Adjoint-based control of model and discretisation errors for gas flow in networks
by Pia Domschke, Oliver Kolb, Jens Lang
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 2, No. 2, 2011

Abstract: We are interested in the simulation and optimisation of gas transport in networks. The gas flow through pipes can be modelled on the basis of the (isothermal) Euler equations. Further network components are described by purely algebraic equations. Depending on the data and the resulting network dynamics, models of different fidelity can be used in different regions of the network. Using adjoint techniques, we derive model and discretisation error estimators. Here, we apply a first-discretise approach. Based on the time-dependent structure of the considered problems, the adjoint systems feature a special structure and therefore allow for an efficient solution. A strategy that controls model and discretisation errors to maintain the accuracy of the solution is presented. We provide (technical) details of our implementation and give numerical results.

Online publication date: Thu, 26-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com