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Abstract: This paper proposes a new evolutionary technique named scatter 
search for scheduling a number of jobs on a single machine against a restrictive 
common due date. Individual earliness and tardiness penalties for the jobs are 
under consideration and the objective is to find an optimal schedule, which 
jointly minimises the sum of the earliness and tardiness costs. In this paper, the 
results are obtained for numerous benchmark problems generated by Biskup 
and Feldmann (2001) for common due date (CDD) problems. The best results 
of each of the benchmark problems of the three meta-heuristic techniques used 
by Feldmann and Biskup (2003) are selected and they are compared with the 
results of SS. This methodology provides substantially better results than the 
benchmark problems. At the same time, this method holds almost the same 
result as the best results (best-FB) of three meta-heuristic approaches of 
Feldmann and Biskup (2003). 
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1 Introduction 

The operations scheduling problems have been studied for over five decades. One of the 
most thoroughly studied scheduling problems is the single machine scheduling problem 
(SMSP). In the SMSP, a set N = {1, … , n} of n independent jobs has to be processed on 
one machine. SMSPs make the basis for theories of scheduling. There are several reasons 
for focusing on single machine problems. However, since SMSPs bear complex 
computations, it seems that the analysis of such problems is the most cost-effective for a 
better understanding of them and their intrinsic structure. In many cases, it is single 
machine problems that lead into bottleneck in a production environment. Among single 
machine problems, those related to earliness and tardiness penalties are more important. 
In real world, since a customer expects to receive the product on a specific date, 
scheduling based on the due date is an important task in the production plants. Methods 
such as lean management, simultaneous engineering and just in time (JIT) production 
consider such needs. One of the most important production systems to satisfy customer 
requirements is JIT system. This system shows a situation where a given quantity of 
product must be produced and delivered to the customer in a specified time. In JIT 
production, the due date could be considered as the common due date (e.g., a series of 
jobs requiring simultaneous mounting at a higher stage of production). In scheduling 
problems, considering the common due date (CCD), some jobs may be completed earlier 
and some others later than the due date, making penalties in both cases. Earliness leads 
into inventory and maintenance penalties while tardiness leads into dissatisfaction of a 
customer and losing goodwill and reputation. In the field of CCD scheduling, two kinds 
of due dates, namely, restrictive and unrestrictive ones, are distinguished: a CCD is called 
unrestrictive, if its optimal value has to be determined, or if it is given and has no 
influence on the optimal sequence. Note that a given due date which is greater than or 
equal to the sum of processing times of all jobs is always unrestrictive. If, on the other 
hand, a CCD is given and may influence the optimal sequence of the jobs, it is called 
restrictive; thus a search for an optimal sequence has to be carried out with respect to the 
due date. Scheduling on a single machine is a special case of the multiple-machine 
environment. There are a number of reasons for focusing on single-machine problems: 
multiple-machine scheduling problems are, as a rule, computationally intractable and a 
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better understanding of them and their inherent structure may be gained by analysing 
single-machine problems. Furthermore, in many real life situations it is one machine that 
causes a bottleneck of the whole production environment, so that production planning 
should be orientated towards this single machine.Therefore, the analysis of restricted-type 
problems seems necessary here. This type of problems has been studied in the literature 
since long ago. 

When scheduling on a single machine about a CCD, at most one job can be 
completed exactly on the due date. Other jobs have to be completed either earlier or later 
than the due date. To meet the just-in-time requirement, jobs completed before the CCD 
incur earliness penalties, while jobs completed after the CCD incur tardiness penalties. 
The earliness penalties include holding costs for finished goods, deterioration of 
perishable goods and opportunity cost. The tardiness penalties are the back logging  
cost which includes performance penalties, loss of sales and loss of goodwill. The  
single-machine scheduling problem with general earliness-tardiness penalties about a 
CCD is defined as follows. There are n jobs each of which requires exactly one operation 
are scheduled on a single machine about the CCD d. For each job i, the processing time 
pi, the penalty per unit time of earliness αi, and the penalty per unit time of tardiness βi 
are given. 

2 Literature review 

Scheduling against due dates has been receiving considerable attention in the literature. 
Conway (1965) was the first person who formally raised the question of the CCD as a 
part of scheduling and stated that this is the due date that could have different 
consequences. Sidney (1977) and Kanet (1981) were among other leading investigators 
on the due date problems. Sidney (1977) introduced an effective algorithm to represent 
the optimal date and studied distinct due dates. One of the pioneers studying CCD 
problems has been Kanet (1981), who considered the problem of minimising the sum of 
deviations from a CCD and presented a polynomially bounded matching algorithm which 
solves the problem in O(n log n) time. This contribution has been extended in many 
directions; see, for example, Biskup and Cheng (1999), Hall and Posner (1997), 
Hoogeveen and van de Velde (1991) and Panwalkar et al. (1982). An excellent review is 
given by Baker and Scudder (1990). Hall (1986) studied the investigations of Kanet 
(1981) on several parallel machines and analysed optimal conditions and optimal 
solutions available for such problems. A comprehensive review of the due date was made 
by Baker and Scudder (1990) and Gordon et al. (2002). These authors stated that the 
limited due date problems were not studied before them. Cheng and Gupta (1989) carried 
out a study to solve scheduling problems for parallel machines and indicated a review for 
decision-making on the due-date. The earliness-tardiness models, considering a given 
CCD, are classified as different types of penalty. Some of these models, like  
Emmons (1987), describe common penalties, some others, like Bagchi et al. (1987) and 
Panwalker et al. (1992), have treated the difference between earliness-tardiness penalties 
(Emmons, 1987; Bagchi et al., 1987; Panwalkar et al., 1982). Another group noted the 
remaining jobs, including Baker and Scudder (1989) and Cheng (1987). Cheng (1990) 
studied different types of scheduling problems with CCD. The author considered the 
objective function only as a combination of jobs with earliness-tardiness penalties, where 
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earliness of jobs was penalised with the same rate. For more studies, the detailed study is 
reported in Weng and Ventura (1994). Webster and Gupta (1998), considering an 
arbitrary rate for earliness-tardiness penalties, studied the due date problems for this 
group of problems using the genetic algorithm (GA). Concerning limited due date 
problems, Hall and Posner (1991) showed that they are of NP-hard type. In the same 
direction, Lee and Kim (1995) raised the GA, while James (1997) applied the tabu search 
(TS) approach. Hall et al. (1991) showed this group of problems considering the 
objective function as minimising the sum of unweighted earliness and tardiness and 
considered the optimum conditions and the NP-hard argument for the problem. The 
method was raised by Hino et al. (2005) using the two methods of TS and GA to solve 
problems of CCD were appropriate in facilitating solution of limited due date problems. 
Also, the integer programming methods raised by Biskup and Feldmann (2001) for 
solving problems with small size of jobs were useful. The same authors studied SMSPs 
with limited CCD in 2003 and showed that the threshold accepting method is an 
appropriate method for this purpose (1, 2). Seyed and Mohammad (2008) analysed 
several meta-heuristic algorithms to solve restricted SMSPs and then propounded a 
heuristic method called tabu search. Using statistical analyses, they showed that the 
proposed algorithm is as efficient as the other methods of simulated annealing and 
threshold accepting. 

This paper focuses solely on single-machine problems, assuming that a restrictive 
CCD exists and for each of the jobs, individual earliness and tardiness completion time 
penalties are given. The goal is to find a schedule, which minimises the sum of earliness 
and tardiness costs. This problem is NP-hard (Hall et al., 1991; Hoogeveen and van de 
Velde, 1991). Although the exact classification is an open question, no pseudo 
polynomial algorithm is known and it is conjectured that the problem is NP-hard in the 
strong sense (Lee et al., 1991). Consequently, it has been tackled by meta-heuristic 
approaches, namely, tabu search (James, 1997) and parallel genetic algorithms (Lee and 
Kim, 1995). As both approaches are marked by an underlying weakness, which was 
discussed in connection with the properties of the problems, Feldmann and Biskup (2003) 
developed a new and appropriate problem representation, which overcomes this 
weakness. In that paper, three meta-heuristics, evolutionary search (ES), simulated 
annealing (SA) and threshold accepting (TA) using a new problem representation was 
presented. In addition, a new variant of TA, namely ‘TA with a back step’, is introduced. 
The approaches are implemented and tested extensively on benchmark problems given by 
Biskup and Feldmann (2001) and James (1997).  In this paper, a new evolutionary 
technique called SS with the same problem representation used by Feldmann and Biskup 
(2003) for optimising the problems is introduced and the results are compared with the 
best solution obtained from the above three methods. Noorul Haq and Saravanan (2007) 
used SS method for minimising the earliness and tardiness penalties in single machine 
scheduling for common due window (CDW) problems. The application of SS algorithm 
for other manufacturing system, performs better in scheduling problems such as flow 
shop [Noorul Haq et al., 2007; Saravanan and Noorul Haq, 2008), FMS problems 
(Saravanan and Noorul Haq, 2008), Single machine scheduling (Noorul Haq and 
Saravanan, 2007), cell scheduling (Saravanan and Noorul Haq, 2008), vehicle routing 
problem (Saravanan and Sundararaman, 2010) and job shop scheduling (Saravanan and 
Noorul Haq, 2010). Ying (2008) has implemented recovering beam search (RBS) 
algorithm to minimise earliness and tardiness penalties for CCD. Wang (2006) has 
presented an O (n log n) algorithm to obtain the optimal solution for single machine 
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scheduling with CCD. Since SS method gives almost the same result as the best solution 
obtained from the above three methods, our problems are restricted to the tune of 100 
jobs. 

The remaining part of the paper is structured as follows. In Section 3, the notation 
needed is introduced and the problem under study is formulated. Furthermore, some 
properties of this problem, which are used for the development of the problem 
representation in Section 4, are stated. The basic elements of SS based on the well-known 
‘five methods’ are presented in Section 5. Computational results are summarised in 
Section 6 and the paper concludes with final remarks. 

3 Problem formulation 

Nomenclature 

d common due date 

n number of jobs 

pi processing time of job i 

ai earliness penalty of job i per time unit 

bi tardiness penalty of job i per time unit 

Ci completion time of job i 

Ei earliness of job i 

Ti tardiness of job i 

B set of non-tardy jobs, B = {i / Ci ≤ d} 

A set of tardy jobs scheduled to begin in or after d, A = {i /Ci – pi ≥ d}. 

All jobs are assumed to be available at time zero. They have to be processed on a single 
machine and each of the jobs needs exactly one operation. The processing times pi is 
deterministic and known in advance, preemption of jobs is prohibited and a restrictive 
CCD d is given. A job is early, if its completion time is smaller than the CCD. On the 
other hand, a job is tardy, if it’s processing ends after d. As it is not known in advance 
whether a job will be completed before or after the due date, earliness and tardiness are 
calculated as Ei = max {d – Ci, 0} and Ti = max {Ci – d, 0} for all jobs i = 1,…, n. The 
objective is to find a feasible schedule S which minimises the sum of earliness and 
tardiness penalties, is given as 

∑∑
==

+=
n

i
iii

n

i
i TESf

11

)( βα  

We refer to the term ‘sequence’ as the order in which the jobs are processed. A 
‘schedule’ on the other hand contains all the information which is needed to manufacture 
the jobs; these are the sequence, the starting time of the first job and the CCD. In the 



   

 

   

   
 

   

   

 

   

   10 M. Saravanan and A. Noorul Haq    
 

    
 
 

   

   
 

   

   

 

   

       
 

following three well-known properties of the problem under study are presented. They 
are essential for the new problem representation and for the design of the heuristic 
approaches. 

Property 1. In an optimal schedule there are no idle times between the processing of 
consecutive jobs; a general proof is given by Cheng and Kahlbacher (1991). 

Property 2. An optimal schedule has the so-called V-shaped property. This means that 
the jobs Bi ∈  are ordered according to non-increasing ratios pi / αi and the jobs Ai ∈  
are in non-decreasing ratios pi / βI; the proof can be done by interchange argument, see 
for example, Baker and Scudder (1989). 

Note that despite Property 2 an optimal schedule might contain a so-called straddling job 
not belonging to the sets A and B; in which processing is started before and finishes after 
the due date. If in an optimal schedule a straddling job j exists, no definite statement of its 
ratios pj / αj and pj / βj can be made, see Biskup and Feldmann (2001) and Hoogeveen 
and van de Velde (1991). 

Property 3. An optimal schedule exists in which either the processing of the first job 
starts at time zero or one job is completed at the due date; the proof is similar to that of 
Hoogeveen and van de Velde (1991) for the restrictive CCD problem with weighted 
penalties. Szwarc (1989) has been the first to demonstrate that for the restricted CCD 
problem (with αi = βi = 1) instances exist in which none of the optimal schedules start at 
time zero. 

Note that Property 3 implies the possibility that in an optimal schedule the first job starts 
at time zero and the completion time of one job coincides with the due date. 
Nevertheless, considering Property 3 the search for an optimal schedule should not be 
restricted to sequences starting at time zero. The weakness of the two above-mentioned 
approaches of James (1997) and Lee and Kim (1995) is that both neglect Property 3 and 
limit their search space to schedules in which the first job starts at time zero although this 
might exclude all optimal schedules a priori. 

4 Problem representation 

The choice of an appropriate problem representation is among the most important tasks 
for the application of meta-heuristics. The problem representation can be seen as a 
mapping, which transfers a feasible solution of the problem into a specific, somehow 
coded, represented solution. As a matter of principle the problem representation should 
fulfill the following requirements, see Feldmann (1999) and Osman and Laporte (1996): 

• it has to be complete, i.e., all possible solutions must be representable 

• none of the represented solutions may be infeasible 

• the mapping should only contain redundancies, if this is advantageous for the search 
process 

• a given solution should be represented unequivocally 
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• with the application of a specific search operator each solution of the entire solution 
space must be reachable independently of the starting point 

• the problem representation should in addition support the application of appropriate 
operators. 

A representation for the CCD problem has to take into consideration its structural 
properties, i.e., a straddling job violating the V-shaped property might exist and the 
starting point of the first operation is not known in advance. In any event it is possible to 
calculate the maximum number of non-tardy jobs lBlmax for which the inequalities 

maxmax 1

1 1

B B

i i
i i

P d and P d
+

= =

≤ >∑ ∑  

hold, assuming that the jobs are indexed according to the shortest processing time (SPT) 
rule. 

All potential optimal solutions of the CCD scheduling problem can be subdivided into 
the following three disjunctive cases that are given in Figure 1. For each of them it is 
assume that the jobs in B and A are ordered according to the V-shaped property. 

Figure 1 The three disjunctive cases of optimal solutions 

1 The first job starts in time zero and the last job of B is finished exactly at time d,  
|A| + |B| = n 

 
 
 

2 He first job starts in time zero and the last job of B is completed prior to time d. 
Further a straddling job exists, |A| + |B| = n – 1 

 
 
 

3 He first job is delayed and the last job of B is finished exactly at time d, |A| + |B| = n 
 
 
    

 

To represent the problem a permutation is used consisting of the n given jobs of the 
problem and maxB  dummy jobs with 0...

max
21 ==== +++ Bnnn ppp , i.e., the 

permutation contains n+ maxB  jobs. It is at most necessary to interpret the first maxB +1 

positions of this permutation to unequivocally define the represented schedule. The 
processing times of the jobs are summed up according to the order given by the 
permutation. The first case occurs if at some point this sum exactly equals the due date. If 
on the other hand this sum exceeds the due date the current job straddles as depicted in 

0 d

  B A

0 d

  B    s A

 0 d
B A
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case two. The third case occurs if the sum of the processing times of the first 
max

B +1 

jobs of the permutation is smaller than d (since some of the dummy jobs are among the 
first positions). This procedure can be summarised as follows: let [i] be the job that 
occupies the ith position of the permutation: 

Problem representation 

Step 0: B { }max, 1,2,...,A n Bϕ= = +  

Step 2: while ( stop = false) do  
 If sum + P[i] ≤ d then sum = sum + p [i], B = [ ]B i∪  and A = A     [i] 

 else [ i] is the straddling job, 
 A = A     [i], stop = true. 
 i = i + 1; 
 If  ( I > max 1B + )  or ( sum = d) then stop = true. 

With this procedure an unequivocal assignment of the jobs to the sets A and B is given. 
Furthermore, it is determined whether a straddling job exists and, if so, which of the jobs 
this is. The jobs in A and B are ordered according to the V-shaped property. If a 
straddling job exists the first job of the set B is started in time zero. After finishing the 
last job of set B the straddling job and afterwards the jobs of the set A are scheduled. If 
on the other hand no job straddles. The completion of the last job of the set B coincides 
with the due date and the processing of the jobs in the set A is followed immediately. 
With the determination of the starting time of the first job and the construction of the 
sequence the objective function value can be calculated easily. Note that with this 
problem representation all potential optimal schedules might be represented. 

Furthermore, different operators to generate a neighbourhood are possible. A tardy 
job can be shifted from the set A to the set B, that is from a position j, j ∈ B +1, 

B +2,……, maxB + n of the permutation to a position k, k ∈ 1,2,…., maxB . With 

this operation the jobs occupying the positions k, k + 1,….,j–1 are shifted right by one 
direction. This shifting procedure can be carried out for multiple jobs simultaneously or 
the tardy job chosen can be shifted to the first position (k = 1), etc. From computational 
experiments, it is decided not to adapt this shifting but rather n interchange procedure. 
The neighbourhood N(S) used throughout the paper is as follows: Two jobs are selected 
at random from the sets A and B and are interchanged if at least one of them is not a 
dummy job. A tardy job at a position j, j ∈ B +1, B +2,…., maxB +n is 

exchanged with an early job at a position  k, k ∈ 1,2,…., B of the permutation. 

5 Elements of SS 

The solution approach that we have developed for the SMSP consists of an adaptation of 
SS. The SS is an instance of the so-called evolutionary method, which is not based solely 
on randomisation as the main mechanism for searching. It constructs solutions by 
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combining others by means of strategic designs that exploit the knowledge on the 
problem at hand. The goal of these procedures is to enable a solution procedure based on 
the combined elements to yield better solutions than one based on the original elements. 

In common with other evolutionary methods, SS operates with a population of 
solutions, rather than with a single solution at a time, and employs procedures for 
combining these solutions to create new ones. The meaning of ‘combining’, and the 
motivation for carrying it out, has a rather special origin and character in the SS setting. 
One of the distinguishing features of this approach is its intimate association with the TS 
meta-heuristic, and hence its adoption of the principle that search can benefit by 
incorporating special forms of adaptive memory. More about the origin and multiple 
applications of SS can be found in Glover (1998), Glover et al. (2000) and Laguna et al. 
(1998). The basic steps involved in the static scatter search are: 

Step 1 use the diversification generator to generate diverse trial solutions from the seed 
solution(s) 

Step 2 use the improvement method to create one or more enhanced trial solutions 

Step 3 with these initial solutions update the reference set (RefSet) 

Step 4 repeat 
4.1 generate subsets of the RefSet 
4.2 combine these subsets and obtain new solutions 
4.3 use the improvement method to create a more enhanced trial solution 
4.4 continue to maintain and update the reference set until Refset is stable  

(no new solutions are included) 

Step 5 if iterations (Steps 1–4) elapse without improvement stop else return to step 1. 

5.1 A diversification generation method 

Diversification is to generate a collection of diverse trial solutions, using one or more 
arbitrary trial solutions (or seed solutions) as an input. This method is suggested by 
Glover (1998) which generates diversified permutations in a systematic way without 
reference to the objective function. Assume that a given trial permutation (T) used as a 
seed is T = (1,2, ..., n). Define the subsequence T (h:s), where s is a positive integer 
between 1 and h, to be given by T(h:s) = (s, s + h, s + 2h, .……., s + rh), where r is the 
largest nonnegative integer such that s + rh < n. Then define the permutation T(h), for  
h < n, to be T (h) = [T (h:h), T(h:h–1), ……., T(h:1)]. 

Illustration: 

Suppose T is given by 

T = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ) 

If we choose h = 5, then 

T (5:5) = (5,10,15) 

T (5:4) = (4,9,14) 
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T (5:3) = (3,8,13) 

T (5:2) = (2,7,12) 

T (5:1) = (1,6,11,16) 

to give: 

T (5) = (5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11, 16) 

In this illustration, ‘h’ is allowed to take the two values closest to the square root of ‘n’. 
These values are interesting based on the fact that, when ‘h’ equals the square root of ‘n’, 
the minimum relative separation of each element from each other element in the new 
permutation is maximum, compared to the relative separation of exactly one in the 
permutation T. In general, for the goal of generating a diverse set of permutations, 
preferable values for ‘h’ range from 1 to n/2. 

5.2 Improvement method 

The goal of improvement is to transform a trial solution into one or more enhanced trial 
solutions. Neither the input nor the output solutions are required to be feasible, though the 
output solutions are typically feasible. If the input trial solution is not improved as a 
result of the application of this method, the ‘enhanced’ solution is considered to be the 
same as the input solution. 

The improvement method is based on the neighbourhood search developed for the 
linear ordering problem (LOP) in Laguna et al. (1998). Four greedy local search 
procedures for improvement have been compared (Feldmann, 1999) and the greedy 
procedure found to be the most effective, has been used in this paper. Insertions are used 
as the primary mechanism to move from one solution to another in our improvement 
method. We define MOVE (pj, i) to consist of deleting pj from its current position j in p to 
be inserted in position i (i.e., between the current elements pi–1 and pi if i < j and between 
the current elements pi and pi+1 if i > j). This operation results in the ordering p’ as 
follows: 

( )
( )

1 1 1, 1,

1 1 1 , 1,

, , , , ,

, , , , ,

i j i j j

j j i j i

p p p p p p p for i j
p

p p p p p p p for i j

π

π

− − +

− + +

⎧ <⎪′ = ⎨
<⎪⎩ …

… … …

… …
 

Since the local search method is context independent, the only available mechanism for 
computing the move value is submitting p´ for evaluation and comparing its objective 
value with the objective value of p. 

In permutation problems, we accumulate in FreqIns (i, j), the number of times that 
element i has been inserted in position j improving the current solution. Then, given an 
element i, we compute the move value at the position j where the value of FreqIns (i, j) is 
maximum. We consider that these positions around it are desirable positions for inserting 
element i. 

5.3 The reference set update method 

The reference set update method accompanies each application of the improvement 
method, and update operation consists of maintaining the record of the ‘b’ best solutions 
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found, where value of ‘b’ is stated as a chosen constant, but may readily be allowed to 
vary. 

The RefSet is a collection of ‘b’ solutions that are used to generate new solutions by 
way of applying a solution combination method. The construction of the initial reference 
set in step 3 starts with the selection of the best b/2 solutions from T. These solutions are 
added to RefSet and deleted from T. The minimum distance from each improved solution 
in RefSet to the solutions in RefSet is computed. Then, the solution with the maximum of 
these minimum distances is selected. This solution is added to RefSet and deleted from T 
and the minimum distances are updated. This process is repeated b/2 times. The resulting 
reference set has b/2 high quality solutions and b/2 diverse solutions. The distance 
between the two sequences p = (p1, p2, p3,……. ,pn) and q = (q1, q2, q3,…...., qn) is given 
by: 

1

( , )
n

i i
i

d p q p q
−

= −∑  

where d (p, q) = number of times pi+1 does not immediately follow pi in q, for I = 1,…,  
n–1. 

5.4 Subset generation 

A subset generation method operates on the reference set, to produce a subset of its 
solutions as a basis for creating combined solutions. In such situations, we seek a 
procedure that generates subsets X of RefSet that have useful properties, while avoiding 
the duplication of subsets previously generated. Our approach for doing this is organised 
to generate four different collections of subsets of RefSet, which we refer to as sub-set 
type = 1, 2, 3 and 4. 

Subset type all 2-element subsets 

Subset type 2: 3-element subsets derived from the 2-element subsets by augmenting 
each 2-element subset to include the best solution not in this subset. 

Subset type 3: 4-element subsets derived from the 3-element subsets by augmenting 
each 3-element subset to include the best solutions not in this subset. 

Subset type 4: the subsets consisting of the best i elements, for i = 5 to b. 

The total number of subsets that satisfy the preceding stipulations is usually quite 
manageable. For example, if bmax = 10 there are 45 different 2-elements subsets for subset 
type = 1, and the collections for subset type = 2 and 3 each contain a bit less than 45 
additional subsets. All together, subset type = 1 to 4 would generate approximately 130 
distinct subsets. 

5.5 Combination method 

A solution combination method is to transform a given subset of solutions produced by 
the subset generation method into one or more combined solutions. In this method, the 
two reference solutions vote for their incipient element to be included in the first still 
unassigned position of the trial solution. If both solutions vote for the same element, the 
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element is assigned. If the reference solutions vote for different elements, but these 
elements occupy the same position in both reference permutations, then the element from 
the permutation with the better objective function is chosen. Finally, if the elements are 
different and occupy different positions, then the one in the lower position is selected. 

The Figure 2 shows the clear-cut idea of implementation of the SS method for 
obtaining the optimum solution. 

Figure 2 SS method 

 

Generate a set of diverse solutions by 
diversification method 

Generate new solution by 
solution combination 

method 

Build and maintain a reference set by 
RefSet update method 

Transform solutions into improved solutions 
by improvement method 

Produces subset of solutions by 
subset generation method 

Any new improved 
solutions 

Stop 
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Table 1 Comparison of SS with best objective values for CDD problems 

UB 
(fb) 

Best-FB 
(f*) SS PRD

(fb) 
PRD
(f*) 

 

 
UB 
(fb) 

Best-FB
(f*) SS PRD 

(fb) 
PRD 
(f*) 

S. no 
10 jobs 
h = 0.2 

 10 jobs 
h = 0.4 

1 2,009  1,936 3.64   1,057  1,025 3.03  

2 1,125  1,042 7.38   615  615 0  

3 1,731  1,586 8.38   931  917 1.51  

4 2,392  2,139 10.58   1,251  1,230 1.68  

5 1,220  1,187 2.71   661  630 4.69  

6 1,623  1,521 6.29   908  908 0  

7 2,269  2,170 4.37   1,374  1,374 0  

8 1,724  1,724 2.82   1,104  1,024 7.25  

9 1,792  1,577 12   876  892 –1.83  

10 1,934  1,869 3.37   1,173  1,138 2.99  

Average  6.54      1.93  

20 jobs 
h = 0.2 

 20 jobs 
h = 0.4 

1 4,431 4,394 4,406 0.56 –0.28  3,066 3,066 3,070 –0.13 –0.14 

2 8,567 8,430 8,462 1.23 –0.38  4,897 4,847 4,866 0.63 –0.40 

3 6,331 6,210 6,277 0.85 –1.08  3,883 3,838 3,892 –0.23 –1.41 

4 9,478 9,188 9,215 2.77 –0.30  5,122 5,118 5,150 –0.55 –0.63 

5 4,340 4,215 4,245 2.19 –0.72  2,571 2,495 2,527 1.71 –1.29 

6 6,766 6,527 6,616 2.22 –1.37  3,601 3,582 3,584 0.47 –0.06 

7 11,101 10,455 10,485 5.55 –0.29  6,357 6,238 6,282 1.18 –0.71 

8 4,203 3,920 3,946 6.11 –0.67  2,151 2,145 2,157 –0.28 –0.42 

9 3,530 3,465 3,498 0.91 –0.96  2,097 2,096 2,154 –2.72 –2.77 

10 5,545 4,979 5,042 9.07 –1.27  3,192 2,925 2,098 34.27 28.28 

Average 3.15 –0.73     3.44 2.05 

Notes: f* = improved CDD bnchmarks 
fb = CDD Benchmarks 

Source: Feldmann and Biskup (2003) and Biskup and Feldmann (2001) 
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Table 1 Comparison of SS with best objective values for CDD problems (continued) 

UB 
(fb) 

Best-FB 
(f*) SS PRD

(fb) 
PRD
(f*) 

UB 
(fb) 

Best-FB
(f*) SS PRD 

(fb) 
PRD 
(f*) 

S. no 
50 jobs 
h = 0.2 

50 jobs 
h = 0.4 

1 42,363 40,697 40,705 3.91 –0.02 24,868 23,792 24,463 1.63 –2.83 

2 33,637 30,613 31,043 7.71 –1.41 19,279 17,907 18,376 4.68 –2.62 

3 37,641 34,612 34,895 7.30 –0.82 21,353 20,522 20,787 2.65 –1.30 

4 30,166 27,755 28,314 6.14 –2.02 17,495 16,657 16,969 3.01 –1.88 

5 32,604 32,307 32,354 0.77 –0.15 18,441 18,007 18,332 0.59 –1.81 

6 36,920 34,969 35,114 4.89 –0.41 21,497 20,385 21,078 1.95 –3.40 

7 44,277 43,134 43,656 1.40 –1.22 23,883 23,038 23,570 1.31 –2.31 

8 46,065 43,839 43,966 4.56 –0.29 25,402 24,895 24,966 1.72 –0.29 

9 36,397 34,228 34,546 5.09 –0.93 21,929 19,984 21,473 2.08 –7.46 

10 35,797 32,958 33,102 7.53 –0.44 20,048 19,167 19,890 0.79 –3.78 

Average 4.93 –0.77    2.04 –2.77 

100 jobs 
h = 0.2 

100 jobs 
h = 0.4 

1 156,103 145,516 145,592 6.73 –0.05 89,588 85,884 87,912 1.87 –2.36 

2 132,605 124,927 124,991 5.74 –0.05 74,854 72,983 73,011 2.46 –0.04 

3 137,463 129,835 129,855 5.53 –0.02 85,363 79,619 81,918 4.04 –2.89 

4 137,265 129,584 129,685 5.52 –0.08 87,830 79,413 86,917 1.04 –9.45 

5 136,761 124,417 129,506 5.30 –4.09 76,424 71,316 74,820 2.10 –4.91 

6 151,938 139,193 140,013 7.85 –0.59 86,724 77,797 84,916 2.08 –9.15 

7 141,613 135,089 137,014 3.25 –1.42 79,854 78,244 78,133 2.16 0.14 

8 168,086 160,147 161,156 4.12 –0.63 95,361 94,368 94,299 1.11 0.07 

9 125,153 116,522 116,610 6.83 –0.08 73,605 69,458 72,816 1.07 –4.83 

10 124,446 118,911 118,913 4.45 0.00 72,399 71,850 72,337 0.09 –0.68 

Average 5.53 –0.70    1.80 –3.41 

Notes: f* = improved CDD bnchmarks 
fb = CDD Benchmarks 

Source: Feldmann and Biskup (2003) and Biskup and Feldmann (2001) 

6 Computational results 

One of the difficulties faced by the researchers in scheduling is to compare their 
methodologies with those of other researchers. If the standard set of test problems is 
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accessible, the performances of different algorithms can be compared on exactly the same 
set of test problems. For this reason, to clearly indicate the solution capability of our 
approach, CCD benchmark problems are chosen for which upper bounds on the optimal 
objective function value exist, see Biskup and Feldmann (2001). These are problems with 
n = 10, 20, 50, 100, 200, 500 and 1,000 jobs. For each of these problem sizes,  

10 different instances with two different values for the due date, 
1

n
ii

d h p c
=

⎡ ⎤= ⎢ ⎥⎣ ⎦∑  with  

h = 0.2 and 0.4 are taken into account. However, the upper bounds for the benchmark 
problems of Biskup and Feldmann (2001) can be found in the OR Library under 
http://mscmga.ms.ic.ac.uk/info.html. 

CCD problems are solved with n = 10, 20, 50 and 100 jobs. For each problem size, 
ten different instances and two different due dates [h = 0.2 and 0.4] are considered for 
each instance.  Hence totally 80 problems are solved whose results are compared with the 
best result (Best-FB) for each of the benchmark problem of the three meta-heuristic 
technique used by Feldmann and Biskup (2003). The results of the three meta-heuristic 
techniques used by Feldmann and Biskup (2003) for the same bench mark problems is 
available in OR Library or it can be down loaded from the website http://www.wiwi.uni-
bielefeld.de/~kistner/Bounds.html.). 

The SS technique is compared with the techniques of Feldmann and Biskup (2003). 
Results are summarised in Table 1 for the benchmark problems attempted by these 
authors in order to provide a more balanced analysis. 

The percentage relative difference (PRD) is used as the measure to compare the 
results presented here and those of other methods. 

PRD = (Best-FB SSSOL) / Best-FB−  

Here Best-FB is the best known solution among the three meta-heuristics of Feldmann 
and Biskup (2003) and SSSOL is the best solution found by the scatter search method. 

Table 1 clearly shows that only a few improved objective values are achieved by the 
SS method and most of the solutions are as same as the F-Best value in comparison to 
Martin Feldmann and Dirk Biskup (2003) problem instances. In Table 1, the average 
PRD for 20 jobs instances is positive, showing that SS is better than the best of the 
available techniques. Though instances for 50 and 100 jobs shows negative slopes it is 
comparatively negligible. On an average, the SS method provides better results as in the 
case of Biskup and Feldmann (2001). It can also be seen in Table 1 that a few new best 
solutions have been obtained in this technique. This makes it clearly evident that SS is an 
efficient method to solve single machine scheduling with CCD problems. 

7 Performance test 

In order to compare the performance of the proposed SS method for SMSPs, the speed of 
convergence of optimum value versus number of iteration is presented here. In this view, 
two different size problems of Biskup and Feldmann (2001) benchmark instances have 
been selected and run on the computer for ten numbers of iterations. The recorded values 
of the objective value for all the ten iterations are plotted in the graph. The curves 
obtained for the instances are shown in Figure 3. One can easily observe the convergence 
of SS for CCD problems. The optimum results are obtained in less number of iterations. 



   

 

   

   
 

   

   

 

   

   20 M. Saravanan and A. Noorul Haq    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 Convergence analysis of SS for SMS problems (see online version for colours) 

 

 

8 Discussion and conclusions 

The main aim of this research is to explore the potential of SS for scheduling problems of 
a single machine scheduling with CDD. The inherent weakness of many search 
procedures is that they often get trapped in a region around some local minima. The 
ability of the SS is to breakout of such entrapments and achieves better, ideally global 
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minima, is based on their capacity to provide a suitable mixture of intensification and 
diversification. SS also provides unifying principles for joining solutions based on 
generalised path constructions and by utilising strategic designs where as other 
approaches resort to randomisation. Additional advantages are provided by intensification 
and diversification mechanisms, which exploit adaptive memory, together with processes 
that avoid generating duplicate solutions at various stages. This is demonstrated clearly 
by the improved performance of this metaheuristic in comparison to the methods of 
Biskup and Feldmann (2001). In fact, SS metaheuristic is capable of achieving best 
results for the benchmark problems of Biskup and Feldmann (2001). Out of 80 
benchmark problems of Biskup and Feldmann (2001), the SS technique gives best 
solutions for all the 80 problem instances. It emerges that the objective values of the 
benchmark problems have improved by 3.70% on average. At the same time, the 
objective values of the SS technique gives almost the same values as the best objective 
values of the three methods used by Feldmann and Biskup (2003) which is clearly 
showed in the graphs (Figure 4). 

Figure 4 Comparision of objective values in graphical method 
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Figure 4 Comparision of objective values in graphical method (continued) 

 

Graph. 4.  50 Jobs and h= 0.4 
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Graph. 5.  100  Jobs and h= 0.2 
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Graph. 6.  100  Jobs and h= 0.4 
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