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Abstract: The resolution IV regular fractional factorial designs in 16 runs for 
six, seven, and eight factors are in standard use. They are economical and 
provide clear estimates of main effects when three-factor and higher-order 
interactions are negligible. However, because the two-factor interactions are 
completely confounded, experimenters are frequently required to augment the 
original fraction with new runs to resolve ambiguities in interpretation. We 
identify non-regular orthogonal fractions in 16 runs for these situations that 
have no complete confounding of two-factor interactions. These designs allow 
for the unambiguous estimation of models containing both main effects and a 
few two-factor interactions. We present the rationale behind the selection of 
these designs from the non-isomorphic 16-run fractions and illustrate how to 
use them with an example from the literature. 
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1 Introduction 

Two-level fractional factorial designs are a staple for factor screening in industrial 
applications. Resolution IV designs are particularly popular because they avoid the 
confounding of main effects and two-factor interactions found in resolution III designs 
while avoiding the larger sample size requirements of resolution V designs. The 
minimum aberration versions of these designs are found by using the following 
generators: for six factors, E = ± ABC and F = ± BCD; for seven factors, E = ± ABC,  
F = ± BCD, and G = ± ACD; and for eight factors, E = ± BCD, F =± ACD,  
G = ± ABC, and H = ± ABD. These designs have two-factor interactions that are 
completely confounded in seven alias chains. 

The two-factor interaction aliasing in these designs can result in projects with 
ambiguous conclusions. For example, Montgomery (2009) presents a 26–2 design used in 
a photoresist application process where four main effects A, B, C, and E are found to be 
important along with one two-factor interaction alias chain AB + CE. Without external 
process knowledge, the experimenter cannot decide whether the AB interaction, the CE 
interaction or some linear combination of them represents the true state of nature. To 
resolve this ambiguity requires additional runs. 

While strong two-factor interactions may be less likely than strong main effects, there 
are many more interactions than main effects in screening situation. As a result, the 
likelihood of at least one significant interaction effect is quite high. There is often 
substantial institutional reluctance to commit additional time and material to a study with 
unclear results. Consequently, experimenters would like to avoid the need to plead for a 
follow-up study. We show how to lower the risk of analytical ambiguity by using a 
specific orthogonal but non-regular fractional factorial design. Our proposed designs for 
six, seven, and eight factor studies in 16 runs have no complete confounding of pairs of 
two-factor interactions. We prefer these designs and recommend them as alternatives for 
the usual regular minimum aberration resolution IV fractional factorials. In subsequent 
sections, we present a metric to evaluate these fractional factorial designs, use it to obtain 
our choices for the non-regular 16-run fractional factorials, and present an example that 
illustrates their usefulness. 

2 Literature review 

Plackett and Burman (1946) introduced non-regular orthogonal designs for sample sizes 
that are a multiple of four but not powers of two. Hall (1961) identified five  
non-isomorphic orthogonal designs for 15 factors in 16 runs. Our proposed six through 
eight factor designs are projections of the Hall designs created by selecting specific sets 
of columns. Contemporaneously with Hall’s work, Box and Hunter (1961) introduced the 
regular fractional factorial designs that became the standard tools for factor screening. 
Sun et al. (2002) catalogued all the non-isomorphic projections of the Hall designs. Li et 
al. (2003) used this catalogue to identify the best designs to use in case there is a need for 
a foldover. For each of these designs they provide the columns to use for folding and the 
resulting resolution of the combined design. Loeppky et al. (2007) also used this 
catalogue to identify the best designs to use assuming that a small number of factors are 
active and the experimenter wished to fit a model including the active main effects and 
all two-factor interactions involving factors having active main effects. 
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3 Metrics for comparison of screening designs 

Screening designs are primarily concerned with the discovery of active factors. This 
factor activity generally expresses itself through a main effect or a factor’s involvement 
in a two-factor interaction. Consider the model, 

y = X β + ε 

where X contains columns for the intercept, main effects and all two-factor interactions, β 
is the vector of model parameters, and ε is the usual vector of NID(0, σ2). For six through 
eight factors in 16 runs, the matrix, X has more columns than rows. Thus, it is not of full 
rank and the usual least squares estimate for β does not exist because the matrix X’X is 
singular. With respect to this model, every 16 run design is supersaturated. Booth and 
Cox (1962) introduced the E(s2) criterion as a diagnostic measure for comparing 
supersaturated designs: 

( ) ( )22
i ji j

1E(s ) x x / k(k –1)
2 <

′= ∑  

where k is the number of columns in X. 
Minimising the E(s2) criterion is equivalent to minimising the sum of squared  

off-diagonal elements of the correlation matrix of X. Removing the constant column from 
X, the correlation matrix of the regular resolution IV 16-run six-factor design is 21 × 21 
with one row and column for each of the six main effects and 15 two-factor interactions. 
Figure 1 shows the correlation matrix for the principal fraction of this design. In Figure 1, 
we note that the correlation is zero between all main effects and two-factor interactions 
(because the design is resolution IV) and that the correlation is +1 between every  
two-factor interaction and at least one other two-factor interaction. These two-factor 
interactions are completely confounded. If another member of the same design family 
had been used at least one of the generators would gave been used with a negative sign in 
design construction and some of the entries of the correlation matrix would have been –1. 
There still would be complete confounding of two-factor interactions in the design. 

Figure 1 The correlation matrix for the regular 26–2 resolution IV fractional factorial design 
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The cell plot of the correlation matrix is a useful graphical way to compare the  
non-regular designs that we propose to their regular fractional factorial counterparts. In 
Figure 1, it is a display of the confounding pattern. The alias matrix is a generalisation of 
the confounding pattern that is useful for comparing non-regular designs. Suppose that 
we plan to fit the model 

1 1=y X β + ε  

where X1 is the design matrix for the experiment that has been conducted expanded to 
model form, β1 is the vector of model parameters, and ε is the usual vector of NID(0, σ2) 
errors but that the true model is 

1 1 2 2= +y X β + X β ε  

where the columns of X2 contain additional factors not included in the original model 
(such as interactions) and β2 is the corresponding vector of model parameters. It is 
straightforward to show that the expected value of 1β̂ , the least squares estimate of β1, is 

1
1 1 1 1 1 2 2 1 2

ˆ( ) ( )E −′ ′= + = +β β X X X X β β Aβ  

The alias matrix A = 1
1 1 1 2( )−′ ′X X X X shows how estimates of terms in the fitted model are 

biased by active terms that are not in the fitted model. Each row of A is associated with a 
parameter in the fitted model. Non-zero elements in a row of A show the degree of 
biasing of the fitted model parameter due to terms associated with the columns of X2. 

In a regular design, an arbitrary entry in the alias matrix, Aij, is either 0 or 1± . If Aij 
is 0 then the ith column of X1 is orthogonal to the jth column of X2. Otherwise if Aij is 

1± , then the ith column of X1 and the jth column of X2 are perfectly correlated. 
For non-regular designs the aliasing is more complex. If X1 is the design matrix for 

the main effects model and X2 is the design matrix for the two-factor interactions, then 
the entries of the alias matrix for orthogonal non-regular designs for 16 runs take the 
values 0, 1±  or 0.5± . A small subset of these designs have no entries of 1± . 

Bursztyn and Steinberg (2006) propose using the trace of ′AA as a scalar measure of 
the total bias in a design. They use this as a means for comparing designs for computer 
simulations but this measure works equally well for ranking competitive screening 
designs. 

4 The proposed designs and their properties 

Table 1 shows the number of non-isomorphic orthogonal 16 run designs. By  
non-isomorphic, we mean that one cannot obtain one of these designs from another one 
by permuting the rows or columns or by changing the labels of the factor. 
Table 1 Number of 16-run orthogonal non-isomorphic designs 

Number of factors Number of designs 

6 27 
7 55 
8 80 
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The non-regular designs that we recommend are selected from the designs represented in 
Table 1. We first present our recommendations and then discuss their properties and our 
reasons for selecting them as alternatives to the usual resolution IV designs. 

For six factors, our recommended design is in Table 2. The correlation matrix for this 
design along with the correlation matrix for the regular fraction is in Figure 2. 

Table 2 Recommended 16-run six-factor no-confounding design 

Run A B C D E F 

1 1 1 1 1 1 1 

2 1 1 –1 –1 –1 –1 

3 –1 –1 1 1 –1 –1 

4 –1 –1 –1 –1 1 1 

5 1 1 1 –1 1 –1 

6 1 1 –1 1 –1 1 

7 –1 –1 1 –1 –1 1 

8 –1 –1 –1 1 1 –1 

9 1 –1 1 1 1 –1 

10 1 –1 –1 –1 –1 1 

11 –1 1 1 1 –1 1 

12 –1 1 –1 –1 1 –1 

13 1 –1 1 –1 –1 –1 

14 1 –1 –1 1 1 1 

15 –1 1 1 –1 1 1 

16 –1 1 –1 1 –1 –1 

Figure 2 Correlation matrix (a) regular 26–2 fractional factorial (b) the no-confounding design 
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Notice that like the regular 26–2 the proposed design is orthogonal but unlike the regular 
design, there are no two-factor interactions that are aliased with each other. All of the  
off-diagonal entries in the correlation matrix are between –1 and +1. Because there is no 
complete confounding of two-factor interactions, we call this a no-confounding design. 

Table 3 presents the recommended seven-factor 16-run design. The correlation matrix 
for this design and the regular 27–3 fraction is shown in Figure 3. The no-confounding 
design is orthogonal and there is no complete confounding of two-factor interactions. 
Table 3 Recommended 16-run seven factor no-confounding design 

Run A B C D E F G 

1 1 1 1 1 1 1 1 
2 1 1 1 –1 –1 –1 –1 
3 1 1 –1 1 1 –1 –1 
4 1 1 –1 –1 –1 1 1 
5 1 –1 1 1 –1 1 –1 
6 1 –1 1 –1 1 –1 1 
7 1 –1 –1 1 –1 –1 1 
8 1 –1 –1 –1 1 1 –1 
9 –1 1 1 1 1 1 –1 
10 –1 1 1 –1 –1 –1 1 
11 –1 1 –1 1 –1 1 1 
12 –1 1 –1 –1 1 –1 –1 
13 –1 –1 1 1 –1 –1 –1 
14 –1 –1 1 –1 1 1 1 
15 –1 –1 –1 1 1 –1 1 
16 –1 –1 –1 –1 –1 1 –1 

Figure 3 Correlation matrix (a) regular 27–3 fractional factorial (b) the no-confounding design 

 



   

 

   

   
 

   

   

 

   

    Alternatives to resolution IV screening designs in 16 runs 291    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 4 presents the recommended eight-factor 16-run design. The correlation matrix for 
this design and the regular 28–4 fraction is shown in Figure 4. The no-confounding design 
is orthogonal and there is no complete confounding of two-factor interactions. 
Table 4 Recommended 16-run eight factor no-confounding design 

Run A B C D E F G H 

1 1 1 1 1 1 1 1 1 
2 1 1 1 1 –1 –1 –1 –1 
3 1 1 –1 –1 1 1 –1 –1 
4 1 1 –1 –1 –1 –1 1 1 
5 1 –1 1 –1 1 –1 1 –1 
6 1 –1 1 –1 –1 1 –1 1 
7 1 –1 –1 1 1 –1 –1 1 
8 1 –1 –1 1 –1 1 1 –1 
9 –1 1 1 1 1 1 1 1 
10 –1 1 1 –1 1 –1 –1 –1 
11 –1 1 –1 1 –1 –1 1 –1 
12 –1 1 –1 –1 –1 1 –1 1 
13 –1 –1 1 1 –1 –1 –1 1 
14 –1 –1 1 –1 –1 1 1 –1 
15 –1 –1 –1 1 1 1 –1 –1 
16 –1 –1 –1 –1 1 –1 1 1 

Figure 4 Correlation matrix (a) regular 28–4 fractional factorial (b) the no-confounding design 

 

Table 5 compares the popular minimum aberration resolution IV designs to our 
recommended designs on the metrics described in the previous section. 
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Table 5 Design comparison on metrics 

N factors Design Confounded effect pairs E(s2) Trace(AA’) 

6 Recommended 0 7.31 6 
 Resolution IV 9 10.97 0 
7 Recommended 0 10.16 6 
 Resolution IV 21 14.20 0 
8 Recommended 0 12.80 10.5 
 Resolution IV 42 17.07 0 

As shown in the cell plots of the correlation matrices, the recommended designs 
outperform the minimum aberration designs for the number of confounded pairs of 
effects. They also are substantially better with respect to the E(s2) criterion. The price that 
our recommended designs pay for avoiding any pure confounding is that there is some 
correlation between main effects and two-factor interactions as shown in the last column. 

5 Example 

Montgomery (2009) presents an example of the regular 26–2 resolution IV design applied 
to a photoresist application process. The response variable is thickness and the design 
factors are A = speed RPM, B = acceleration, C = volume, D = time, E = resist viscosity, 
and F = exhaust rate. Table 6 shows the design. 
Table 6 Photoresist experiment (26–2) 

Run A B C D E F Thickness 

1 –1 –1 –1 –1 –1 –1 4,524 
2 1 –1 –1 –1 1 –1 4,657 
3 –1 1 –1 –1 1 1 4,293 
4 1 1 –1 –1 –1 1 4,516 
5 –1 –1 1 –1 1 1 4,508 
6 1 –1 1 –1 –1 1 4,432 
7 –1 1 1 –1 –1 –1 4,197 
8 1 1 1 –1 1 –1 4,515 
9 –1 –1 –1 1 –1 1 4,521 
10 1 –1 –1 1 1 1 4,610 
11 –1 1 –1 1 1 –1 4,295 
12 1 1 –1 1 –1 –1 4,560 
13 –1 –1 1 1 1 –1 4,487 
14 1 –1 1 1 –1 –1 4,585 
15 –1 1 1 1 –1 1 4,195 
16 1 1 1 1 1 1 4,510 

Source: From Montgomery (2009) 
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Table 7 shows the output from the JMP screening analysis for this experiment. From the 
analysis, we conclude that the main effects of factors A, B, C, and E are important and 
that the two-factor interaction alias chain AB + CE is important. Because AB and CE are 
completely confounded, either additional information or assumptions are necessary to 
avoid analytical ambiguity. 
Table 7 JMP screening analysis for the photoresist experiment in Table 6 

Term Contrast Length t-ratio p-value Aliases 

A 85.3125 6.11 0.0007* B*C*E, E*F*D 
B –77.6875 –5.56 0.0014* A*C*E, C*F*D 
C –34.1875 –2.45 0.0309* A*B*E, B*F*D 
E 21.5625 1.54 0.1298 A*B*C, A*F*D 
F –14.6875 –1.05 0.2690 B*C*D, A*E*D 
D 7.5625 0.54 0.6158 B*C*F, A*E*F 
A*B 54.8125 3.92 0.0074* C*E 
A*C –3.4375 –0.25 0.8175 B*E 
B*C 3.3125 0.24 0.8242 A*E, F*D 
A*F –16.4375 –1.18 0.2231 E*D 
B*F 8.0625 0.58 0.5900 C*D 
C*F –2.6875 –0.19 0.8563 B*D 
E*F 10.5625 0.76 0.4166 A*D 
A*B*F 10.8125 0.77 0.4065 C*E*F, A*C*D, B*E*D 
A*C*F –5.6875 –0.41 0.7028 B*E*F, A*B*D, C*E*D 

We now consider an alternative experimental design for this problem, the  
no-confounding six-variable design from Table 2. Table 8 presents this design with a set 
of simulated response data for the injection moulding experiment. In constructing the 
simulation, we assumed that the main effects that were important were A, B, C, and E. 
We also assumed the CE interaction was the true source of the AB + CE effect  
observed in the actual study. We added normal random noise in our simulated data to 
match the RMSE of the fitted model in the original data. We also matched that the model 
parameter estimates to those from the original experiment. Our intent was to create a fair 
realisation of the data that might have been observed if the no-confounding design had 
been used. 
Table 8 The no-confounding design for the photoresist application experiment 

Run A B C D E F Thickness 

1 1 1 1 1 1 1 4,494 
2 1 1 –1 –1 –1 –1 4,592 
3 –1 –1 1 1 –1 –1 4,357 
4 –1 –1 –1 –1 1 1 4,489 
5 1 1 1 –1 1 –1 4,513 
6 1 1 –1 1 –1 1 4,483 
7 –1 –1 1 –1 –1 1 4,288 
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Table 8 The no-confounding design for the photoresist application experiment (continued) 

Run A B C D E F Thickness 
8 –1 –1 –1 1 1 –1 4,448 
9 1 –1 1 1 1 –1 4,691 
10 1 –1 –1 –1 –1 1 4,671 
11 –1 1 1 1 –1 1 4,219 
12 –1 1 –1 –1 1 –1 4,271 
13 1 –1 1 –1 –1 –1 4,530 
14 1 –1 –1 1 1 1 4,632 
15 –1 1 1 –1 1 1 4,337 
16 –1 1 –1 1 –1 –1 4,391 

We analysed this experiment using forward stepwise regression with all main effect and 
two-factor interactions as candidate effects. The reason that all two-factor interactions 
can be considered as candidate effects is that none of these interactions are completely 
confounded. The JMP stepwise regression output is in Figure 9. 
Table 9 JMP stepwise regression output for the no-confounding design in Table 8 

Lock Entered Parameter Estimate nDF SS ‘F Ratio’ ‘Prob>F’ 
X X Intercept 4,462.8125 1 0 0.000 1 
 X A 85.3125 1 77,634.37 53.976 2.46e-5 
 X B –77.6825 1 64,368.76 44.753 5.43e-5 
 X C –34.1875 2 42,735.84 14.856 0.00101 
  D 0 1 31.19857 0.020 0.89184 
 X E 21.5625 2 31474.34 10.941 0.00304 
  F 0 1 2,024.045 1.474 0.25562 
  A*B 0 1 395.8518 0.255 0.6259 
  A*C 0 1 476.1781 0.308 0.59234 
  A*D 0 2 3,601.749 1.336 0.31571 
  A*E 0 1 119.4661 0.075 0.78986 
  A*F 0 2 4,961.283 2.106 0.18413 
  B*C 0 1 60.91511 0.038 0.84923 
  B*D 0 2 938.8809 0.279 0.76337 
  B*E 0 1 3,677.931 3.092 0.11254 
  B*F 0 2 2,044.119 0.663 0.54164 
  C*D 0 2 1,655.264 0.520 0.61321 
 X C*E 54.8125 1 2,4035.28 16.711 0.00219 
  C*F 0 2 2,072.497 0.673 0.53667 
  D*E 0 2 79.65054 0.022 0.97803 
  D*F 0 0 0   
  E*F 0 2 5,511.275 2.485 0.14476 

Notice that stepwise regression selects the main effects of A, B, C, E, along with the CE 
interaction. The no-confounding design correctly identifies the model unambiguously and 
without requiring additional runs. 
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6 Concluding remarks 

We have presented no-confounding designs for the cases of 16 runs and six, seven or 
eight factors. We propose these as alternatives to the usual 16-run regular resolution IV 
minimum aberration fractions. These are non-regular orthogonal designs that avoid any 
pure confounding of main effects with two-factor interactions or two-factor interactions 
with each other. For all the non-isomorphic orthogonal designs for six, seven or eight 
factors, these designs minimise the E(s2) criterion for a supersaturated model containing 
all the main effects and two-factor interactions. For each of our recommended designs the 
majority of effects are uncorrelated. The largest magnitude correlation of any effect with 
any other effect is one half. This compares favourably to resolution IV designs where 
groups of two-factor interactions have correlations of one or negative one making them 
individually unresolvable. 

The regular six, seven and eight factor designs in 16 runs are widely used in practice 
because they are economical and they provide good information on main effects with the 
ability to detect active alias sets of two-factor interactions. However, due to this complete 
confounding of two-factor interactions, experimenters without strong prior engineering 
knowledge need to augment these designs to resolve ambiguities whenever one of these 
aliased sets of two-factor interactions is active. The non-regular no-confounding designs 
that we propose can be analysed using stepwise regression or other model selection 
techniques. These designs can correctly identify the underlying model for any number of 
main effects and a small number of two-factor interactions without additional runs. We 
therefore prefer them to resolution IV regular fractional factorial designs and recommend 
their standard use. 
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