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Abstract: Automatic identification of a person’s individuality is an important 
issue today. Brain Computer Interfaces (BCI) which uses EEG as a modality is 
a promising area for cognitive biometrics. A BCI system could be used to 
recognise a sequence (say letters, colours or images) by the user. This sequence 
could form a ‘BrainWord’, which could be used for authentication in a 
multimodal environment with other technologies for high security applications. 
In this work, we studied several variations of the well-known P300 BCI 
paradigm. The influence of irrelevant stimuli during a task was studied by 
considering the popular Rapid Serial Visual Paradigm (RSVP). The variation  
in spatial locations of the presentation stimuli during a task was studied,  
by designing a Spatially Varying Paradigm. Comparison of classification 
accuracies and bit rates for eight participants from a BCI perspective, 
highlights that RSVP paradigm could be exploited effectively for biometrics. 

Keywords: authentication system; bit rate; brain-computer interface; cognitive 
biometrics; P300 potential; RSVP; rapid serial visual paradigm; spatially 
varying paradigm. 
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1 Introduction and motivation 

Cognitive biometrics is a developing research topic which enables user authentication/ 
identification by exploiting the mental states of an individual (Revett et al., 2010). 
Electroencephalogram (EEG) is the recording of brain’s electrical activity and is an 
established de facto standard in diagnosis of brain related diseases. Of late, there has 
been a spurt of activity to exploit EEG for authentication (Ravi and Palaniappan, 2006; 
Marcel and Millan, 2007; Palaniappan and Mandic, 2007a; Palaniappan and Mandic, 
2007b; Palaniappan, 2008; Riera et al., 2008) in addition to others physiological 
biometrics like Electrocardiogram (ECG) (Palaniappan and Krishnan, 2004). Multiple 
signal classification (MUSIC) algorithm was used to classify energy features within 
gamma band (Palaniappan and Mandic, 2007a), Elman neural network with spatial 
data/sensor fusion (Palaniappan and Mandic, 2007b), singe trials of non-time locked 
evoked potentials (Ravi and Palaniappan, 2006), non-linear features from simple mental 
tasks (Palaniappan, 2008), power spectral density feature with Gaussian mixture models 
(Marcel and Millan, 2007) and a multi-feature (Riera et al., 2008) approaches were used  
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for person authentication in these studies. ERD/ERS pattern was also identified as a 
possible stable biometric marker, in a BCI context (Pfurtscheller and Neuper 2006). 
Other classification frameworks explored include autoregressive (AR) features with 
different classifiers (Poulos et al., 1999). However, most studies until now have failed  
to investigate the long-term stability of the features. For a reliable and practical 
implementation, invariance of feature is an absolute necessity. We consider overcoming 
the stability issue by developing an authentication system from a Brain Computer 
Interface (BCI) perspective. The system proposes to use evoked brain signals (recorded 
at certain optimal locations on the scalp) to recognise the sequence of letters/ 
colours/images that are focused upon by the user in real-time. For example, a passcode 
could be a letter (A), colour (red) and an image (picture). The objective would be to 
identify the above passcode by using only thoughts with BCI technology, which could be 
used to authenticate the identity of a person. The possibility of changing the passcode 
gives the system more flexibility in terms of long-term stability. 

Potentials which originate from outer layer of brain in response to an event are  
called Event-Related Potentials (ERPs) (Misulis, 1994). ERPs can be divided into two 
categories: namely exogenous ERPs, which arise due to early automatic processing of the 
physical stimulus; and the endogenous ERPs, which result due to the processing of the 
stimuli (Coles and Rugg, 1995). P300 is a type of endogenous ERP having a latency of 
300–600 ms, where the evoked potential amount depends on the given task and has 
gained much attention in cognitive and neuro-scientific applications (Sutton et al., 1967). 
Farwell and Donchin (1988) and Donchin et al. (2000) first demonstrated the use of P300 
for BCI in an oddball paradigm. In the oddball experiment, the participant is asked to 
distinguish between target and non-target stimuli, by performing a mental count of the 
target stimuli. In the modified three stimulus oddball paradigms, distractor stimulus 
occurs along with target and non-target stimuli (Courchesn et al., 1975). The target 
stimulus evokes a P3b component with a latency of 300–600 ms, while the distractor 
stimulus evokes a P3a component with a latency of 200–400 ms (Courchesn et al., 1975). 
From a psychological aspect, P3b is considered to be involved in context updating or 
revising the contents of working memory (Donchin, 1981; Coles and Rugg, 1995). Gupta 
et al. (2008) presented a preliminary paradigm design using BCI for high security 
authentication scenarios by effectively overcoming the participant’s gaze effect. This 
current work extends it to a four class oddball paradigms, proposes and investigates the 
effect of varying spatial location of stimuli, uses advanced machine learning techniques 
and presents the results from a BCI viewpoint (i.e. bit rates and classification accuracies). 
To the best of all authors’ knowledge, varying spatial location of stimuli has not been 
studied so far in an oddball paradigm. 

2 Participants and data acquisition 

Four males and four females (aged 22–30) all from University of Essex student 
community, without any known neurological and visual imparity performed the three 
experimental paradigms. A basic understanding of oddball paradigm and the purpose of 
the experiments were explained to the participants for motivated involvement and they 
voluntarily signed a consent form. All experiments were approved by the University of  
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Essex Ethical Committee. The EEG data were collected using a Biosemi Active Two 
system at a sampling rate of 256 Hz. Since the purpose of this study was to investigate 
suitable paradigms for cognitive biometrics, eight optimum channels reported by 
Hoffmann et al. (2007) were used. Two recorded mastoid channels were used as 
reference. The Graphical User Interface (GUI) was developed using Visual Basic 
software and integrated into the Biosemi data logging software. The participants were 
asked to refrain (as much as possible) from blinking during the experiment, which was 
performed in a well-shielded room from electromagnetic interference. 

3 Experimental paradigms and task 

To determine a suitable paradigm for cognitive biometrics, three variations of oddball 
were studied, namely standard oddball, Rapid Serial Visual Paradigm (RSVP) and 
spatially varying oddball as explained diagrammatically in this section. This work 
proposes the design of spatially varying oddball paradigm. Repetition blindness and 
attentional blink are two common perceptual errors, affecting the classification accuracy 
of both RSVP and oddball paradigms (Cinel et al., 2004). However, both these 
phenomena do not occur when the Inter Stimulus Interval (ISI), which is the time 
between two stimuli flashes, is greater than 500 ms (Kanwisher, 1987; Raymond et al., 
1992). 

Stimuli letters A, B, C and D were used (i.e. four-class BCI) for all three paradigms. 
Flash-time and ISI were set to 100 ms and 750 ms, respectively. For all paradigms, the 
background colour in 8-bit RGB model was light grey (240, 240, 240), the default 
character colour in ‘OFF’ state was white (255, 255, 255) and the flashed stimuli colour 
in ‘ON’ state was black (0, 0, 0). On executing the experiment, ‘target cue stimuli’ was 
presented briefly for 2 seconds. The participant was instructed to count the target cue 
stimuli mentally. Flashes of four stimuli (say ‘A’, ‘D’, ‘C’ and ‘C’) are considered a 
block. Being a four-class BCI, block randomisation flashing was avoided to prevent 
habituation. The recorded blocks for every experiment were randomly generated by the 
computer, varying between 40 and 48. Each paradigm had two different target cues as the 
task, which the participant was required to keep a mental count. Every paradigm had an 
experiment time between 4.6 and 5.5 minutes depending on block number, which was 
randomly generated by the computer. The participants reported target cues and number  
of flashes at the end of each experiment.  

3.1 Standard oddball 

To illustrate the execution of this paradigm, we explain it diagrammatically in Figure 1 
with seven stages for easier understanding. The stimuli were spatially fixed and flash 
between ‘OFF’ (white) and ‘ON’ (black) states. The participants in this case effectively 
concentrated on the target stimuli (which was spatially fixed) to flash black (ON state), 
before mentally counting them. Since the participant focused on spatially fixed stimuli 
each time, a gaze tracker could be effectively used to find the participant’s gaze, which 
would prevent the method from being applied for biometrics. Also during this paradigm, 
the participant was exposed to irrelevant stimuli flashes. 



   

 

   

   
 

   

   

 

   

   30 C.N. Gupta, R. Palaniappan and R. Paramesran    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Standard oddball (see online version for colours) 
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3.2 Spatially varying oddball 

This work investigates the spatially varying oddball paradigm. The location of stimuli 
was not spatially fixed but presented within one of the four squares. To illustrate the  
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execution of the paradigm, we explain it diagrammatically using seven stages as shown 
in Figure 2. Each stimulus (say ‘A’) was presented in one of the squares, one at a time. 
The participant changed his/her gaze at each flash during this paradigm. 

Figure 2 Spatially varying oddball paradigm (see online version for colours) 
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3.3 Rapid Serial Visual Paradigm (RSVP)  

In RSVP, the stimulus was presented within a single square block. The paradigm is 
illustrated diagrammatically in Figure 3 using seven stages. The participant focused 
his/her gaze at the same rectangle during this paradigm. It minimised the influence of 
irrelevant stimuli, perceptual errors and was user friendly. 
Figure 3 Rapid serial visual paradigms (see online version for colours) 
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4 Data analysis and results 

To avoid bias, the pre-processing techniques and classifiers used were same for all 
studied paradigms. The data were referenced to average of mastoids channels. For each 
single trial, a forward-reverse Butterworth bandpass filter with cut-off frequencies (1 Hz 
and 12 Hz) was used to filter the data, to obtain signals in the P300 spectral range. The 
designed filter lost no more than 1 dB in passband and had at least 40 dB attenuation in 
the stopband. To remove artefact activity, Windsorising as described by Hoffmann et al. 
(2007) was implemented. The data were then normalised and the recorded eight channels 
were used to obtain the classification accuracy. The data obtained for each paradigm 
were between 40 and 48 blocks as discussed in Section 3. The data were divided into four 
sets of ten blocks each. A threefold cross-validation method using Bayesian LDA 
(Hoffmann et al., 2007) was used to obtain the classification accuracies. The accuracies 
obtained from cross-validation were averaged and bit rates calculated using Wolpaw’s 
definition (Wolpaw et al., 2002; Hoffmann et al., 2007). Bit rate B (bits/min), which 
gives the information throughput, is often used to characterise BCI systems and is 
computed according to equation (1) (Wolpaw et al., 2002): 

( ) ( ) ( ) ( ) ( )
( )2 2 2

1 60, , log log 1 log
1
p

B N p t N p p p
N t

⎛ ⎞−
= + + − ⎜ ⎟⎜ ⎟−⎝ ⎠

 (1) 

where N denotes the number of different commands a user can send, p denotes the 
probability that a command is correctly recognised by the system and t is the time in 
seconds that is needed to send one command. The bit rate can be effectively increased by 
varying parameter N and/or t. All programmes for data analysis were written using 
MATLAB. The results of eight participants who participated in all three paradigms are 
depicted in Figures 4–11 and tabulated in Table 1. The classification accuracy and bit 
rate of RSVP were highest for all participants. Participant 2 achieved the maximum 
classification accuracy of 100% with least number of trials for RSVP Paradigm. The 
averaged bit rates for all participants highlight that RSVP achieved higher performance 
than both Standard Oddball and Spatially Varying Oddball paradigms. The performance 
of Standard Oddball and Spatially Varying Oddball were similar. 

Figure 4 Comparison of variations in the paradigm (Participant 1) 
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Figure 5 Comparison of variations in the paradigm (Participant 2) 
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Figure 6 Comparison of variations in the paradigm (Participant 3) 
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Figure 7 Comparison of variations in the paradigm (Participant 4) 
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Figure 8 Comparisons of variations in the paradigm (Participant 5) 
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Figure 9 Comparisons of variations in the paradigm (Participant 6) 
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Figure 10 Comparisons of variations in the paradigm (Participant 7) 
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Figure 11 Comparisons of variations in the paradigm (Participant 8) 
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Table 1 Maximum average bit rate per minute for all three paradigms (mean bit rate and 
standard deviation were computed for all participants) 

Participant Standard oddball 
(bits/min) 

Spatially varying oddball 
(bits/min) RSVP (bits/min) 

1 3.59 0.614 5.55 
2 1.35 1.39 35.29 
3 0.61 1.22 2.46 
4 1.83 1.25 5.04 
5 1.22 1.20 11.10 
6 2.33 7.86 7.96 
7 0.61 0.78 13.98 
8 1.22 3.98 4.66 
Avg ± std (all) 1.59 ± 0.98 2.28 ± 2.48 10.75 ± 10.59 

5 Discussion and conclusion 

Although much research using brain signals for clinical analysis has been done in the 
past few decades, the application of brain signals for biometric purposes is relatively 
new. In this work, we exploited the P300 potential within a BCI framework to design an 
authentication system. This work proposes the spatially varying oddball paradigm and 
investigates the use of standard oddball and RSVP paradigms for cognitive biometrics. 
Among the studied paradigms, RSVP is the only paradigm that does not suffer from gaze 
effect and hence could be used for high security authentication purposes. All paradigms 
were designed to avoid perceptual errors and made user friendly for naive BCI users. The 
RSVP was found to be best of all studied paradigms in terms of classification accuracies 
and bit rates. During a RSVP paradigm, the ease in focussing on the same spatial location 
and the absence of irrelevant stimuli could perhaps be a factor that results in improved 
P300 potential. As such, we conclude that RSVP is more suitable for cognitive-based 
biometric applications. Overall, it is hoped that this work will provide motivation for 
further research using BCI for cognitive biometrics. 
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