulted very important to this property, as it contains vision, mission and
strategic objectives for the project.

• Easy access to expert users: As its name indicates, it means a direct and quick access
to domain experts, who facilitate the topic understanding of the developers. From
stage 3, expert users shared the office room (Figure 1) on a daily basis.

• Technical environment with automated tests: The applications of such tests are
oriented to carry out integral tests of the system under development. The team
disregarded such tests based on the limitating human resources (only two developers)
combined with the need of quick results. These tests were replaced by manual
alternatives run by each developer and analysed with the help of the expert user.
Additionally, friendly users carried out complementary analysis. Configuration
management and frequent integration tools: these tools allow developers to work
individually but then to integrate her/his activities without major difficulties.
Similarly, this property allows for changes in code to be tracked through software
versions. In the present project, SmartCVS Foundation (2009) was used with this
purpose. Additionally, this tool was used to monitor the versions of document
artefacts

 12 P. Mangudo et al.

Additionally, selected practices suggested by other AM, as block gone in one day,
self-directed and self-organised, do not add to iteration by Scrum (Schwaber and
Beeddle, 2002), use-case driven of UP (Larman, 2004) were also included.

4 Assessing the system and working iterations

At the beginning of the stage 3 of the project, an internal assessment was developed
following the Exploratory 360° practice, emphasising on the functionality and the
architecture of the system. Later, different working iterations were planned and
developed.

4.1 Assessing the starting state of the system

System documentation was poor and outdated at the end of stage 2, therefore, initial
efforts were oriented to code review by three weeks (two-people, six-hours per day). This
activity allowed the adjustment and completion of the software requirements with the
active participation of the sponsor. A first use case and requirement file document with
most relevant requirements of the system was developed. Its content may be summed up
as:

“System should be able to run ‘whole-farm’ simulations of mixed agricultural
enterprises from Buenos Aires Province – Argentina, allowing the evaluation of
alternative strategies at different time scales.”

It means a dynamic representation (one-day step) of pasture-based beef cattle finishing
production and cash crop operations. Pertinent information from the stage 1 of the project
(Machado, 2004) constituted major rationale and procedures from domain knowledge.
Simulation scenarios should be formally represented, and the system must be controlled
by management rules (e.g., animal sales, animal purchases, strategic feeding
supplementation, strategic pasture conservation of seasonal surplus, etc.). The simulator
should be web-based by authorised users, and views and outcomes of the system should
be divided by user profile (e.g., researcher, advanced student, etc.).

Within the simulator different sub-systems interact (Figure 2). All knowledge-related
to animal biology (feed-intake, animal growth) and pasture characteristics were contained
in the biophysical sub-system. Additional sub-systems of the simulator were oriented to
financial, economic and tax issues. Parameters entering to sub-systems might be
deterministic or stochastic.

The work-product architecture description was also developed during the system
assessment. The simulator was based on three-tier architecture (Bass et al., 1998; Shaw
and Garlan, 1996) as shown in Figure 3. The presentation layer was developed in
OpenLaszlo (2009). During the stage 2, a separate developer, different from than those in
charge of the application layer carried out its development. As some deficits were
detected in the presentation layer, it was decided to contract an external team to update it
and to make it functional.

 Rescue of a whole-farm system 13

Figure 2 Sub-systems within the whole-farm simulator

Figure 3 Three tyre architecture of whole-farm simulator

The application layer (Figure 3) is shown expanded in Figure 4. It used framework
Spring (2009) to handle simultaneous simulation runs and as an interface to database. A
simulation contains the whole information of a farm (paddocks, animals, etc.), which is
processed by classes denominated ‘workers’. These workers are in charge of different
tasks of the farm, as to estimate pasture growth (GrowPasture), animal intake
(FeedIntake), animal growth (GrowAnimals), etc. Each worker is not active at each
simulation step, but the activity of a worker may require others. Furthermore, an event
driven architecture was applied. When a simulation is executed, the system presents
alternative internal states as starting, running, finishing or aborting. When the system

 14 P. Mangudo et al.

detects an anomalous number, aborting options allow feedback to the user, facilitating a
quick identification of inadequate simulation parameters.

Figure 4 Package diagram of old and new components

Note: Different lines indicate tasks by iterations.

The data layer utilised Hsqldb database (2009), which was set up to run directly on server
RAM memory. Database was prepared to cope with simultaneous simulation runs by a
queue arrangement to store the information of each simulation.

4.2 Iterations developing

Once the domain and system was understood adequately, the first task was oriented to get
the whole team familiarised with CC. The second work-product mission statement was
developed by then, where the goal and main characteristics of the development were
delineated. It was stated as:

“A beef cattle system research group of a public university with the following
objectives:

a to transfer domain knowledge to researchers, students and private consultants
by using specially designed and developed decision support system (DSS)

b to stimulate the use of DSS to increase efficacy and efficiency of decision
making process of commercial farms.”

 Rescue of a whole-farm system 15

Next, work-products were team structure and conventions and risk list. In the former, role
descriptions, assigned responsibilities to team members and initial conventions for
system development were stated. Risk list was particularly considered for planning
purposes, establishing strategies to decrease identified risks. With these work-products
the team was ready to incorporate new functionality to the simulator by means of several
iterations (Figure 4).

4.2.1 Iteration 1

By following an early victory strategy, a short first iteration (19 days) was designed
(22/01/2007 up to 09/02/2007). The transformation of the beef cattle farm to a cash
crop-beef cattle farm was planned. It was successfully achieved by adding a rotational
use of paddocks, managed by user designed schedules applied to paddocks. During the
reflection workshop carried out at the end of the present iteration, different code
conventions were specified to facilitate maintenance and readability of the code. The first
integration of the presentation layer (originally developed at stage 2 of the project but
updated by a hired team at the beginning of stage 3) with the application layer was
planned and achieved as a working software delivery. However, the sponsor disapproved
the visual quality of the presentation layers developed by the external team. As a
consequence, the development team included the point in the risk list and decided to
develop by itself all required interfaces.

4.2.2 Iteration 2

The second iteration started on 12/02/2007 and ended by 23/03/2007. An economic
model was incorporated, allowing estimation of gross margins for cash crops and beef
cattle production, asset profitability, net utility, growth capability of the enterprise etc.
Training on Open Laszlo (as the selected technology for the presentation layer), was also
planned and achieved. On this iteration, the expert user and friendly users also tested
interfaces to identify required improvements. As the team increased its system
knowledge, a preliminary project map (without specific dates), including an activity
prioritisation for future iterations, was developed.

During the reflection workshop was detected that code integration resulted slower
than planned. It was usually developed once a week, but it was changed to an interval of
two days. Design, particularly documentation and implementation of the economics
model, resulted slower that planned. This point was added to the convention list, limiting
project documentation to an hour per day. Furthermore, project map and a release plan
(software delivery) were left for a future iteration.

4.2.3 Iteration 3

This iteration was carried out from 26/03/2007 up to 27/04/2007. Two main activities
were planned, both linked to the presentation layer. Interfaces for the economic model
developed in the previous iteration, were coded. They also did required improvements to
interfaces programmed by the contracted team. The simulator represents a complex
domain, so it is important that the simulator was as friendly as possible (included in the
risk list). Therefore, to achieve that, interfaces play a key role, hence, special care on
interface review, planning and development was taken during this iteration. The time

 16 P. Mangudo et al.

allocation to interface activities resulted lightly underestimated (interface design resulted
particularly time-demanding), hence, some components required simplification to achieve
the planned due date. No software delivery was planned, but the sponsor was well
informed about progress favoured by his double role (expert user). During the reflection
workshop, it was highlighted the need of a careful timeframe estimation when planned
tasks included presentation layer.

4.2.4 Iteration 4

The fourth iteration started on 30/04/2007 and finished on 15/06/2007. By then, team
conventions were well understood and in a continuous improvement, favouring a high
team motivation. Preliminary project map was adjusted to yield the initial release plan.
The delivery of a running version of the system accessed by a browser was the main task
of this iteration. To achieve this objective, database was migrated from Hsqldb (2009) to
Oracle XE (2009). A module was developed to handle user profiles, which defines
allowed activities, required inputs, views and outcomes by profile. On this iteration, it
was also decided that outcomes of the system were sent directly to the user’s e-mail
account as a spreadsheet including plain data and pre-designed graphs. A training period
to investigate the use of an application program interface for this functionality was
carried out. Activities mentioned previously are shown in Figure 5 as part of the iteration
plan. Along the iterations, the progress (iteration status) was showed like burn chart over
Gantt charts. Also story cards (Beck, 2000) were regularly used in the iterations
(Figure 6).

Figure 5 A Gantt chart of the fourth iteration

 Rescue of a whole-farm system 17

Figure 6 Story cards for user profile management and linked sketches

Figure 7 Part of the presentation layer of the whole-farm simulator

 18 P. Mangudo et al.

User management was added to the simulator package (Figure 4), and a user package was
created. Output package was also added in order to yield outputs and to abort a
simulation. Automated tests were not used, so each developer at each task carried out
her/his own functional tests. System architecture was modified after four iterations.
Structure packages and economic packages were incorporated to whole-farm and a
worker package was added to model package.

The presentation layer was highly improved and the simulator was seen with a
browser. Figure 7 shows a screen to define animal details to setup a simulating scenario.
The language used for the interfaces is Spanish because this development is initially for
Argentinean conditions. A standard format for interfaces was defined with the expert user
and friendly users. It was incorporated as a ‘friendly’ criterion for all following
developments, although further usability tests were continuously carried out.

During this reflection workshop no new suggestion were included as the development
methodology reached a desired, therefore was highly appreciated by developers and the
sponsor.

5 Final remarks and conclusions

Deficits in requirement gathering of the system (Section 2) caused to miss the needed
features and to apply an inadequate development process during stage 2 of the project. In
the software industry, more than half of the software projects fail to match the required
functionalities (Standish Group’s The Chaos Report, 2004). However, far from
conformity, this paper aims to contribute with an understanding of the initial
development failure in a small project, identifying learning lessons which may contribute
to other agricultural systems and other complex domains. Cost overruns were an
important side effect of the detected problems, as usually reported in the industry
(Masticola, 2007). Simulation was only part of the activities of this small
research-oriented agricultural development. The discouragement of the sponsor (without
any working software available at the end of stage 2) associated to cost overruns, almost
cancelled activities before project completion.

At the beginning of stage 2, several meetings between the team and the expert
user/sponsor were carried out. A waterfall life cycle was applied and requirement
gathering seemed to be well defined. However, awareness of constantly changing
requirement arose during the development, leading to project delays. Problems at
requirement capture affects different processes like software architecting (Ferrari and
Madhavji, 2008), selected technology, life cycle selection, and implementation process,
etc. (Thayer et al., 1997).

In this study case, different reasons were likely to contribute to poor requirement
capture, hence, to choose a waterfall life cycle, which finally resulted inadequate to the
project. At first, the complex nature of agriculture domain where multiple disciplines
interact (Pearson, 1997). Secondly, from the authors’ knowledge, this web-based
whole-farm simulator is the first experience in Argentina, so no local benchmarking was
available. Lately, it was reported that AM were applied to a huge agricultural simulator
from Australia (Holzworth et al., 2006).

 Rescue of a whole-farm system 19

Besides, the previously mentioned problems potentially linked to requirement
capture, there were additional difficulties during software development. Some authors
(Johnson and Holloway, 2006) have stated that it is often difficult to distinguish between
failures in requirement engineering and problems elsewhere in the lifecycle. At the
beginning of stage 2 of our project, the whole team was novice in part of the applied
technology such as the used for the presentation layer (OpenLaszlo, 2009). Employing
new technology in any project implies certain inherent risks, so an adequate technology
management is a precondition for a successful software development project (Ould,
1998). Although a training period in OpenLazlo was carried out, it resulted insufficient
since a low quality standard of interfaces was obtained at the end of stage 2. After
auditing the system (stage 3), it was needed to use the services of an external team
experienced on such technology to improve the functionality of the presentation layer.
However, this approach also failed, therefore, the team also decided to develop all
interfaces left.

The use of CC agile method was decided at the beginning of stage 3 (Section 2), and
additional practices from Scrum, XP and UP were included in order to reinforce the
safety zone of the project. Special care was taken to train the new team member. It was
done by coaching initially, complemented by the side-by-side programming practice of
CC. Benefits of automatic tests are evident. Manual tests were preferred in the context of
a small team with the expert user readily available for checking results (Figure 1) as well
as the need of prioritising early victories in a time-constrained condition.

Efficient communication is one of the key issues of AM (Abrahamsson et al., 2002;
Larman, 2004). Different CC practices were applied simultaneously during stage 3 of the
project to facilitate an environment where the members worked collaboratively. Among
them, it was applied side-by-side programming, intensive use information radiators and
story cards, team co-location including the expert user, and also the modification of the
office layout (Figure 2). This context helped to share the ‘big picture’ of the project state
and to build a strong camaraderie and team spirit, which definitely were the key drivers to
sustain focus and commitment during stage 3.

The delivery of tested working software in an iterative way brought high visibility of
project progress. Direct feedback to measure development amelioration was the sponsor’s
reaction. By the third iteration, he mentioned “now I feel we are on track, new
requirements that we detected by knowing the technological possibilities, are well
received and attended soon by committed developers”. Considering that 120 days before
he was almost aborting the project, this last phrase is not a minor team achievement.

The main conclusions are that undetected characteristics of constantly changing
requirements during initial inception phase (stage 2 of the project) caused a wrong
selection of a waterfall lifecycle. Hence, increasing difficulties during development
produced a significant dissatisfaction from both the sponsor and the team putting the
development at failure risk. Application of the CC AM (in combination with selected
practices from Scrum, XP and RUP) was highly effective in rescuing this web-based
whole-farm project, meeting the sponsor’s expectations in less than four months. Finally,
four additional iterations were necessary to get an alpha prototype (Machado et al., 2010).
At present, new simulator functionalities are in progress.

Main deficiencies reported in at the beginning of this case, were sorted out as:

 20 P. Mangudo et al.

• Deficient communication. Expert domain (and sponsor) was present only six-hours
once week. Telephone and e-mail were also used, but they did not result in an
efficient mean. During stage 3, with expert user sharing the working place on a daily
basis, communication improved significantly.

• Developers were novices on the domain. Associated to the previous point, this
caused some tasks were too partitioned and not adequately integrated to the whole
system requirement. The daily presence of the expert user helped notoriously to
solve most of these problems (block gone in one day), reducing major part of domain
bugs at each software release.

• Requirements resulted highly dynamic; therefore, most of the tasks required
modifications and re-implementations, causing continuous delays to the development
process. Once the sponsor/expert user was trained on CC methodology, it was clear
to him that new requirements need to be included to future iteration/s (do not add to
iterations practice). Finally, he was aware about benefits of the methodology, as
goals were increasingly met.

• Deficient documentation of both, the development process and available
functionalities. Software documentation was gradually improved, and an intensive
use of information radiators helped to track the project progress.

• No working software was available. More than 3,000 men hour had been invested by
the end of stage 2 (counting more than 35,000 and other 12,000 code lines in the
application layer and presentation layer respectively) but with a high rate of
personnel renewing, therefore, most of the planned functionalities were not working
properly. After three months (two weeks of Exploratory 360° practice and the
timeframe of the first iteration) most part of the planned functionalities were working
acceptably including a stable structure and the corresponding documentation

The use of CC resulted highly positive since it improved the communication between
team members and as a consequence increases the team flexibility and productivity and
maintaining focus on those tasks more relevant to the project.

Acknowledgements

To the National Agency of Science and Technology of Argentina, who funded most of
this development (PICTO 22926/06) and its continuation (PICT Start Up 0184/07), and
to Dr. Alistar Cockburn for reading our early draft and offering valuable advice.

References
Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2002) ‘Agile software development

methods: review and analysis’, Espoo 2002, VTT Publications, Vol. 478, p.107, Oulun
Yliopisto, Finland.

Bass, L., Clements, P. and Kazman, R. (1998) Software Architecture in Practice, Addison-Wesley.
Beck, K. (2000) Extreme Programming Explained: Embrace Change, Addison-Wesley.
Berger, H., Machado, C., Copes, M., Ponssa, E. and Auza, N. (2002) ‘Modelo dinámico simple de

sistemas de cría (Criasim)’, Revista Argentina de Producción Animal, Vol. 22, pp.342–345.

 Rescue of a whole-farm system 21

Brennan, D. and Gooday, J. (1998) ‘Whole farm modeling using ExtendTM simulation software’,
Proceedings of the bioeconomics workshop. Australian Bureau of Agricultural and Resource
Economics (ABARE), pp.65–75.

Cockburn, A. (2004) Crystal Clear: A Human-Powered Methodology for Small Teams,
Addison-Wesley.

Doyle, C.J., Baars, J.A. and Bywater A.C. (1989) ‘A simulation model of bull beef production
under rotational grazing in the Waikato Region of New Zealand’, Agricultural Systems,
Vol. 31, pp.247–278.

Ferrari, R.N. and Madhavji, N.H. (2008) ‘Architecting-problems rooted in requirements’,
Information and Software Technology, Vol. 50, pp.53–66.

Forbes, T.D.A. (1988) ‘Researching the plant-animal interface: the investigation of ingestive
behavior in grazing animals’, Journal of Animal Science, Vol. 66, pp.2369–2379.

Holzworth, D., Meinke, H., DeVoil, P., Wegener, M., Huth, N., Hammer, G., Howden, M.,
Robertson, M., Carberry, P., Freebairn, D. and Murphy, C. (2006) ‘The development
of a farming systems model (APSIM) – a disciplined approach’, available at
http://www.iemss.org/iemss2006/papers/w4/Holzworth.pdf (accessed on 21 April 2009).

Hsqldb (2009) ‘Lightweight Java SQL database engine’, available at http://hsqldb.org/ (accessed on
21 April).

Illius, A.W. and Hodgson, J. (1996) ‘Progress in understanding the ecology and management of
grazing systems’, in Hodgson, J. and Illius, A.W. (Eds.): The Ecology and Management of
Grazing System, CAB International, Wallingford.

Johnson, C.W. and Holloway, C.M. (2006) ‘Questioning the role of requirements engineering in
the causes of safety-critical software failures’, The 1st Institution of Engineering and
Technology International Conference on System Safety, 6–8 June, pp.352–361, London.

Krahl, D. (2002) ‘The extend simulation environment’, Proceedings of the 33rd Conference on
Winter Simulation, December, pp.205–213.

Larman, C. (2004) Agile and Iterative Development: A Manager’s Guide, Addison-Wesley.
Loewer, O.J. (1998) ‘Graze: a beef-forage model of selective grazing’, in Peart, R.M. and

Bruce, R.C. (Eds.): Agricultural Systems Modeling and Simulation, pp.301–417, Marcel
Dekker, University of Florida.

Machado, C. (2004) ‘Field and modeling studies of the effects of herbage allowance and maize
grain feeding on animal performance in beef cattle finishing systems’, in Unpublished PhD
Thesis, directed by Morris, S.T., p.271, Massey University, New Zealand.

Machado, C.F., Morris, S.T., Hodgson, J.M., Arroqui, P. and Mangudo, C. (2010) ‘A web-based
model for simulating whole-farm beef cattle systems’, Computers and Electronics in
Agriculture, Vol. 74, pp.129–136.

Masticola, S.P. (2007) ‘A simple estimate of the cost of software project failures and the breakeven
effectiveness of project risk management’, First International Workshop on the Economics of
Software and Computation, 20–26 May, Minneapolis, USA.

McCall, D.G., Sheath, G.W. and Pleasant, A.B. (1994) ‘The role of system research in animal
science’, Proceeding of the New Zealand Society of Animal Production, Vol. 54, pp.417–421.

Open Workbench (2009) ‘Open-source project scheduling’, available at
http://www.openworkbench.org/, (accessed on 21 April 2009).

OpenLaszlo (2009) ‘An open source platform for the development and delivery of rich internet
applications’, available at http://www.openlaszlo.org/ (accessed on 21 April).

Oracle XE Express Edition (2009) ‘Database based on the Oracle Database 10g Release 2
code base’, available at http://www.oracle.com/technology/products/database/xe/index.html
(accessed on 21 April).

Ould, M. (1998) Managing Software Quality and Business Risk, John Wiley & Sons,
San Francisco.

 22 P. Mangudo et al.

Pannell, D.J. (1999) ‘On the estimation of on-farm benefits of agricultural research’, Agricultural
Systems, Vol. 61, pp.123–134.

Pearson, C.J. (1997) Agronomy of Grassland Systems, 2nd ed., p.222, Cambridge University Press,
New York.

PICTO 22926 (2006) ‘Desarrollo y evaluación de un simulador dinámico clima-dependiente de
empresas ganaderas predominantemente pastoriles’, dir. Machado, C.F., funded by
Argentinean National Agency of Science and Technology No. 029/2006, ANPCyT-FONCYT.

Schwaber, K. and Beeddle, M. (2002) Agile Software Development with Scrum, Prentice-Hall.
Shaw, M. and Garlan, D. (1996) Software Architecture, Perspectives on an Emerging Discipline,

Prentice-Hall.
SmartCVS Foundation (2009) ‘A graphical SVN client’, available at http://www.syntevo.com/

(accessed on 21 April).
Spring Framework (2009) ‘Platform to build and run enterprise Java applications’, available at

http://www.springframework.org/ (accessed on 21 April).
Standish Group’s The Chaos Report (2004) ‘Extreme chaos’, available at

http://net.educause.edu/ir/library/pdf/NCP08083B.pdf/ (accessed on 21 April 2009).
Thayer, R.H., Dorfman, M. and Bailin, S.C. (1997) Software Requirements Engineering, IEEE

Computer Society.

