Pore characteristics and electrochemical properties of the carbon nanofibres of polyacrylonitrile containing iron-oxide by electrospinning
by S.K. Nataraj; Bo-Hye Kim; J.H. Yun; D.H. Lee; T.M. Aminabhavi; K.S. Yang
International Journal of Nanotechnology (IJNT), Vol. 8, No. 10/11/12, 2011

Abstract: The present work is novel in its preparation method to produce well-dispersed iron oxide nanoparticles in PAN nanofibres. In a in-situ process of producing carbon nanofibres in which (polyacrylonitrile) PAN incorporated with iron oxide particles using electrospinning method. This type of in situ preparation method, to produce iron oxide nanoparticles in PAN matrix was attempted to control mean particle size as well as to create uniform size pores on the web matrix, giving improved properties after thermal treatment at 1000ÂșC. Their large surface areas coupled with good electrical conductivity and porous nature make them useful materials in the fabrication of efficient electrodes for supercapacitors. Utilising the combined techniques viz., field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM), their well defined structures are assessed to find that CNFs with diameters ranging from 100 nm to 600 nm were produced after the alkali treatment. It is believed that quick removal of iron oxide nanoparticles from the PAN matrix resulted in the formation of pores, while the carbon yield ranged from 53% to 60%.

Online publication date: Sat, 24-Dec-2011

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com