

 64 Int. J. Electronic Transport, Vol. 1, No. 1, 2011

 Copyright © 2011 Inderscience Enterprises Ltd.

A hybrid genetic algorithm for a complex cost
function for flowshop scheduling problem

Debraj Bhowmick* and P. Maniyan
National Institute of Industrial Engineering (NITIE),
Vihar Lake, Mumbai 400087, India
E-mail: devraj.007@gmail.com
E-mail: pmaniyan@gmail.com
*Corresponding author

Anjali Saxena
Indian Institute of Foreign Trade (IIFT),
IIFT Bhawan, B-21, Qutab Institutional Area,
New Delhi 110016, India
E-mail: dhatrigwl@gmail.com

Yves Ducq
University of Bordeaux,
IMS UMR 5218 CNRS, 351 Cours de la Libération,
33405 Talence Cedex, France
E-mail: yves.ducq@laps.ims-bordeaux.fr

Abstract: Supply chain excellence has a real impact on business strategy.
Manufacturing is an integral part of this strategy represents one of the most
exciting opportunities to create value and one of the most challenging tasks for
the policy makers. In this paper, we consider a performance criterion for the
flowshop scheduling problem that aims to minimise a complex cost function,
i.e., the sum of weighted tardiness and weighted flow-time costs. A heuristic
and hybrid genetic algorithms are proposed and experimental results are
provided. We address this trade-off and propose solution techniques that are
easy for the shop-floor manager to implement. As scheduling function is an
integral part of supply chain, the proposed solution minimises the opportunity
losses and improves cost based supply chain performance. This paper addresses
this interesting and challenging domain.

Keywords: flowshop scheduling; hybrid genetic algorithm; complex objective;
heuristics.

Reference to this paper should be made as follows: Bhowmick, D.,
Maniyan, P., Saxena, A. and Ducq, Y. (2011) ‘A hybrid genetic algorithm for a
complex cost function for flowshop scheduling problem’, Int. J. Electronic
Transport, Vol. 1, No. 1, pp.64–75.

Biographical notes: Debraj Bhowmick is a PhD scholar working in the area of
industrial engineering and operations management in NITIE, Mumbai, India.
His research interests include flowshop scheduling, meta-heuristics, genetic
algorithms and supply chain management.

 A hybrid genetic algorithm for a complex cost function 65

P. Maniyan is a PhD scholar working in the area of industrial engineering and
operations management in NITIE, Mumbai, India. His research interests
include scheduling, meta-heuristics transportation and logistics management,
and supply chain management.

Anjali Saxena is currently a PhD scholar at Indian Institute of Foreign Trade
(IIFT), India. She holds a Master in Operation management and Bachelor
in Electrical Engineering. Her research interests include supply chain
management, decision support system, service system, and operation
management.

Yves Ducq obtained his PhD from the University of Bordeaux 1 in 1999. He is
currently a Professor at University Bordeaux 1. He has extensive interest in
enterprise modelling. He worked as a Consultant to develop GRAI applications
for industry for several years. He has worked on several European projects. As
a Researcher, he has more than 80 publications in many renowned journals and
conferences. He is guiding many PhD students. His research areas include
enterprise modelling, performance evaluation, CIM system, supply chains and
service systems. He acts also as a Quality Manager for University Bordeaux 1.

1 Introduction

Today’s market can be considered as global and competitive due to dynamic nature of
customer demands and frequently changeovers in the business scenarios and continuous
evolutions of the new technologies. In order to retain customer goodwill and market
share, firms need to manufacture quality products at reduced costs maintaining high
responsiveness, thus a transition phase is visualised. Hence, there is a hunt for best
compromise manufacturing system. To realise such targets, we consider a performance
criterion for the flowshop scheduling problem that aims to minimise a complex cost
function, i.e., the sum of weighted tardiness and weighted flow-time costs. The objective
was first introduced by Gelders and Kleindorfer (1974) for single machine job shop
problem. Later, Gelders and Sambandam (1978) provided heuristics for the m-machine
permutation flowshop problem. Even though the complex cost function was introduced
three decades ago, few researchers worked on it due to its complex nature. The cost
function has two main components. The first, weighted tardiness, works in favour of the
customer and ensures timely delivery of the job order. The second component, weighted
flow-time, considers the shareholder point of view. Thus, this cost function is able to
capture two important aspects that any business faces in today’s competitive global
business environment. This paper aims to provide solution techniques for the complex
cost function that are easy to understand and implement on a factory shop floor.

The general flowshop scheduling problem consists of a set, N, of jobs (1, 2,…,n) to be
processed on a set, M, of machines (1, 2,…,m) in series. The flow of jobs is unidirectional
since all jobs follow the same technological routing through the machines. Processing of
all jobs happen sequentially on multiple machines in the same order. Additionally, each
job can be processed on only one machine at a time and each machine can process only
one job at a time respectively (Sule, 1997; Gupta and Stafford, 2006). Furthermore, all
operations are assumed to be non-preemptable.

 66 D. Bhowmick et al.

The problem is to find a job ordering when a given set of n jobs is to be processed on
m machines with an assumption that all jobs are simultaneously available. Processing
starts on the first machine then on second machine and so on. All jobs follow the same
processing order (identical routing). It is further assumed that the job sequences on all
machines are the same (no passing allowed). Therefore, only n! permutation schedules
need to be examined. For each job, there is an assigned due date. If the job is completed
on or before its due date, then there is no tardiness penalty incurred. Otherwise, it incurs
tardiness penalty at certain rate. In addition, it is assumed that there will be job holding
cost for each job. Therefore, the performance criterion is to minimise a complex cost
function, i.e., the sum of weighted tardiness and weighted flow time costs.

In this paper, we present a heuristic and hybrid genetic algorithms for the complex
cost function. First, we provide a brief literature review. This is followed by the proposed
heuristic based on the insertion technique popularised by Nawaz et al. (1983). This is
followed by the existing heuristic for the complex cost function given by Gelders and
Sambandam (1978) is given. Then, workings of the hybrid genetic algorithm are given.
Experimental results are given, which is followed by conclusion.

2 Literature review

Since it was introduced in three decades back, very few researchers have worked on the
complex cost function. The weighted tardiness component has made it a difficult problem
to deal with. In this section, we present research work done by few authors on this
cost function. The complex objective that attempts to minimise the sum of weighted
flow-time and weighted tardiness of jobs was first introduced by Gelders and Kleindorfer
(1974). The authors minimised the complex objective subject to a given capacity plan for
the single machine case. They analysed various lower bounding structures and gave an
outline of a branch-and-bound algorithm.

Gelders and Sambandam (1978) presented four heuristics that attempt to minimise the
complex objective for the flow shop environment. The heuristics work by building up
complete sequences from a null sequence by appending jobs one by one and by
considering the sum of idle time of machines, the idle time of the last machine, lower
bound on makespan, and the holding and tardiness costs and due-date of jobs (Rajendran
and Ziegler, 2003). The authors noted that any algorithm that performs well with tighter
due dates would also perform well under slack conditions.

Rajendran and Ziegler (1999) proposed three heuristics for the complex objective and
compared them with Gelders and Sambandam (1978). They developed heuristic
preference relations by considering lower bounds on the completion times, operation due
dates, and weights for holding and tardiness of jobs. They developed one heuristic based
on the above heuristic preference relations and proposed two more heuristics to improve
the solution given by the previous heuristic. They observe that all three proposed
heuristics perform better than the existing heuristics in giving a solution of superior
quality and that the first proposed heuristic yields a good solution by requiring a
negligible computer time. They also give a simulated annealing algorithm.

Rajendran and Ziegler (2003) gave heuristics for scheduling jobs in a static flowshop
with jobs having sequence-dependent setup times. The heuristic starts by constructing a
schedule using two heuristic preference relations. To improve the quality of the solution
an improvement scheme was used twice. The results were compared with an existing

 A hybrid genetic algorithm for a complex cost function 67

heuristic, a random search procedure, and a greedy local search method. The author
found that the proposed heuristic was computationally faster and more effective in
yielding solutions of better quality than the benchmark procedures.

The difficulty of solving this problem can be seen from the fact that none of the
authors discussed above have proposed exact solution methods like branch-and-bound
etc, for the flowshop or multi machine scheduling problem. In this paper we compare the
solutions obtained from the proposed heuristic to that given by Gelders and Sambandam
(1978). We do not compare our results with Rajendran and Ziegler (1999) as their paper
lacked details regarding implementation and experimental set up.

3 Proposed heuristic method

Nawaz et al. (1983) proposed a heuristic for the makespan problem. Henceforth, the
Nawaz et al. (1983) heuristic is called NEH in the remaining parts of this paper. NEH
heuristic is based on job insertion (insertion neighbourhood) and is one of the most used
techniques in flowshop scheduling (Vallada and Ruiz, 2010). Also, Kalczynski and
Kamburowski (2007) noted that the NEH heuristic has been commonly regarded as the
best heuristic for minimising the makespan in permutation flowshops. Other researchers
like Taillard (1990), Park et al. (1984), and Turner and Booth (1987) have confirmed the
superiority of NEH over other heuristics. Later, Rajendran and Ziegler (1999) and Woo
and Yim (1998) successfully applied NEH type job insertion technique to other
objectives. Thus, a heuristic based on job insertion technique used in NEH was developed
and applied to the objective function under consideration in this study. Suitable
modifications as mentioned above were incorporated in the heuristic to suit the complex
objective.

The proposed heuristic follows the same steps used by Nawaz et al. (1983) in their
heuristic for the makespan objective function. The NEH heuristic is modified to suit the
complex objective function. The notable change is in the evaluation of the objective
function. Instead of evaluating makespan, the proposed heuristic evaluates the complex
cost function. The steps of the heuristic are reproduced below. It may be noted that in
Step 3 the complex cost function is evaluated.

• Step 1: For each job i calculate ,
1

,
m

i i j
j

T t
=

=∑ where ti, j is the process time of job i on

machine j.

• Step 2: Arrange the jobs in descending order of Ti.

• Step 3: Pick the two jobs from the first and second position of the list of Step 2, and
find the best sequence for these two jobs by calculating the complex cost function for
the two possible sequences. Do not change the relative positions of these two jobs
with respect to each other in the remaining steps of the algorithm. Set i = 3.

• Step 4: Pick the job in the ith position of the list generated in Step 2 and find the best
sequence by placing it at all possible i positions in the partial sequence found in the
previous step, without changing the relative positions to each other of the already
assigned jobs.

 68 D. Bhowmick et al.

• Step 5: If n = i, STOP, otherwise set i = i + 1 and go to Step 4.

4 GS heuristic

Gelders and Kleindorfer (1974) were the first to introduce the complex cost function for
single machine job shop problem. They proposed a performance criterion to minimise a
complex cost function, i.e., the sum of weighted tardiness and weighted flow time costs.
Later, Gelders and Sambandam (1978) provided four heuristics for the m-machine
permutation flowshop problem. A description of the heuristic provided by Woollam and
Sambandam (1985) is given below.

A dispatching index is generated, given by Ri = Mi / Di; where Mi is the relative
measure of lateness of job i and Di is the total idle time of job i on all machines. Mi in
turn is found by Mi = Ti / (Ti – Sσ – Pi) where Ti is the lower bound on the makespan of
job i; Sσ is the finishing time of the partial sequence σ on the last machine m and Pi is the

processing time plus the calculated idle time of job i on the last machine m.
1

m

i ij
j

D D
=

=∑

where Dij is the delay or idle time of job i on machine j. The jobs are added to the
sequence with respect to the largest Ri. The heuristic follows three principles,

1 uses a dynamic job dispatching rule

2 gives priority to the item which is most expensive to hold

3 fits the jobs together so that idle time is minimal.

5 Hybrid GA

The genetic algorithm (GA) starts by generating initial population randomly. Then
parents are selected based on fitness and crossover is performed on them to generate
off-springs. Mutation is applied with a probability to the off-springs before it is passed to
the hybrid procedure. Hybrid procedure is applied with a probability. If the stopping
criterion is not met, some of the better off-springs are included in the new population and
replace less fit individuals. A brief description of the hybrid GA is given below.

In this work, for encoding or chromosomal representation we choose to employ the
natural representation of a sequencing problem, which is a permutation of jobs. This type
of representation is also called as non-linear encoding. This natural representation of the
problem has been frequently used by researchers (Reeves, 1995; Chen et al., 1995;
Murata et al., 1996). In other words, the string used in this genetic algorithm is a
permutation of given jobs.

Initialisation or the initial population of the genetic algorithm is generated randomly.
The population is also seeded with good solutions obtained in subsequent runs of the
genetic algorithm. Reeves (2003) had stated that ‘seeding’ the initial population with
known good solutions can help the genetic algorithm find better solutions more quickly
compared to random start. Hence, initial population of every generation was seeded with
solutions from heuristics by Campbell et al. (1970) and Nawaz et al. (1983).

 A hybrid genetic algorithm for a complex cost function 69

Elitism strategy is used here. According to Reeves (2003), elitism ensures the survival
of the best individual so far by preserving it. Hence, subsequent populations were seeded
with the best solution found in the previous runs. The remaining members of the
population were generated randomly (Reeves, 1995).

The basic idea of selection is that it should be related to fitness (Reeves, 2003).
Selection is done as described in Murata et al. (1996). The selection probability was
obtained by dividing probability of selecting the fittest string by probability of selecting
the average string.

The reproduction compromises crossover and mutation. Crossover replaces some of
the genes of one parent by corresponding genes of the other. In mutation, genes of a
string are interchanged to promote variety in the population and slowdown the premature
convergence in the population.

Three types of crossover operators were used namely, one-point, two-point and
uniform crossover. One point and two-point crossovers used here are described in Murata
et al. (1996) and uniform crossover is described in Reeves (2003).

Two types of mutation operators were used. The purpose of mutation is to help
preserve a reasonable level of population diversity and enables the process to escape from
sub-optimal regions of the solution space (Reeves, 2003). Adjacent two-job change and
Shift change mutations described in Murata et al. (1996) are used in this work.

5.1 Hybridisation procedures

Hybridisation of the genetic algorithm with local search methods makes the search more
effective and more efficient (Tseng and Lin, 2010). In this work, seven local search
procedures are given including four novel local search schemes. These procedures intend
to search the neighbourhood of the child for better sequences. The sequence with the
lowest objective function value is then reinserted into the population. Except the scheme
based on adjacent pairwise interchange, which is applied to all child sequences, other
hybrid procedures mentioned below are applied with a probability after mutation. Thus,
these procedures are not applied to all individuals in the population as proposed by Ruiz
et al. (2006). This low probability enables the GA to run fast and prevents it from getting
trapped in local optimum.

5.1.1 Hybrid 1: random job insertion search

In this version of local search, a job is selected at random from the given sequence and is
inserted in all possible positions back into the sequence. The resulting (n – 1) sequences
are evaluated and the best objective and its corresponding sequence is returned. A brief
description of the steps in Hybrid procedure described above are given below.

1 Receive sequence σ

• Step 1: From the given sequence, remove a job randomly.

• Step 2: Place the job in all possible positions in the sequence and generate
(n – 1) sequences.

• Step 3: Evaluate every sequence for the given objective function and return the
best objective function value and sequence. STOP.

 70 D. Bhowmick et al.

5.1.2 Hybrid 2: random block insertion search

In this novel local search scheme, a block of jobs is chosen randomly and removed from
the given sequence. These jobs are then reinserted into the sequence one by one. A
detailed description of the scheme is as follows. A random point is selected and from this
point onwards, a few jobs equal to a random number are selected. These jobs are
removed from the sequence and placed in a set of unscheduled jobs in the order in which
they were removed. From the set of unscheduled jobs, the first job is removed and
inserted in all possible positions in the sequences. The partial sequence that gives the
lowest objective function value is selected. Using this sequence, the algorithm proceeds.
The remaining unscheduled jobs are inserted in the same manner as described above until
the set of unscheduled jobs is empty. The best sequence is chosen and returned. A brief
description of the steps used in the procedure are given below.

1 Receive sequence σ

• Step 1: From the given sequence σ remove a set of jobs chosen randomly and place
them in a set of unscheduled jobs σ′.

• Step 2: Remove the first job from the set of unscheduled jobs σ′ and place it in all
possible positions in the partial sequence σ.

• Step 3: Evaluate all the partial sequences generated in Step 2.

• Step 4: Choose the partial sequence that gives the best objective function value and
using it repeat Steps 1 to 4 until σ′ is empty. STOP.

Two termination conditions were set for the genetic algorithm. First, number of
generations was restricted to 500. Second, if there were no improvements in the last 100
generations then GA would stop. Termination would take place for any condition that
occurred earlier. The upper limit of generations is similar to the stopping criteria
proposed by Figielska (2009). Other authors, like Vallada and Ruiz (2010) propose a
stopping criterion set to maximum elapsed CPU time of n(m/2) 120 ms, which allows for
increased number of observations in order to allow for a more exhaustive analysis.
Compared to later, stopping criterion used in this study is restrictive and permits a time
bound evaluation of the problem at hand.

5.2 Experimental design and computational results

Experiments were conducted using randomly generated problems to evaluate the
proposed heuristics and hybrid genetic algorithm. Problems with randomly generated
processing times, due dates, due date penalty and holding cost were used to carry out
experiments. As mentioned in Gelders and Sambandam (1978) and Rajendran and
Ziegler (1999), the processing times were randomly generated and ranged from 1 to 20,
the due date for each job was generated by the sum of the processing time plus a random
number up to 5n as given below.

1

 and 5.5 .
m

ij
j

p n
=
∑

 A hybrid genetic algorithm for a complex cost function 71

where pij is the processing time of the ith job on the jth machine. Rajendran and Ziegler
(1999) used the same procedure to generate due-dates and found these due dates tight.
They commented that such tight due-date setting would bring out the better or poorer
relative performance of a heuristic with respect to other heuristics under evaluation. Due
date penalty costs per unit time and holding costs per unit time were randomly generated
between 0 to 10.

The relative evaluation of results is done as follows: Suppose the schedule given by
the ith GA (i = 1 to 10 corresponding to the ten problems) is πi with its objective function
value denoted by Zi. The relative percentage error of the schedule given by the ith GA
solution is:

()
()

min ,1 10
100

min ,1 10
i i

i

Z Z i
Z i

− ≤ ≤
×

≤ ≤

Table 1 Comparison of heuristics for small randomly generated problems

Jobs Machines Mod NEH GS

5 5 0.0000 2.6697
 10 0.6714 6.8955
 15 1.1160 0.6674
 20 4.6292 1.3920
 25 1.7999 6.6183
6 5 0.7732 4.5126
 10 2.9261 4.3277
 15 2.1454 6.1984
 20 1.2718 3.0051
 25 1.7039 2.8549
7 5 4.4008 6.0295
 10 2.0887 7.4601
 15 3.5818 4.2052
 20 2.7170 6.6419
 25 0.9005 3.4287
8 5 4.8657 9.7053
 10 4.9057 7.5625
 15 2.8374 7.2616
 20 1.4929 3.4940
 25 3.8995 4.5026
9 5 5.8859 5.9810
 10 2.1871 7.8736
 15 1.7652 9.8444
 20 2.9223 4.2773
 25 1.3050 5.3088
Average 2.5117 5.3087

 72 D. Bhowmick et al.

Experiments were carried out on an Intel P4, 2.5 GHz computer with 256 MB RAM.
Experiments were conducted to determine generation size, crossover type, mutation type
and mutation probability. Two levels of generation size, i.e., 20 and 40 and two mutation
probability settings, i.e., 0.001 and 0.0005 were tested in addition to crossover type and
mutation type. In the pilot runs, it was found that generation size 40, uniform crossover,
adjacent two-job change mutation with probability of 0.001 performed well. These
settings were used to carry out further experiments.

Experiments were carried out for small problems. Jobs ranged from 5 to 9 and
machines from 5 to 25. The results from the modified NEH heuristic and the GS
(Gelders and Sambandam, 1978) heuristic were compared with results from an adapted
enumeration routine given by Sedgewick (1983). The results of this experiment are given
in Table 1. It can be seen that the modified NEH heuristic is giving better results as
compared to the other heuristic.

Experiments were carried out on large problems. 10, 20 and 30 jobs were considered
and 5 to 25 machines were considered. For large problems, the results of heuristics and
hybrid genetic algorithms were compared with the lowest result found during that
experiment. The results are given in Table 2. It was found that for large problems, the
modified NEH performed well and genetic algorithm with random job insertion search
hybrid procedure performed well.
Table 2 Comparison of heuristics and hybrid genetic algorithms using randomly generated

problems

Jobs Machines Mod NEH GS GA Hy 1 GA Hy 2

10 5 4.7224 11.4403 0.0000 0.0000
 10 1.9063 10.2269 0.0000 0.0000
 15 5.2032 8.9749 0.0000 0.0000
 20 2.1493 10.0282 0.0000 0.0000
 25 1.8091 8.1506 0.0000 0.0000
20 5 7.2706 19.3877 0.2835 0.3564
 10 4.7282 18.9907 0.4755 0.5492
 15 5.7012 18.4909 0.4349 0.3458
 20 5.5059 18.7401 0.4115 0.3865
30 5 10.0945 25.9308 1.4771 1.4480
 10 9.4437 24.5958 1.6983 1.7928
 15 8.5349 30.4563 1.5707 1.5742
Average 5.5891 17.1178 0.5293

Experiments were conducted using benchmark problems given by Taillard (1993). The
benchmark problems for flowshop have the processing times and all other values required
for this work were generated as mentioned above. The results are given in Table 3. It was
found that the GS heuristic performed better on Taillard’s problems as compared to
randomly generated problems with randomly generated processing times. In case of GA,
GA with random block insertion search hybrid procedure performed well. It can be noted
that, even though the modified NEH has performed well as compared to GS heuristic, the
performance of GS heuristic has improved for Taillard benchmark problems. These

 A hybrid genetic algorithm for a complex cost function 73

problems are known to be difficult to solve. It can be concluded that, the GS heuristic
may perform well when the problems are difficult to solve.
Table 3 Comparison of heuristics and hybrid genetic algorithm using Taillard (1993)

benchmark problems

Problem No. Mod NEH GS GA Hy 1 GA Hy 2
tai_20 × 5 1 5.4204 10.9802 0.2786 0.3297
tai_20 × 5 2 3.7423 18.0838 0.5922 0.3276
tai_20 × 5 3 4.8909 24.1708 0.1839 0.0865
tai_20 × 5 4 1.6216 22.7271 0.1222 0.1956
tai_20 × 5 5 5.3788 15.3742 0.0000 0.0000
tai_20 × 5 6 6.7026 18.6937 0.4059 0.6241
tai_20 × 5 7 11.2529 9.8567 0.5595 0.3516
tai_20 × 5 8 6.8598 12.0632 0.1508 0.4120
tai_20 × 5 9 8.0721 19.1364 1.1768 0.8666
tai_20 × 5 10 6.9130 14.6651 0.8021 0.8653
tai_20 × 20 1 5.6319 10.4552 0.1014 0.1427
tai_20 × 20 2 3.2486 26.3637 0.1698 0.1278
tai_20 × 20 3 2.7987 10.8161 0.6060 0.4486
tai_20 × 20 4 5.4970 18.2247 0.1836 0.1224
tai_20 × 20 5 4.9844 9.4495 0.1860 0.1010
tai_20 × 20 6 3.6799 15.2860 1.0198 1.0308
tai_20 × 20 7 4.0197 17.2734 0.5100 0.5565
tai_20 × 20 8 6.3355 8.5175 0.3942 0.2686
tai_20 × 20 9 5.7741 18.4422 0.5992 0.4895
tai_20 × 20 10 8.5947 10.5505 0.3916 0.3585
Average 5.5709 15.5565 0.4217 0.3853

6 Academic and managerial implications

The complex objective is one of the few objective functions that can entice the interest of
a practicing manager and scientific community. The objective tries to find a balance
between the shareholders and customers points of view, which is relevant to the manager
on the shop floor. In addition to this, researchers got further interested when they found
that the objective poses computational challenges, and stretches the limits of existing
solution methods.

From the managerial perspective, a heuristic solution method proposed in this paper
is easy to understand and implement for small problems. On this note, the authors would
like to mention that in order to avoid using sophisticated solution methods like genetic
algorithms, the shop floor manager can reduce the time horizon of problem at hand and
break the problem into smaller problems. These smaller problems can then be solved
using the proposed heuristic method. Even though this may not be a scientifically sound

 74 D. Bhowmick et al.

way to address the problem at hand, but contribute to the understanding of the nature of
the problem.

From the operations management researchers’ point of view, it is an irony that such a
useful objective function that has practical implications on the shop floor is difficult to
solve and has stretched the limits of available solution methods. This objective would
prove to be challenging in future as researchers would be drawn back to it when new
advances in solution methods would be found.

7 Conclusions

This paper deals with the complex cost function comprising the sum of weighted
tardiness and weighted flow-time costs. This unique objective takes care of the customer
and the share holder of the company. The importance of such objectives increases in
today’s global business environment where often meeting customer expectations is a
tough and demanding challenge and most of the times companies do so at the expense of
shareholder returns. In this paper we try to address this trade-off and propose solution
techniques that are easy for the shop-floor manager to implement. Efforts can be directed
towards a focus on the study of alternative measures of performances instead of cost.

In this paper, we presented a heuristic and two hybrid genetic algorithms for the
complex cost function. Experiments were conducted to evaluate the performance of the
heuristics and hybrid GA. Small, medium, large and benchmark problems were used to
conduct the experiments. Among the heuristics, it was found that NEH heuristic
developed for makespan objective outperformed GS (Gelders and Sambandam, 1978)
heuristic. It was also found that the GS (Gelders and Sambandam, 1978) heuristic
performed well for difficult to solve benchmark problems given by Taillard (1993) as
compared to randomly generated problems. It can be noted that the famous NEH heuristic
for makespan objective based on job insertion technique was modified and applied to this
problem with promising results. This heuristic is simple to use and understand. It can be
used by shop-floor managers to solved small problems in a short time. Since the NEH
heuristic minimises makespan, it might tend to reduce in-process holding costs as well as
tardiness costs. This might be a major contributing factor to the success of the modified
NEH heuristic in solving the complex cost function. Our research is continuing in this
direction.

In scope for further research, it can be seen from the literature review, the complex
objective has proved to be a challenging problem for the flowshop researchers. Even
though some effort has been made by researchers to deal with problem, there is a need to
develop branch and bound schemes. This would help in deepen the understanding of the
behaviour of the problem. On the genetic algorithms front, adaptive population sizing
schemes and dynamic parameter setting strategies can be developed to suit the complex
objective.

References
Campbell, H.G., Dudek, R.A. and Smith, M.L. (1970) ‘A heuristic algorithm for the n job, m

machine sequencing problem’, Management Science, Vol. 16, No. 10, pp.630–637.
Chen, C.L., Vempati, V.S. and Aljaber, N. (1995) ‘An application of genetic algorithms for flow

shop problems’, European Journal of Operational Research, Vol. 80, No. 2, pp.389–396.

 A hybrid genetic algorithm for a complex cost function 75

Figielska, E. (2009) ‘A genetic algorithm and a simulated annealing algorithm combined
with column generation technique for solving the problem of scheduling in the hybrid
flowshop with additional resources’, Computers and Industrial Engineering, Vol. 56, No. 1,
pp.142–151.

Gelders, L.F. and Kleindorfer, P.R. (1974) ‘Coordinating aggregate and detailed scheduling in the
one-machine job shop: I – theory’, Operations Research, Vol. 22, No. 1, pp.46–60.

Gelders, L.F. and Sambandam, N. (1978) ‘Four simple heuristics for scheduling a flow-shop’,
International Journal of Production Research, Vol. 16, No. 3, pp.221–231.

Gupta, J.N.D. and Stafford, E.F. (2006) ‘Flowshop scheduling research after five decades’,
European Journal of Operational Research, Vol. 169, No. 3, pp.699–711.

Kalczynski, P.J. and Kamburowski, J. (2007) ‘On the NEH heuristic for minimizing the makespan
in permutation flow shops’, Omega, Vol. 35, No. 1, pp.53–60.

Murata, T., Ishibuchi, H. and Tanaka, H. (1996) ‘Genetic algorithms for flowshop scheduling
problems’, Computers and Industrial Engineering, Vol. 30, No. 4, pp.1061–1071.

Nawaz, M., Enscore, E.E. and Ham, I. (1983) ‘A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem’, Omega, Vol. 11, No. 1, pp.91–95.

Park, Y.B., Pegden, C.D. and Enscore, E.E. (1984) ‘A survey and evaluation of static
flowshop scheduling heuristics’, International Journal of Production Research, Vol. 22,
No. 1, pp.127–141.

Rajendran, C. and Ziegler, H. (1999) ‘Heuristics for scheduling in flowshops and flowline-based
manufacturing cells to minimize the sum of weighted flowtime and weighted tardiness of
jobs’, Computers and Industrial Engineering, Vol. 37, No. 4, pp.671–690.

Rajendran, C. and Ziegler, H. (2003) ‘Scheduling to minimize the sum of weighted flowtime and
weighted tardiness of jobs in a flowshop with sequence-dependent setup times’, European
Journal of Operational Research, Vol. 149, No. 3, pp.513–522.

Reeves, C. (2003) ‘Genetic algorithms’, in Glover, F. and Kochenberger, G.A. (Eds.): Handbook of
Metaheuristics, Chapter 2, pp.55–82, Kluwer Academic Publishers.

Reeves, C.R. (1995) ‘A genetic algorithm for flowshop sequencing’, Computers and Operations
Research, Vol. 22, No. 1, pp.5–13.

Ruiz, R., Maroto, C. and Alcaraz, J. (2006) ‘Two new robust genetic algorithms for the flowshop
scheduling problem’, Omega, Vol. 34, No. 5, pp.461–476.

Sedgewick, R. (1983) Algorithms, Addison-Wesley, Reading, Massachusetts.
Sule, D.R. (1997) Industrial Scheduling, PWS Pub. Co Boston.
Taillard, E. (1990) ‘Some efficient heuristic methods for the flow shop sequencing problem’,

European Journal of Operational Research, Vol. 47, No. 1, pp.65–74.
Taillard, E. (1993) ‘Benchmarks for basic scheduling problems’, European Journal of Operational

Research, Vol. 64, No. 2, pp.278–285.
Tseng, L.Y. and Lin, Y.T. (2010) ‘A hybrid genetic algorithm for no-wait flowshop scheduling

problem’, International Journal of Production Economics, Vol. 28, No. 1, pp.144–152.
Turner, S. and Booth, D. (1987) ‘Comparison of heuristics for flow shop sequencing’, Omega,

Vol. 15, No. 1, pp.75–85.
Vallada, E. and Ruiz, R. (2010) ‘Genetic algorithms with path relinking for the minimum tardiness

permutation flowshop problem’, Omega, Vol. 38, Nos. 1–2, pp.57–67.
Woo, H.S. and Yim, D.S. (1998) ‘A heuristic algorithm for mean flowtime objective in flowshop

scheduling’, Computers & Operations Research, Vol. 25, No. 3, pp.175–182.
Woollam, C.R. and Sambandam, N. (1985) ‘The flow shop problem with a composite cost

function’, Computers and Industrial Engineering, Vol. 9, No. 1, pp.83–89.

