
   

  

   

   
 

   

   

 

   

   64 Int. J. Electronic Transport, Vol. 1, No. 1, 2011    
 

   Copyright © 2011 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

A hybrid genetic algorithm for a complex cost 
function for flowshop scheduling problem 

Debraj Bhowmick* and P. Maniyan 
National Institute of Industrial Engineering (NITIE), 
Vihar Lake, Mumbai 400087, India 
E-mail: devraj.007@gmail.com 
E-mail: pmaniyan@gmail.com 
*Corresponding author 

Anjali Saxena 
Indian Institute of Foreign Trade (IIFT), 
IIFT Bhawan, B-21, Qutab Institutional Area, 
New Delhi 110016, India 
E-mail: dhatrigwl@gmail.com 

Yves Ducq 
University of Bordeaux, 
IMS UMR 5218 CNRS, 351 Cours de la Libération, 
33405 Talence Cedex, France 
E-mail: yves.ducq@laps.ims-bordeaux.fr 

Abstract: Supply chain excellence has a real impact on business strategy. 
Manufacturing is an integral part of this strategy represents one of the most 
exciting opportunities to create value and one of the most challenging tasks for 
the policy makers. In this paper, we consider a performance criterion for the 
flowshop scheduling problem that aims to minimise a complex cost function, 
i.e., the sum of weighted tardiness and weighted flow-time costs. A heuristic 
and hybrid genetic algorithms are proposed and experimental results are 
provided. We address this trade-off and propose solution techniques that are 
easy for the shop-floor manager to implement. As scheduling function is an 
integral part of supply chain, the proposed solution minimises the opportunity 
losses and improves cost based supply chain performance. This paper addresses 
this interesting and challenging domain. 
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1 Introduction 

Today’s market can be considered as global and competitive due to dynamic nature of 
customer demands and frequently changeovers in the business scenarios and continuous 
evolutions of the new technologies. In order to retain customer goodwill and market 
share, firms need to manufacture quality products at reduced costs maintaining high 
responsiveness, thus a transition phase is visualised. Hence, there is a hunt for best 
compromise manufacturing system. To realise such targets, we consider a performance 
criterion for the flowshop scheduling problem that aims to minimise a complex cost 
function, i.e., the sum of weighted tardiness and weighted flow-time costs. The objective 
was first introduced by Gelders and Kleindorfer (1974) for single machine job shop 
problem. Later, Gelders and Sambandam (1978) provided heuristics for the m-machine 
permutation flowshop problem. Even though the complex cost function was introduced 
three decades ago, few researchers worked on it due to its complex nature. The cost 
function has two main components. The first, weighted tardiness, works in favour of the 
customer and ensures timely delivery of the job order. The second component, weighted 
flow-time, considers the shareholder point of view. Thus, this cost function is able to 
capture two important aspects that any business faces in today’s competitive global 
business environment. This paper aims to provide solution techniques for the complex 
cost function that are easy to understand and implement on a factory shop floor. 

The general flowshop scheduling problem consists of a set, N, of jobs (1, 2,…,n) to be 
processed on a set, M, of machines (1, 2,…,m) in series. The flow of jobs is unidirectional 
since all jobs follow the same technological routing through the machines. Processing of 
all jobs happen sequentially on multiple machines in the same order. Additionally, each 
job can be processed on only one machine at a time and each machine can process only 
one job at a time respectively (Sule, 1997; Gupta and Stafford, 2006). Furthermore, all 
operations are assumed to be non-preemptable. 
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The problem is to find a job ordering when a given set of n jobs is to be processed on 
m machines with an assumption that all jobs are simultaneously available. Processing 
starts on the first machine then on second machine and so on. All jobs follow the same 
processing order (identical routing). It is further assumed that the job sequences on all 
machines are the same (no passing allowed). Therefore, only n! permutation schedules 
need to be examined. For each job, there is an assigned due date. If the job is completed 
on or before its due date, then there is no tardiness penalty incurred. Otherwise, it incurs 
tardiness penalty at certain rate. In addition, it is assumed that there will be job holding 
cost for each job. Therefore, the performance criterion is to minimise a complex cost 
function, i.e., the sum of weighted tardiness and weighted flow time costs. 

In this paper, we present a heuristic and hybrid genetic algorithms for the complex 
cost function. First, we provide a brief literature review. This is followed by the proposed 
heuristic based on the insertion technique popularised by Nawaz et al. (1983). This is 
followed by the existing heuristic for the complex cost function given by Gelders and 
Sambandam (1978) is given. Then, workings of the hybrid genetic algorithm are given. 
Experimental results are given, which is followed by conclusion. 

2 Literature review 

Since it was introduced in three decades back, very few researchers have worked on the 
complex cost function. The weighted tardiness component has made it a difficult problem 
to deal with. In this section, we present research work done by few authors on this  
cost function. The complex objective that attempts to minimise the sum of weighted 
flow-time and weighted tardiness of jobs was first introduced by Gelders and Kleindorfer 
(1974). The authors minimised the complex objective subject to a given capacity plan for 
the single machine case. They analysed various lower bounding structures and gave an 
outline of a branch-and-bound algorithm. 

Gelders and Sambandam (1978) presented four heuristics that attempt to minimise the 
complex objective for the flow shop environment. The heuristics work by building up 
complete sequences from a null sequence by appending jobs one by one and by 
considering the sum of idle time of machines, the idle time of the last machine, lower 
bound on makespan, and the holding and tardiness costs and due-date of jobs (Rajendran 
and Ziegler, 2003). The authors noted that any algorithm that performs well with tighter 
due dates would also perform well under slack conditions. 

Rajendran and Ziegler (1999) proposed three heuristics for the complex objective and 
compared them with Gelders and Sambandam (1978). They developed heuristic 
preference relations by considering lower bounds on the completion times, operation due 
dates, and weights for holding and tardiness of jobs. They developed one heuristic based 
on the above heuristic preference relations and proposed two more heuristics to improve 
the solution given by the previous heuristic. They observe that all three proposed 
heuristics perform better than the existing heuristics in giving a solution of superior 
quality and that the first proposed heuristic yields a good solution by requiring a 
negligible computer time. They also give a simulated annealing algorithm. 

Rajendran and Ziegler (2003) gave heuristics for scheduling jobs in a static flowshop 
with jobs having sequence-dependent setup times. The heuristic starts by constructing a 
schedule using two heuristic preference relations. To improve the quality of the solution 
an improvement scheme was used twice. The results were compared with an existing 
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heuristic, a random search procedure, and a greedy local search method. The author 
found that the proposed heuristic was computationally faster and more effective in 
yielding solutions of better quality than the benchmark procedures. 

The difficulty of solving this problem can be seen from the fact that none of the 
authors discussed above have proposed exact solution methods like branch-and-bound 
etc, for the flowshop or multi machine scheduling problem. In this paper we compare the 
solutions obtained from the proposed heuristic to that given by Gelders and Sambandam 
(1978). We do not compare our results with Rajendran and Ziegler (1999) as their paper 
lacked details regarding implementation and experimental set up. 

3 Proposed heuristic method 

Nawaz et al. (1983) proposed a heuristic for the makespan problem. Henceforth, the 
Nawaz et al. (1983) heuristic is called NEH in the remaining parts of this paper. NEH 
heuristic is based on job insertion (insertion neighbourhood) and is one of the most used 
techniques in flowshop scheduling (Vallada and Ruiz, 2010). Also, Kalczynski and 
Kamburowski (2007) noted that the NEH heuristic has been commonly regarded as the 
best heuristic for minimising the makespan in permutation flowshops. Other researchers 
like Taillard (1990), Park et al. (1984), and Turner and Booth (1987) have confirmed the 
superiority of NEH over other heuristics. Later, Rajendran and Ziegler (1999) and Woo 
and Yim (1998) successfully applied NEH type job insertion technique to other 
objectives. Thus, a heuristic based on job insertion technique used in NEH was developed 
and applied to the objective function under consideration in this study. Suitable 
modifications as mentioned above were incorporated in the heuristic to suit the complex 
objective. 

The proposed heuristic follows the same steps used by Nawaz et al. (1983) in their 
heuristic for the makespan objective function. The NEH heuristic is modified to suit the 
complex objective function. The notable change is in the evaluation of the objective 
function. Instead of evaluating makespan, the proposed heuristic evaluates the complex 
cost function. The steps of the heuristic are reproduced below. It may be noted that in 
Step 3 the complex cost function is evaluated. 

• Step 1: For each job i calculate ,
1

,
m

i i j
j

T t
=

=∑  where ti, j is the process time of job i on 

machine j. 

• Step 2: Arrange the jobs in descending order of Ti. 

• Step 3: Pick the two jobs from the first and second position of the list of Step 2, and 
find the best sequence for these two jobs by calculating the complex cost function for 
the two possible sequences. Do not change the relative positions of these two jobs 
with respect to each other in the remaining steps of the algorithm. Set i = 3. 

• Step 4: Pick the job in the ith position of the list generated in Step 2 and find the best 
sequence by placing it at all possible i positions in the partial sequence found in the 
previous step, without changing the relative positions to each other of the already 
assigned jobs. 
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• Step 5: If n = i, STOP, otherwise set i = i + 1 and go to Step 4. 

4 GS heuristic 

Gelders and Kleindorfer (1974) were the first to introduce the complex cost function for 
single machine job shop problem. They proposed a performance criterion to minimise a 
complex cost function, i.e., the sum of weighted tardiness and weighted flow time costs. 
Later, Gelders and Sambandam (1978) provided four heuristics for the m-machine 
permutation flowshop problem. A description of the heuristic provided by Woollam and 
Sambandam (1985) is given below. 

A dispatching index is generated, given by Ri = Mi / Di; where Mi is the relative 
measure of lateness of job i and Di is the total idle time of job i on all machines. Mi in 
turn is found by Mi = Ti / (Ti – Sσ – Pi) where Ti is the lower bound on the makespan of 
job i; Sσ is the finishing time of the partial sequence σ on the last machine m and Pi is the 

processing time plus the calculated idle time of job i on the last machine m. 
1

m

i ij
j

D D
=

=∑  

where Dij is the delay or idle time of job i on machine j. The jobs are added to the 
sequence with respect to the largest Ri. The heuristic follows three principles, 

1 uses a dynamic job dispatching rule 

2 gives priority to the item which is most expensive to hold 

3 fits the jobs together so that idle time is minimal. 

5 Hybrid GA 

The genetic algorithm (GA) starts by generating initial population randomly. Then 
parents are selected based on fitness and crossover is performed on them to generate  
off-springs. Mutation is applied with a probability to the off-springs before it is passed to 
the hybrid procedure. Hybrid procedure is applied with a probability. If the stopping 
criterion is not met, some of the better off-springs are included in the new population and 
replace less fit individuals. A brief description of the hybrid GA is given below. 

In this work, for encoding or chromosomal representation we choose to employ the 
natural representation of a sequencing problem, which is a permutation of jobs. This type 
of representation is also called as non-linear encoding. This natural representation of the 
problem has been frequently used by researchers (Reeves, 1995; Chen et al., 1995; 
Murata et al., 1996). In other words, the string used in this genetic algorithm is a 
permutation of given jobs. 

Initialisation or the initial population of the genetic algorithm is generated randomly. 
The population is also seeded with good solutions obtained in subsequent runs of the 
genetic algorithm. Reeves (2003) had stated that ‘seeding’ the initial population with 
known good solutions can help the genetic algorithm find better solutions more quickly 
compared to random start. Hence, initial population of every generation was seeded with 
solutions from heuristics by Campbell et al. (1970) and Nawaz et al. (1983). 
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Elitism strategy is used here. According to Reeves (2003), elitism ensures the survival 
of the best individual so far by preserving it. Hence, subsequent populations were seeded 
with the best solution found in the previous runs. The remaining members of the 
population were generated randomly (Reeves, 1995). 

The basic idea of selection is that it should be related to fitness (Reeves, 2003). 
Selection is done as described in Murata et al. (1996). The selection probability was 
obtained by dividing probability of selecting the fittest string by probability of selecting 
the average string. 

The reproduction compromises crossover and mutation. Crossover replaces some of 
the genes of one parent by corresponding genes of the other. In mutation, genes of a 
string are interchanged to promote variety in the population and slowdown the premature 
convergence in the population. 

Three types of crossover operators were used namely, one-point, two-point and 
uniform crossover. One point and two-point crossovers used here are described in Murata 
et al. (1996) and uniform crossover is described in Reeves (2003). 

Two types of mutation operators were used. The purpose of mutation is to help 
preserve a reasonable level of population diversity and enables the process to escape from 
sub-optimal regions of the solution space (Reeves, 2003). Adjacent two-job change and 
Shift change mutations described in Murata et al. (1996) are used in this work. 

5.1 Hybridisation procedures 

Hybridisation of the genetic algorithm with local search methods makes the search more 
effective and more efficient (Tseng and Lin, 2010). In this work, seven local search 
procedures are given including four novel local search schemes. These procedures intend 
to search the neighbourhood of the child for better sequences. The sequence with the 
lowest objective function value is then reinserted into the population. Except the scheme 
based on adjacent pairwise interchange, which is applied to all child sequences, other 
hybrid procedures mentioned below are applied with a probability after mutation. Thus, 
these procedures are not applied to all individuals in the population as proposed by Ruiz 
et al. (2006). This low probability enables the GA to run fast and prevents it from getting 
trapped in local optimum. 

5.1.1 Hybrid 1: random job insertion search 

In this version of local search, a job is selected at random from the given sequence and is 
inserted in all possible positions back into the sequence. The resulting (n – 1) sequences 
are evaluated and the best objective and its corresponding sequence is returned. A brief 
description of the steps in Hybrid procedure described above are given below. 

1 Receive sequence σ 

• Step 1: From the given sequence, remove a job randomly. 

• Step 2: Place the job in all possible positions in the sequence and generate  
(n – 1) sequences. 

• Step 3: Evaluate every sequence for the given objective function and return the 
best objective function value and sequence. STOP. 
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5.1.2 Hybrid 2: random block insertion search 

In this novel local search scheme, a block of jobs is chosen randomly and removed from 
the given sequence. These jobs are then reinserted into the sequence one by one. A 
detailed description of the scheme is as follows. A random point is selected and from this 
point onwards, a few jobs equal to a random number are selected. These jobs are 
removed from the sequence and placed in a set of unscheduled jobs in the order in which 
they were removed. From the set of unscheduled jobs, the first job is removed and 
inserted in all possible positions in the sequences. The partial sequence that gives the 
lowest objective function value is selected. Using this sequence, the algorithm proceeds. 
The remaining unscheduled jobs are inserted in the same manner as described above until 
the set of unscheduled jobs is empty. The best sequence is chosen and returned. A brief 
description of the steps used in the procedure are given below. 

1 Receive sequence σ 

• Step 1: From the given sequence σ remove a set of jobs chosen randomly and place 
them in a set of unscheduled jobs σ′. 

• Step 2: Remove the first job from the set of unscheduled jobs σ′ and place it in all 
possible positions in the partial sequence σ. 

• Step 3: Evaluate all the partial sequences generated in Step 2. 

• Step 4: Choose the partial sequence that gives the best objective function value and 
using it repeat Steps 1 to 4 until σ′ is empty. STOP. 

Two termination conditions were set for the genetic algorithm. First, number of 
generations was restricted to 500. Second, if there were no improvements in the last 100 
generations then GA would stop. Termination would take place for any condition that 
occurred earlier. The upper limit of generations is similar to the stopping criteria 
proposed by Figielska (2009). Other authors, like Vallada and Ruiz (2010) propose a 
stopping criterion set to maximum elapsed CPU time of n(m/2) 120 ms, which allows for 
increased number of observations in order to allow for a more exhaustive analysis. 
Compared to later, stopping criterion used in this study is restrictive and permits a time 
bound evaluation of the problem at hand. 

5.2 Experimental design and computational results 

Experiments were conducted using randomly generated problems to evaluate the 
proposed heuristics and hybrid genetic algorithm. Problems with randomly generated 
processing times, due dates, due date penalty and holding cost were used to carry out 
experiments. As mentioned in Gelders and Sambandam (1978) and Rajendran and 
Ziegler (1999), the processing times were randomly generated and ranged from 1 to 20, 
the due date for each job was generated by the sum of the processing time plus a random 
number up to 5n as given below. 

1

 and 5.5 .
m

ij
j

p n
=
∑  
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where pij is the processing time of the ith job on the jth machine. Rajendran and Ziegler 
(1999) used the same procedure to generate due-dates and found these due dates tight. 
They commented that such tight due-date setting would bring out the better or poorer 
relative performance of a heuristic with respect to other heuristics under evaluation. Due 
date penalty costs per unit time and holding costs per unit time were randomly generated 
between 0 to 10. 

The relative evaluation of results is done as follows: Suppose the schedule given by 
the ith GA (i = 1 to 10 corresponding to the ten problems) is πi with its objective function 
value denoted by Zi. The relative percentage error of the schedule given by the ith GA 
solution is: 

( )
( )

min ,1 10
100

min ,1 10
i i

i

Z Z i
Z i

− ≤ ≤
×

≤ ≤
 

Table 1 Comparison of heuristics for small randomly generated problems 

Jobs Machines Mod NEH GS 

5 5 0.0000 2.6697 
 10 0.6714 6.8955 
 15 1.1160 0.6674 
 20 4.6292 1.3920 
 25 1.7999 6.6183 
6 5 0.7732 4.5126 
 10 2.9261 4.3277 
 15 2.1454 6.1984 
 20 1.2718 3.0051 
 25 1.7039 2.8549 
7 5 4.4008 6.0295 
 10 2.0887 7.4601 
 15 3.5818 4.2052 
 20 2.7170 6.6419 
 25 0.9005 3.4287 
8 5 4.8657 9.7053 
 10 4.9057 7.5625 
 15 2.8374 7.2616 
 20 1.4929 3.4940 
 25 3.8995 4.5026 
9 5 5.8859 5.9810 
 10 2.1871 7.8736 
 15 1.7652 9.8444 
 20 2.9223 4.2773 
 25 1.3050 5.3088 
Average  2.5117 5.3087 
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Experiments were carried out on an Intel P4, 2.5 GHz computer with 256 MB RAM. 
Experiments were conducted to determine generation size, crossover type, mutation type 
and mutation probability. Two levels of generation size, i.e., 20 and 40 and two mutation 
probability settings, i.e., 0.001 and 0.0005 were tested in addition to crossover type and 
mutation type. In the pilot runs, it was found that generation size 40, uniform crossover, 
adjacent two-job change mutation with probability of 0.001 performed well. These 
settings were used to carry out further experiments. 

Experiments were carried out for small problems. Jobs ranged from 5 to 9 and 
machines from 5 to 25. The results from the modified NEH heuristic and the GS  
(Gelders and Sambandam, 1978) heuristic were compared with results from an adapted 
enumeration routine given by Sedgewick (1983). The results of this experiment are given 
in Table 1. It can be seen that the modified NEH heuristic is giving better results as 
compared to the other heuristic. 

Experiments were carried out on large problems. 10, 20 and 30 jobs were considered 
and 5 to 25 machines were considered. For large problems, the results of heuristics and 
hybrid genetic algorithms were compared with the lowest result found during that 
experiment. The results are given in Table 2. It was found that for large problems, the 
modified NEH performed well and genetic algorithm with random job insertion search 
hybrid procedure performed well. 
Table 2 Comparison of heuristics and hybrid genetic algorithms using randomly generated 

problems 

Jobs Machines Mod NEH GS GA Hy 1 GA Hy 2 

10 5 4.7224 11.4403 0.0000 0.0000 
 10 1.9063 10.2269 0.0000 0.0000 
 15 5.2032 8.9749 0.0000 0.0000 
 20 2.1493 10.0282 0.0000 0.0000 
 25 1.8091 8.1506 0.0000 0.0000 
20 5 7.2706 19.3877 0.2835 0.3564 
 10 4.7282 18.9907 0.4755 0.5492 
 15 5.7012 18.4909 0.4349 0.3458 
 20 5.5059 18.7401 0.4115 0.3865 
30 5 10.0945 25.9308 1.4771 1.4480 
 10 9.4437 24.5958 1.6983 1.7928 
 15 8.5349 30.4563 1.5707 1.5742 
Average   5.5891 17.1178 0.5293 

Experiments were conducted using benchmark problems given by Taillard (1993). The 
benchmark problems for flowshop have the processing times and all other values required 
for this work were generated as mentioned above. The results are given in Table 3. It was 
found that the GS heuristic performed better on Taillard’s problems as compared to 
randomly generated problems with randomly generated processing times. In case of GA, 
GA with random block insertion search hybrid procedure performed well. It can be noted 
that, even though the modified NEH has performed well as compared to GS heuristic, the 
performance of GS heuristic has improved for Taillard benchmark problems. These 
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problems are known to be difficult to solve. It can be concluded that, the GS heuristic 
may perform well when the problems are difficult to solve. 
Table 3 Comparison of heuristics and hybrid genetic algorithm using Taillard (1993) 

benchmark problems 

Problem No. Mod NEH GS GA Hy 1 GA Hy 2 
tai_20 × 5 1 5.4204 10.9802 0.2786 0.3297 
tai_20 × 5 2 3.7423 18.0838 0.5922 0.3276 
tai_20 × 5 3 4.8909 24.1708 0.1839 0.0865 
tai_20 × 5 4 1.6216 22.7271 0.1222 0.1956 
tai_20 × 5 5 5.3788 15.3742 0.0000 0.0000 
tai_20 × 5 6 6.7026 18.6937 0.4059 0.6241 
tai_20 × 5 7 11.2529 9.8567 0.5595 0.3516 
tai_20 × 5 8 6.8598 12.0632 0.1508 0.4120 
tai_20 × 5 9 8.0721 19.1364 1.1768 0.8666 
tai_20 × 5 10 6.9130 14.6651 0.8021 0.8653 
tai_20 × 20 1 5.6319 10.4552 0.1014 0.1427 
tai_20 × 20 2 3.2486 26.3637 0.1698 0.1278 
tai_20 × 20 3 2.7987 10.8161 0.6060 0.4486 
tai_20 × 20 4 5.4970 18.2247 0.1836 0.1224 
tai_20 × 20 5 4.9844 9.4495 0.1860 0.1010 
tai_20 × 20 6 3.6799 15.2860 1.0198 1.0308 
tai_20 × 20 7 4.0197 17.2734 0.5100 0.5565 
tai_20 × 20 8 6.3355 8.5175 0.3942 0.2686 
tai_20 × 20 9 5.7741 18.4422 0.5992 0.4895 
tai_20 × 20 10 8.5947 10.5505 0.3916 0.3585 
Average  5.5709 15.5565 0.4217 0.3853 

6 Academic and managerial implications 

The complex objective is one of the few objective functions that can entice the interest of 
a practicing manager and scientific community. The objective tries to find a balance 
between the shareholders and customers points of view, which is relevant to the manager 
on the shop floor. In addition to this, researchers got further interested when they found 
that the objective poses computational challenges, and stretches the limits of existing 
solution methods. 

From the managerial perspective, a heuristic solution method proposed in this paper 
is easy to understand and implement for small problems. On this note, the authors would 
like to mention that in order to avoid using sophisticated solution methods like genetic 
algorithms, the shop floor manager can reduce the time horizon of problem at hand and 
break the problem into smaller problems. These smaller problems can then be solved 
using the proposed heuristic method. Even though this may not be a scientifically sound 
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way to address the problem at hand, but contribute to the understanding of the nature of 
the problem. 

From the operations management researchers’ point of view, it is an irony that such a 
useful objective function that has practical implications on the shop floor is difficult to 
solve and has stretched the limits of available solution methods. This objective would 
prove to be challenging in future as researchers would be drawn back to it when new 
advances in solution methods would be found. 

7 Conclusions 

This paper deals with the complex cost function comprising the sum of weighted 
tardiness and weighted flow-time costs. This unique objective takes care of the customer 
and the share holder of the company. The importance of such objectives increases in 
today’s global business environment where often meeting customer expectations is a 
tough and demanding challenge and most of the times companies do so at the expense of 
shareholder returns. In this paper we try to address this trade-off and propose solution 
techniques that are easy for the shop-floor manager to implement. Efforts can be directed 
towards a focus on the study of alternative measures of performances instead of cost. 

In this paper, we presented a heuristic and two hybrid genetic algorithms for the 
complex cost function. Experiments were conducted to evaluate the performance of the 
heuristics and hybrid GA. Small, medium, large and benchmark problems were used to 
conduct the experiments. Among the heuristics, it was found that NEH heuristic 
developed for makespan objective outperformed GS (Gelders and Sambandam, 1978) 
heuristic. It was also found that the GS (Gelders and Sambandam, 1978) heuristic 
performed well for difficult to solve benchmark problems given by Taillard (1993) as 
compared to randomly generated problems. It can be noted that the famous NEH heuristic 
for makespan objective based on job insertion technique was modified and applied to this 
problem with promising results. This heuristic is simple to use and understand. It can be 
used by shop-floor managers to solved small problems in a short time. Since the NEH 
heuristic minimises makespan, it might tend to reduce in-process holding costs as well as 
tardiness costs. This might be a major contributing factor to the success of the modified 
NEH heuristic in solving the complex cost function. Our research is continuing in this 
direction. 

In scope for further research, it can be seen from the literature review, the complex 
objective has proved to be a challenging problem for the flowshop researchers. Even 
though some effort has been made by researchers to deal with problem, there is a need to 
develop branch and bound schemes. This would help in deepen the understanding of the 
behaviour of the problem. On the genetic algorithms front, adaptive population sizing 
schemes and dynamic parameter setting strategies can be developed to suit the complex 
objective. 
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