Superdiffusive blow-up with advection
by C.M. Kirk; W.E. Olmstead
International Journal of Dynamical Systems and Differential Equations (IJDSDE), Vol. 4, No. 1/2, 2012

Abstract: We examine the problem of a high-energy source localised within a superdiffusive medium with advection. This problem is modelled by a fractional diffusion equation with a nonlinear source term. Advection is introduced through a linear transport term that is proportional to the advection speed. In this paper we allow the medium to exhibit superdiffusive behaviour ranging from the classical (Gaussian) limit to the ballistic limit. We analyse the model to determine whether or not a thermal blow-up occurs. Specifically, it is shown that there exists a critical advection speed above which blow-up is avoided and below which blow-up is guaranteed. We also provide the asymptotic growth of the temperature near the time of blow-up.

Online publication date: Wed, 10-Dec-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Dynamical Systems and Differential Equations (IJDSDE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com