

 Int. J. Collaborative Engineering, Vol. 1, Nos. 1/2, 2009 185

 Copyright © 2009 Inderscience Enterprises Ltd.

A socio-technical negotiation approach
for collaborative design in software engineering

Stephen C-Y. Lu and Nan Jing*
The IMPACT Research Laboratory,
Viterbi School of Engineering,
University of Southern California,
Los Angeles, CA 90089, USA
E-mail: sclu@usc.edu
E-mail: jing@usc.edu
*Corresponding author

Abstract: To support collaborative design in software engineering, we have
built a socio-technical negotiation approach by integrating a Socio-Technical
Co-construction Process (STCP) with an Argument-Based Negotiation Process
(ABNP). The STCP provides rich contextual information of technical decisions
and social interactions in a software design process. The ABNP provides STCP
with a conflict resolution strategy by guiding software engineers to generate,
exchange and evaluate their argument claims in negotiation activities.
This paper reviews relevant research work and presents each step of this
negotiation approach. In addition, this paper describes a prototype system
which implements this new approach using the advanced web-based software
technologies with the goal of demonstrating the enhanced negotiation
capabilities in a dynamic socio-technical framework.

Keywords: collaborative engineering; socio-technical framework; ECN;
engineering collaboration via negotiation; collaborative software design.

Reference to this paper should be made as follows: Lu, S.C-Y. and Jing, N.
(2009) ‘A socio-technical negotiation approach for collaborative design
in software engineering’, Int. J. Collaborative Engineering, Vol. 1, Nos. 1/2,
pp.185–209.

Biographical notes: Stephen C-Y. Lu is permanent holder of the David
Packard Chair in Manufacturing Engineering at University of Southern
California (USC). He Heads the Master of Science in Product Development
Engineering program at USC. He is the founding Director of the Improving
Productivity via Advanced Collaboration Technology (IMPACT) research
laboratory at USC. As a pioneer of the Engineering Collaboration via
Negotiation (ECN) paradigm, he has published over 300 technical papers
and served on many journals’ editorial boards and keynote speaker in the fields
of collaborative engineering. He is the Chief Editor of the International Journal
of Collaborative Engineering. His current research interests are in design
thinking, collaborative engineering, and technological innovation.

Nan Jing is a senior software engineer in Antenna Software, where he is
in charge of the technical efforts for mobility platform such as blackberry,
for business solutions including customer relationship management and
inter-enterprise workflow modelling. He has published papers on the topics of
software design, collaborative negotiation and business process management.

 186 S.C-Y. Lu and N. Jing

He co-authored a book in web service and Java technology, published by
TsingHua University Press, China in 2003. He is a frequent reviewer for
conferences and journals in information system and mobile technologies,
and he is presently on the editorial review board of International Journal of
Handheld Computing Research. He has earned a PhD Degree from the
University of Southern California and a Bachelor Degree from Peking
University, China, both in Computer Science.

1 Introduction

Software engineering creates technical solutions to information processing problems
through the use of scientific methods. Software engineering research is concerned with
how to improve the quality and efficiency of software design decisions in order to
predict, analyse, implement and maintain software solutions that can satisfy complex and
evolving customer requirements. Nowadays driven by industry globalisation and internet
revolution, most software design is carried out by distributed teams that include
developers, architects and managers who have varying backgrounds and expertise.
Therefore, a sound collaborative design methodology is needed for modern software
engineering; the challenge of developing such a methodology has been the theme of our
research. This paper presents how a systematic negotiation methodology can be devised
to support multiple software design stakeholders in making technical decisions
collaboratively, in light of their social interactions with divergent backgrounds and skill
sets, in addition to limited time and resources.

One unique characteristic of software engineering is that “software is
design-intensive, as manufacturing (such as the repeated production of program codes)
cost is a relatively minor component of software production cost” (Aldrich et al., 2006).
In real-life software design processes, software engineers always need to negotiate with
each other in order to reach agreements when they have conflicting opinions and
competing demands. The ability to negotiate with multiple stakeholders who have
different technical expertise and diverse social backgrounds (e.g., other non-technical
factors) is just as important as the ability to develop computation algorithms and build
data structures. In previous software engineering practices, little attention was placed on
these collaborative activities of software design, let alone the systematic supports to
negotiation tasks. For a multi-disciplined software design team, collaborative negotiation
is an important and indispensable task that should be fully understood and systematically
practiced by all those involved.

This paper focuses on the collaborative negotiation tasks in which a team of
software engineers must work with each other to design a software solution. The subject
of collaborative negotiation in engineering is part of an emerging research field,
called collaborative engineering (Lu, 2003). In this new research field, collaborative
engineering is defined as a socio-technical group decision-making process, whereby a
team of engineers collaborate to resolve conflicts, bargain for individual or collective
advantages, agree upon courses of action, and/or craft joint decisions that serve their
mutual interests. Unlike traditional engineering tasks, which are often treated as a purely
technical decision-making process of ‘task-work’ by an individual, collaborative
engineering tasks are, additionally, a social endeavour of ‘teamwork’ by a team of

 A socio-technical negotiation approach for collaborative design 187

individuals. In practice, collaborative engineering is best carried out in a ‘team’
environment where, unlike a ‘work group’, all team members have already agreed on a
common goal to achieve. In our research, ‘social’ refers to the behaviours that take the
interests of others into account and the cooperative characteristics between individuals.
We also use the word ‘social’ to represent the common stakeholder characteristics, which
influence collaborative team dynamics during social interactions. These characteristics
include mostly the non-technical aspects of an individual stakeholder, such as
background, objective, interest and criteria. They are initially brought into the
collaborative teamwork by the participating stakeholders, and then continuously
co-constructed and evolved during the social interaction process. Based on the above
meanings, the term ‘socio-technical’ signifies the mutual consideration of and the true
integration between the social (teamwork) and technical (task-work) aspects of
engineering activities. In summary, the above definitions in our research explicitly
acknowledge collaborative engineering tasks as a dynamic interface between individual
decisions and group interactions, and as an assimilation of social and technical activities
operating in parallel over different time, space, and discipline scales in an engineering
team.

Specifically, this paper presents a new socio-technical approach to support
collaborative negotiation tasks by modelling, tracking and managing stakeholders’
negotiation arguments, which continuously evolve during the collaborative process of
software design. This new approach helps stakeholders to organise and generate
argument claims in preparation for systematic negotiations, as well as helping reconciles
design conflicts by recommending potential conflict management strategies. The conflict
management strategies include, for example, how to evaluate possible alternatives from
these negotiation arguments and compare these alternatives in order to choose desirable
ones in the applicable circumstances.

Section 2 reviews some related past works developed through software engineering
research in this field, including the Architecture Trade-off Analysis Method (ATAM)
approach, the Cost Benefit Analysis Method (CBAM) approach, the Multi-Criteria
Preference Analysis Requirements Negotiation (MPARN) model, and a Win-Win
approach. In Section 3, we present an Argument-based Socio-Technical Negotiation
(ASTN) approach for collaborative design in software engineering. This new approach
helps the design team systematically generate their negotiation argument claims based on
both social (i.e., teamwork based on social interactions) and technical (i.e., task-work
based on domain knowledge) factors. It also specifies how these argument claims
can be exchanged among team members and evaluated to systematically complete the
negotiation process. In Section 4 we describe a software application called the Intelligent
Web-based Argument Negotiation Toolkit (IWANT), which is being developed and used
to validate our research framework. Lastly, Section 5 summarises the lessons learned
from this study and describes our planned future work.

2 Related work

Most of the existing negotiation research for collaborative design in software engineering
falls in two categories: software design evaluation approaches and software design
negotiation models. An example of the first category is ATAM, which distributes the
architectural documents and business requirements to the stakeholders, elaborates and

 188 S.C-Y. Lu and N. Jing

prioritises scenarios, conducts design evaluation and finally develops a complete
technical report (Lee and Choi, 2005). It helps the engineers understand the consequence
of software design with respect to the system’s quality attributed requirements and
business goals. Also, it helps the developers to determine where the risks and tradeoffs
exist in various software design strategies. However, as an evaluation method for
software design, ATAM does not explicitly take any social factors (e.g., social
interactions in teamwork) into its evaluation rationale, such as, individual goals and
personal interests from the stakeholders themselves. As a result, it is not always certain
that the stakeholders will accept the solutions provided by ATAM. Another software
design evaluation method, developed from ATAM by the same group of researchers,
is CBAM (Kazman, 1998, 2005; Moore, 2003). CBAM collates high-priority scenarios
from ATAM, and refines and prioritises scenarios to formulate business goals. It then
develops architectural strategies for scenarios, calculates the total economic benefit for
each strategy, and chooses architectural strategies based on business values. CBAM
explores, analyses, and makes technical decisions regarding software architecture design
alternatives with consideration of economic factors (In et al., 2002). However,
it is not clear how the explored alternatives are generated from the engineers’ goals and
criteria, and how they satisfy the initial requirements of stakeholders with different roles,
responsibilities, and priorities. As well, this approach only evaluates different design
decisions but does not provide any negotiation strategy to reconcile conflicts in the
software design decision-making process.

A good example in the second category is the Win-Win negotiation model developed
by the Centre of Software Engineering at USC (Boehm et al., 1999). It provides a
generic framework for software requirement negotiation. In the Win-Win model,
stakeholders begin by first eliciting their own desired ‘win conditions’, identifying
issues (e.g., conflicts), generating options to resolve these issues, negotiating options
and finally reaching agreements. However, from the collaborative engineering point of
view, in the Win-Win model stakeholders still need to generate and negotiate the
architecture alternatives manually by a rather ad-hoc process (In et al., 2001, 2002).
Furthermore, the Win-Win negotiation model is based on a software engineering
approach called Model-Based Architecting and Software Engineering (MBASE),
which detects the conflict in software development by identifying model clashes
(e.g., success models) (Boehm et al., 2002). Most of the identified clashes in this
approach, however, come from past success models representing previous
win conditions, which are only a subset of the stakeholders’ backgrounds and expertise.
Some of the potential conflicts caused by different backgrounds (e.g., technical
specialties) are not accounted for because these differences are not explicitly modelled in
this approach. Also, since these differences in backgrounds and expertise are often the
fundamental source of the conflicts, this approach cannot easily trace where the conflict
comes from even when the conflict is detected. As a result, after the present conflict is
resolved, there is still a possibility that the team may be confronted with the same conflict
again in future.

In the second category the most relevant work to our present study is the MPARN
model, which guides stakeholders from design options to agreements by using
multi-criteria preference analysis techniques. The MPARN process begins to identify the
conflicts in the stakeholders’ needs following the Win-Win process and then explores
resolution options. After this it supplements the Win-Win process by eliciting stakeholder
preferences. It also assesses how well each of the generated options performs on

 A socio-technical negotiation approach for collaborative design 189

stakeholder criteria. As a negotiation approach with the goal of supplementing the
Win-Win process, MPARN provides some conflict analysis and resolution strategies.
However, since it is based on the Win-Win process, it inherits some of the same
limitations of the latter. For example, social factors (e.g., personal interests,
social interactions) are not directly addressed in this approach, although these factors are
indispensable for real world negotiation tasks (due to the dynamical and social nature of
the negotiation). The other shortcoming is that MPARN helps stakeholders analyse and
prioritise their design decisions, but does not specify a negotiation approach for the
stakeholders to jointly achieve a common agreement.

Our research focuses on the specific task of socio-technical negotiations in
collaborative design of software systems. The novelty of our approach is in providing
guidance for the stakeholders to systematically generate, exchange, and evaluate
their argument claims made during the negotiation process based on both technical
decisions and social interactions. It integrates a baseline software design process
with a conflict-reconciling process. As well, it explains to stakeholders how they can
extract and generate relevant information from design tasks, and how this information
can be used to resolve conflicts in negotiation. The remainder of this article describes this
approach in details, and presents a software prototype system which implements the
approach using internet-based computer technology.

3 Our approach

In the collaborative software design process, a team of stakeholders with different social
backgrounds and technical expertise must jointly undertake many common tasks,
|which require making joint decisions based on communal agreements. During this
process, stakeholders often have a variety of opinions and therefore must negotiate with
each other to arrive at a shared understanding about critical issues at hands. They must
make many common decisions to develop design solutions for the software in despite of
any conflicts caused by the social and technical differences. Therefore, a specific
challenge in this process is to help the team members reconcile these differences, resolve
the conflicts in their decisions, and achieve common understanding about the design
solutions.

To address the above challenge, we integrate a STCP framework (Lu, 2001) and an
ABNP model (Toulmin 1958; Jennings, 1998) to build a socio-technical negotiation
approach for the collaborative design process in software engineering. Traditionally,
software engineering approaches often ignore social interactions and treat collaborative
design as a purely technical problem. As a result, decision analysis and negotiation
approach are solely based on technical considerations – all social interactions are
implicitly dealt with in an ad-hoc manner. The inability to model the human perspective
and social interaction as an integral part of technical decisions is a major roadblock to
resolving conflicts in collaborative design. We believe a collaborative design process is
not only the technical decision making process but also a social interaction process
amongst the members of the design team. Based on this belief, applying STCP for the
collaborative software design process overcomes the limitations of traditional work by
explicitly modelling the social interactions and investigating both the social and technical
factors. Meanwhile, the ABNP facilitates the conflict management in the STCP by

 190 S.C-Y. Lu and N. Jing

systematically guiding the team through a negotiation process in which their differences
in technical decisions are reconciled.

To address the above challenge, we integrate a Socio-Technical Co-construction
Process (STCP) framework (Lu, 1999) and an Argument-based Negotiation Process
(ABNP) model (Toulmin, 1958; Chang et al., 1995; Jennings, 1998; Sillince et al., 1999;
Amgoud et al., 2000; Avery et al., 2001; Kraus, 2001; Rong et al., 2002) to build a
socio-technical negotiation approach for the collaborative design process in software
engineering. In the definition of the STCP, the co-construction process is one in which
two or more individuals act cooperatively to jointly and dynamically construct each
other’s ‘perspectives’ toward a shared task to produce a common solution (or a shared
reality), such as a design, a process, software, or a product. A ‘perspective’ is defined in
our research as the particular ways (i.e., viewpoints) via which the stakeholder views the
world and makes decisions. STCP builds a co-construction model for the collaborative
engineering process using the following seven steps (see Figure 1):

1 First it defines a starting ‘baseline process’ for the chosen application domain
(i.e., software design, in this case). This baseline process captures the required
technical task-works in a predetermined order. For example, it can be a commonly
accepted ‘workflow’ suggested by the domain experts or Standard Operating
Procedures (SOPs) instituted by the company.

2 Secondly, STCP identifies a set of ‘stakeholders’ who have an interest in the
outcomes of, and will directly or indirectly participate in, the co-construction
process.

3 In Step 3, stakeholders propose an initial ‘concept structure’ to represent relevant
social factors (e.g., background, objective, etc) which influence the collaborative
processes and establish their initial ‘perspective models’ for each proposed concept.

4 In Step 4, STCP performs analyses of these initial perspective models and manages
the conflicts identified from these perspective models.

5 Based on these analysis results, relevant conflict management strategies in Step 5 of
STCP can suggest changing the stakeholders’ perspectives, concepts in the CS,
and/or steps in the baseline process.

6 After these suggestions are implemented, the Step 6 of STCP begins another round
of the co-construction process with the new (updated) stakeholders’ perspectives
until no further conflicts are detected from perspective analyses.

7 At the end (the Step 7), STCP obtains a ‘shared reality’ as a result of the
co-construction process. Shared reality can include, for example, an agreed upon
product model (in the case of product design), as well as a set of co-constructed
concepts and stakeholders’ perspectives, which are useful for similar design tasks
in the future.

 A socio-technical negotiation approach for collaborative design 191

Figure 1 The Socio-Technical Co-Construction Process (STCP) (see online version for colours)

While providing a model for the co-construction process in collaborative design, STCP
does not prescribe a specific conflict resolution framework for stakeholders to resolve
conflicting decisions. Therefore, we use the ABNP model in our research to complement
STCP by guiding the design team to generate, exchange, and evaluate negotiation
argument claims during the collaborative co-construction process. The ‘argument’ in the
ABNP framework is built based on the Toulmin’s structure of argument (Toulmin, 1958),
which provides the language symbols and a data structure that supports the argumentation
process. Figure 2 illustrates the details of this structure. As shown in the figure,
the Toulmin structure is mostly procedural, and its layout focuses on the movement of
accepted data to the claim through a warrant (guarantee). The claim states the current
‘position’ that the stakeholder commits to about the issue being argued. The data is the
‘evidence’ behind the claim and the ‘warrant’ logically justifies the use of the data for
that specific claim. Toulmin also recognises three secondary elements that may be
present in an argument: backing, qualifier, and rebuttal. Backing is the authority for a
warrant, provides credibility for the warrant, and may be introduced when the audience is
unwilling to accept the warrant. A qualifier indicates the degree of force or certainty that
a claim possesses. Finally, rebuttal represents certain conditions or exceptions under
which the claim will fail and hence anticipates objections that might be advanced against
the argument to refute the claim.

Figure 2 Toulmin’s argument structure in ABNP

Note that ABNP, by itself, does not specify how to obtain the information
for each component in its arguments. STCP, on the other hand, can provide ABNP
with this critical information based on both social and technical factors captured
in the co-construction model. On the technical side, the baseline process and its design

 192 S.C-Y. Lu and N. Jing

tasks model the stakeholders’ decisions for the software design. On the social side,
the concept structure helps the stakeholder declare their characteristics (e.g., background,
objective, interests, etc), which have a great impact on the technical decisions. Based on
these characteristics, the perspective model can represent the social interaction of
the stakeholders. Figure 3 describes an example scenario of the integration between
the ABNP and STCP. As shown in the figure, the technical factors in the STCP provide
the ABNP with the major elements (e.g., claim, warrant, and data) in the argument
data structure. The social factors correspond to the secondary argument elements
(e.g., backing, qualifier, and rebuttal) in ABNP. Based on these factors, in the step to
manage the conflicts, the STCP calls the ABNP as a negotiation strategy for conflict
resolution.

The two complementary frameworks work together to establish a new ASTN
approach for collaborative software design. Figure 4 illustrates this integrated approach,
which has three inter-related phases. First, the Pre-negotiation phase starts with the
baseline process and determines whether to initiate a negotiation by identifying all
conflicting implementations of a design. It identifies the stakeholders, starts a design
process, asks each stakeholder to propose an implementation for specific tasks in the
design process, and then checks the differences (i.e., conflicts) between proposed
implementations. Second, the Negotiation phase helps the stakeholders prepare for their
arguments, and guide them into resolving the conflicts by an argument-based process.
In this phase the stakeholders jointly propose a concept structure and declare their
perspectives upon the concepts. Then based on the design tasks, concepts and
perspectives, the stakeholders are systematically guided to build their negotiation
arguments, which are then compared using an argument evaluation method. Lastly, the
Post-negotiation phase uses two inter-related steps to assure that the stakeholders obtain a
commonly accepted software design implementation, and tracks relevant collaboration
performance statistics (e.g., negotiation time used by the stakeholders). These statistics
are useful for future references by the design team in case of similar tasks and/or
conflicts. The following sub-sections explain these three ASTN phases in more details.

Figure 3 Integration of STCP and ABNP (see online version for colours)

 A socio-technical negotiation approach for collaborative design 193

Figure 4 A negotiation approach for collaborative design in software engineering

3.1 The pre-negotiation phase

The goal of the pre-negotiation phase is to identify all potential conflicts by checking the
differences between proposed task implementations, and helps the stakeholders organise
their argument information in order to negotiate the identified conflicts. For example, in a
common software design task ‘estimate quality attributes’, team members often have
different views. Salespersons may suggest performance and usability as the most
important attributes; while engineers may argue that maintainability is most important for
the long run. Meanwhile, project managers may believe that portability is critical, due to
possible future options to migrate the software to a variety of the operating platforms.
We will use this example to explain how a design conflict will be identified and relevant
information will be modelled in this section. There are five specific steps in this
pre-negotiation phase of our ASTN approach.

Step 1: Identify the ‘stakeholders’ who participate in the software design team via ASTN.

Stakeholders are those software design team members who have an interest in the process
and/or outcomes of the software design decisions (i.e., implementations) and may directly
or indirectly participate in the STCP.

Step 2: Prescribe a ‘baseline software design process’ to initiate the STCP.

A baseline software design process is defined as a series of necessary technical
task-works that must be undertaken by the team to develop a software design
solution. ASTN takes this design process as the baseline to begin the STCP process.
This process and its associated standard design task-works are generally pre-defined
based on the domain practices or chosen for the stakeholders by the management,
e.g., Object-Oriented Design Process, which comes with a set of standard procedures.

 194 S.C-Y. Lu and N. Jing

Step 3: Ask stakeholders to implement the above design tasks and check the difference in
their implementation details.

Although stakeholders jointly work on the design tasks according to the baseline process
prescribed above, due to their divergent background, interest, experience, and expertise,
they will undoubtedly come up with different technical decisions in the implementation
details of these tasks. In the ASTN approach, the implementation of a software design
task is defined as a logical sequence of actions/objects, combined with necessary
resources including time and staff. For example, regarding the example software design
task ‘estimate quality attributes’, a possible implementation proposal can be specified as:

{objects: performance, security and usability; actions: estimate performance,
security and usability according to the functional requirements; resources:
the design team work for one day.}

Therefore, if there are different decisions, objects or resources in the implementations
proposed by the stakeholders for a specific design task, the team will declare a conflict.
A typical conflict could be, for example, that the stakeholders are using different objects.
Just like the example mentioned at the beginning of this section, the objects (i.e., quality
attributes) for the task are different amongst all the stakeholders. In case of a conflict,
the process will continue to the Negotiation phase next to develop a mutual agreement for
resolving the conflict. Otherwise (i.e., no conflict), the process will move forward
directly to the Post-Negotiation phase (see Section 3.3) with supporting agreements on
how to implement all design tasks.

3.2 The negotiation phase

In this phase, the participating stakeholders are guided to negotiate with each other by an
argument-based process based on ABNP until a mutual agreement is reached. In most
instances a general ABNP is undertaken according to the following two stages:

• stakeholders generate argument claims (or counter proposals) for concerned issues
and provide supporting data

• stakeholders exchange and respond to others’ claims (or counter claims) and their
associated supporting data (Sierra et al., 1998).

The above two-stage argument-based process is used to resolve the conflicts during this
phase. What is new in our ASTN approach is the building of more comprehensive
argument structures by including both the social and technical factors. The technical
factors, such as the baseline process and design task implementations, are obtained as
part of the STCP. The social information, such as the objective to undertake the task and
the criteria to design the solution, is extracted in the first two steps (Steps 4 and 5).
The whole negotiation phase of ASTN is composed of four steps (4, 5, 6 and 7) as
follows:

Step 4: Propose a ‘concept structure’ for the identified conflicting design task.

Having conflicting implementation of a design task in the baseline process indicates some
differences in the social factors about the stakeholders. These differences may rooted
from the social (i.e., non-technical) characteristics of the stakeholders, which impact their
technical decisions and evolve during the social interaction and team collaboration.

 A socio-technical negotiation approach for collaborative design 195

These characteristics include, for example, the objectives for which the task is
undertaken, the criteria to make the implementation, and the alternatives, if available,
to implement a different task to achieve the same objective. To better capture these
differences and get a deeper understanding of the conflict, the ASTN approach provides a
structure, which models the concepts that underline the proposed technical decisions.
This concept structure is a model to organise these social factors perceived by the
individual stakeholder. This model is proposed by the stakeholders based on their
separate perceptions of the conflicting design task, and the concepts in this model will be
dynamically changed by the social interactions among the stakeholders. In reference to
the information in a concept structure, the stakeholders can declare their opinions
(e.g., how much they support others’ concepts) regarding this design task and the
differences causing the conflict can be identified.

To explain the concept structure further, we continue to use the software design task
‘estimate quality attributes’ as an example. Table 1 describes this example concept
structure, including information about stakeholders, objectives, criteria, and alternatives.
There are three stakeholders in this example: salesperson, engineer, and manager.
Salesperson’s objectives are to guarantee performance, security and usability of the
software. Her criteria are that sale is most important and hence every attribute should be
evaluated by sale requirements. The engineer, on the other hand, believes that software
performance, maintainability, security, and usability are most important and all decisions
must be based on these criteria. Meanwhile, the objectives of the third stakeholder,
manager, include performance, security, usability and portability and his criteria may also
include project responsibility and other executive decisions. The engineer and manager
have provided two alternatives as different implementations for the design task.

Table 1 An example concept structure for ‘estimate quality attributes’

Stakeholder Objectives Criteria Alternative

Salesperson Performance is first priority,
especially response time.
Security and Usability
should also be guaranteed

Sale is most important.
All quality attributes should
be measured by sale
requirements first

n/a

Engineer Performance, easy-to-
maintain, security, and
usability

The quality attributes should
be determined based on
appropriate development
resource

Build a prototype to get
software quality
statistics

Manager Performance, security,
usability, and portability

Project responsibility and
executive decisions

Import external software
verification program

Step 5: Establish a ‘perspective model’ for each stakeholder based on the above concept
structure.

Once a concept structure is established by the team, all stakeholders can express their
own opinions (i.e., claims about an implementation) via the social interaction process in
STCP. Social interaction is a very complex human phenomenon in teamwork that
consists of many inter-related psychological and organisational factors. There is no
practical way that a complete modelling of social interactions can be fully developed and
incorporated. As a result, our ASTN approach takes a rather simplified view toward
social interactions by focusing on modelling the dynamic impacts of social interactions

 196 S.C-Y. Lu and N. Jing

on the evolving ‘perspectives’ of the stakeholders as they express their opinions toward
the concept structure. These dynamically evolving perspectives are represented as a
‘perspective model’ for the said concepts of which the stakeholders have the common
interests or some expertise. In other words, the perspective model dynamically depicts
a stakeholder’s perceptions of his or others’ concepts. These perceptions could include
the stakeholders’ desire for their ideas to succeed and their support for or disagreement
with the concepts of others. Therefore, the perspective models indicate the difference in
stakeholders’ opinions, which cause the conflict in the technical implementation of the
tasks. And these models will be further analysed next to systematically reconcile the
conflicts in our negotiation approach.

Although stakeholder perspectives are often highly subjective in nature,
some quantitative methods are needed in order to further analyse the perspective
models. In our research, we use a 1–5 scale to quantify the stakeholder’s desire for
his own concept and support (or disagreement) for others’ concepts. In order words,
when expressing the perspectives (i.e., opinions) for each concept in the concept
structure, the stakeholders use a 1–5 scale where the ranking is as follow:

For personal concepts:

• 1 = undecided

• 2 = least desire

• 3 = slight desire

• 4 = desire

• 5 = strong desire.

For other stakeholders’ concepts:

• 1 = strongly disagree

• 2 = disagree

• 3 = undecided

• 4 = agree

• 5 = strongly agree.

For example, in the above ‘estimate quality attributes’ design task, a salesperson strongly
desires performance most, security second, and usability third. So, for her own concepts,
her perspectives are represented as {performance: 5; security: 4; usability: 4};
the salesperson strongly agrees with the engineer on performance, security, and usability,
but not on ease-of maintenance. So, for the engineer’s concepts, her perspectives
are represented as {performance: 5; security: 5; usability: 5; easy-to-maintain: 3}.
Accordingly, Tables 2–7 show some example perspectives of the stakeholders for the
example design task ‘Estimate Quality Attributes’. Tables 2 and 3 show the perspective
models for their personal concepts. Tables 4–7 show the perspective models for the
concepts of others. Positive numbers indicate support, negative indicate disagreement.

 A socio-technical negotiation approach for collaborative design 197

Table 2 Perspective model – stakeholders’ desire for own objectives

Stakeholder Objectives Desire (1–10)
Performance: 5
Security: 4

Salesperson Performance security usability

Usability: 4
Performance: 5
Easy-to-maintain: 4
Usability: 4

Engineer Performance, easy-to-maintain,
security, and usability

Security: 4
Performance: 5
Security: 5
Usability: 4

Manager Performance, security, usability, and
portability

Portability: 5

Table 3 Perspective model – stakeholders’ support or disagreement for others’ objectives

Stakeholder Sales Engineers Manager
Salesperson n/a Performance: 5 Performance: 5
 Easy-to-maintain: 3 Security: 5
 Security: 5 Usability: 5
 Usability: 5 Portability: 3
Engineer Performance: 5 n/a Performance: 5
 Security: 5 Security: 5
 Usability: 4 Usability: 5
 Portability: 3
Manager Performance: 5 Performance: 5 n/a
 Security: 5 Easy-to-maintain: 2
 Usability: 4 Security: 5
 Usability: 5

Table 4 Perspective model – stakeholders’ desire for own criteria

Stakeholder Criteria Desire (1–10)

Salesperson Sale requirement Sale requirement: 5
Engineer Development resource Development resource: 4

Project responsibility: 5 Manager Project responsibility and executive decisions
Executive decisions: 4

 198 S.C-Y. Lu and N. Jing

Table 5 Perspective model – stakeholders’ support or disagreement for others’ criteria

Stakeholder Sales Engineers Manager
Salesperson n/a Development resource: 3 Project responsibility: 4
 Executive decisions: 5
Engineer Sale requirement: 3 n/a Project responsibility: 4
 Executive decisions: 5
Manager Sale requirement: 3 Development resource: 3 n/a

Table 6 Perspective model – stakeholders’ desire for own alternative

Stakeholder Alternative Desire (1–10)
Salesperson n/a n/a
Engineer Software prototype Software prototype: 4
Manager External program External program: 4

Table 7 Perspective model – stakeholders’ support or disagreement for others’ alternative

Stakeholder Sales Engineers Manager
Salesperson n/a Software prototype: 4 External program: 4
Engineer n/a n/a External program: 4
Manager n/a Software prototype: 3 n/a

Step 6: Facilitate the generation of stakeholder negotiation arguments, including claims
and the supporting data.

In order to model both social and technical factors in stakeholders’ negotiation
arguments, the claims, data and warrants are collected from the baseline process
representing the technical decisions. And backing, qualifiers and rebuttal are obtained
from the concept structure and stakeholders’ perspective models, which jointly represent
stakeholder’s social characteristics and their social interactions. Based on the definition
of Toulmin’s structure, the claim is the proposal of the argument. In our ASTN approach
it is how a stakeholder proposes to implement the design task in terms of the sequence of
the actions/objects. The data consists of the initial state and expected state of the task.
The warrant is the logical relationship between the task and the states. Therefore, the data
actually validates the claim and the warrant justifies the use of the data for the claim.
Backing and rebuttal comes from the concept structure. The objectives and criteria
of the stakeholders are the backing information, which logically supports the warrant.
And the alternatives to implement the tasks, used as rebuttal in the argument, provide
other options (thus suspending the warrant). Stakeholders’ perspectives (e. g., desire,
support or disagreement of a concept) are the qualifiers, which indicate the degree of
force to validate his claim.

 A socio-technical negotiation approach for collaborative design 199

To build the negotiation argument in this way, stakeholders have a better
understanding of each other because they share not only their claims but also their
underline reasons and desires (e.g., perspectives). Figure 5 describes an argument
example from a salesperson stakeholder’s perspective. As shown in the figure, the claim
for the task ‘estimate product quality attributes’ is to test response time, data security and
software usability. The data describes that the initial state (of this task) is that the
functional architecture draft is ready for review and the expected result is that the quality
of the architecture should be well evaluated and validated. Therefore, it is critical that,
within this task, all quality attributes (with which the customer is concerned) are
estimated. To justify the use of the data, the warrant states the importance of the latter in
validating the claim. The backing of this argument is to present the salesperson’s
objective (i.e., performance, security and usability) and criteria (i.e., sales requirements
are first-priority). Extended data from customer requirements is also provided
in the backing. The qualifier is the salesperson’s perspective, i.e., his desire for
the performance, security and usability. The qualifier also includes her support or
disagreement on other’s concepts.

Figure 5 An example argument (by the salesperson)

Step 7: Exchange the arguments among the stakeholders and compare them by an
argument evaluation approach.

As the stakeholders share and exchange their argument claims during negotiation,
their concept structures and perspective models may evolve due to social interactions
and/or deepened understanding of each other. If all the stakeholders can jointly agree on a
particular claim, they can take that claim as the conflict resolution. Otherwise, all the
arguments must be carefully evaluated for resolutions. The evaluation method analyses
the stakeholder perspectives of the concepts within the arguments and compares the
argument claims based on the result. The stakeholders can choose a particular evaluation
method according to their requirements. In this paper, a simple example is provided,
as an illustration, using ‘weighted average’ to evaluate the arguments based on concepts
and perspectives, e.g., objectives, criteria, alternatives, support, dissent. Weighted
average, by its definition, means an average that takes into account the proportional

 200 S.C-Y. Lu and N. Jing

relevance and strength of each component, rather than treating each component equally.
In our ASTN approach, the component is the concept and the relevance value is the
perspective. As explained above, they are initially proposed in the pre-negotiation phase
and then evolve in the negotiation phase during the argument exchanges. This specific
evaluation method is explained as follows:

• The evaluation result for an argument clam is the sum of the results for objectives,
criteria and alternatives. The mathematical formula of this method is as follows:

Claim evaluation = average (objectives evaluations + criteria evaluations
 + alternative evaluations).

• The method to evaluate an objective is to add the sum of the desires for this objective
and the support or disagreement from others. The evaluation of this objective is
represented by the ‘weight’ (i.e., perspective) added by all the stakeholders.
Its mathematical formula is as follows:

stakeholder

stakeholder

Objectives evaluations
= (objective _ desire support / stakeholder_number

dissent / stakeholder _ number) / objective _ number.

+

+
∑ ∑
∑ ∑

With this formula, we can evaluate an objective of a stakeholder by adding his desire
with the support or disagreement from others. Each other stakeholder’s support for this
objective is summed up and divided by the number of the stakeholders. Same calculation
applies for the disagreements. Given the evaluation for each objective, we can calculate
the overall evaluations for the objectives of a stakeholder by adding all evaluation value
together and dividing the sum by the number of the objectives. The methods to evaluate
the criteria and the alternatives are same as that for the objectives (see below).

stakeholder

stakeholder

Criteria evaluations = (criteria_desire support/stakeholder_number

disagreement/stakeholder_number) / criteria_number

+

+
∑ ∑
∑ ∑

stakeholder

stakeholder

Alternative evaluations = (alternative_desire+ support/stakeholder_number

disagreement/stakeholder_number)

/ alternative_number.

+
∑ ∑
∑
∑

For example, the evaluation for the manager’s claim is:

Claim evaluation = average (objectives evaluations + criteria evaluations
 + alternative evaluations)
 = [(performance_evaluation + security_evaluation
 + usability_evaluation + portability_evaluation)
 + (project responsibility_evaluation
 + executive power_evaluation)
 + (external program_evaluation)]/3
 = [[(5 + 5 + 5)/3 + (5 + 5 + 5)/3 + (4 + 5 + 5)/3 + (5 + 3 + 3)/3]/4
 + [(5 + 4 + 4)/3 + (4 + 5 + 5)/3]/2 + (4 + 4 + 4)/3]/3
 = 4.33.

 A socio-technical negotiation approach for collaborative design 201

Following this same example, Table 8 shows the evaluation results.

Table 8 Arguments evaluation results

Stakeholder claim Evaluation

Sales 4.07
Engineers 3.73
Manager 4.33

After the evaluation, the stakeholders choose the argument claim with the highest
score and move back to Step 3 to check for further conflicts with other tasks.
These iterations continue until no more conflict is found, and the team moves to the
Post-Negotiation phase as described below.

3.3 The post-negotiation phase

In the Post-negotiation phase, the stakeholders have resolved all identified conflicts and
are committed to accept one jointly agreed software design. After the stakeholders have
completed all the design tasks in the baseline process and the necessary negotiation
activities, and have converged onto one common software design, the collaboration
statistics are calculated and summarised. There are two steps in this last phase as
described below.

Step 8: Obtain a commonly accepted software design.

One outcome of the ASTN approach is a software design commonly agreed and accepted
by all involved stakeholders. No conflict exists for this software design. In addition,
it also includes the shared concepts and common understood perspectives, which have
been collected during the previous negotiation phase – they can be very useful for future
collaboration among the same group of stakeholders on similar software design tasks.
The concept structure built in the negotiation process can also provide a clear explanation
of the software architecture and functionality for other teams (e.g., software quality
assurance) to learn and coordinate in large software projects.

Step 9: Collect and report the collaboration statistics.

Collaboration statistics include, for example, negotiation efficiency (i.e., how much time
or how many iterations were spent on resolving one conflict), the number of the conflicts
(which are detected and resolved) and conflict profiles (what are involved social and
technical factors). These collaboration statistics are calculated as the summary of the past
stakeholder negotiation activities and will be an important factor for evaluating the
quality of collaboration in software design process. For example, less number of conflicts
or less times of iterations normally indicates better collaboration. Therefore, the statistics
will help team management further refine the task-work (prescribed in the baseline
process) by investigating the specific steps in the negotiation process that are most
time-consuming or causing unexpected iterations. Additionally, the negotiation efficiency
and the conflicts profiles will be available as useful future references for the design team
management in case they face with similar conflicts in the future.

 202 S.C-Y. Lu and N. Jing

4 Research prototype

Using the ASTN approach presented in the previous sections, we have been developing
an IWANT. IWANT is a computer-supported negotiation system based on the ASTN
approach, which implements a socio-technical ABNP for the collaborative software
design. The uniqueness of this system includes the modelling and analysis of the social
interactions and technical decisions of the stakeholders. It provides a toolkit to help the
stakeholders to systematically carry out a socio-technical negotiation process to resolve
their decision conflicts in collaborative software design. This section briefly explains the
functionality, architecture, implementation and application of the IWANT research
prototype.

4.1 The functionality of IWANT

The major functionality of IWANT is to help stakeholders to systematically negotiate
their design conflicts based on both technical and social factors. When stakeholders
realise that there are different implementations in their software design tasks, they can
activate the negotiation activity by logging into the IWANT system and starting a new
process instance. The new instance first collects argument information from the
stakeholders by requesting their concept structure and perspective models. After that,
the IWANT system shares the argument claims within all members in the design team.
It can also track the evolving concepts and stakeholder perspective, and make relevant
changes in the negotiation arguments. If the stakeholders cannot choose a claim by
themselves, IWANT can provide them with a few evaluation approach options (e.g.,
weighted average) and then evaluate all the claims using the approach chosen by the
stakeholders. After that, the team takes the claim with the best score and continues their
design work. To support the negotiation process in collaborative software design,
IWANT also has the ability to model a generic software design process (i.e., the baseline
process) and build stakeholders profiles, which can be provided for review during the
negotiation.

4.2 IWANT system architecture design

Based on the specified functionalities, Figure 6 shows the overall system architecture of
IWANT.

The architectural design of IWANT has three layers in accordance with the widely
accepted Model-View-Controller standard (Sun Microsystems, 2002; Selfa et al., 2006)
the view layer is the user interface component running on the client side, and displays
the information requested by the users; the controller layer implements the business
logic in order to process and modify the data accessed, and it is manipulated by
the model layer with several data structures (Stakeholder, Process and Negotiation).
Within the controller layer, the negotiation execution module helps stakeholders plan,
enact and complete a negotiation process based on the argument-based approach.
The process management module manipulates design process and models the tasks
that the stakeholders work on. And the stakeholder management module manages the
stakeholder account – background, preference, skills and other information.

 A socio-technical negotiation approach for collaborative design 203

Figure 6 The IWANT system architecture

4.3 IWANT prototype implementation

A prototype of IWANT is being implemented in Java language, and is being deployed to
support a few software development projects. The prototype is implemented as a web
service on the Apache web server so that the stakeholders (users) can access this system
via the internet. At the beginning, they will jointly implement each design task in the
process management module, and their profiles will also be captured by the stakeholder
management module (see Figure 6). The ABNP is implemented in the negotiation
execution module and enforced by the system to define how a negotiation session is
conducted. At any point in time during this process, stakeholders can propose a claim for
a task and declare their concepts and perspectives. They can review the arguments claims
of each other on IWANT and choose one to resolve the difference manually or by
evaluation. A negotiation process ends with an agreement on the different claims when
either of the following conditions is met:

• all the involved stakeholders agree with one claim before time is up

• when the allowed time has elapsed, an evaluation approach is applied and a claim
with highest ranking is chosen.

To better illustrate the use of this prototype, four screen snapshots are taken in the
prototype and provided in the figures below. Figure 7 is an example of showing the
claims related with one task, which the stakeholders have different opinions of.
The stakeholders can add new claim (e.g., the manager can add his claim following those
made by the engineer and salesperson), view the concept structure (related with the
conflicting task), or enter the conflict management phase. In the claims table, more
user-friendly terms have been implemented, for instance, reason (as data in argument
structure) and proof (as warrant), to improve the user experience. Figure 8 illustrates a
typical concept structure, which lists the concepts related with the conflicting task.
The table in this page provides the information for each concept: the stakeholder who
proposes this concept, the type of the concept (e.g., objective, criteria), and the

 204 S.C-Y. Lu and N. Jing

description provided by the stakeholder. On this user interface, the stakeholders can
declare their perspectives for each concept or add a new concept for the task.

Figure 7 A snapshot of argument claims (see online version for colours)

Figure 8 A snapshot of concept structure (see online version for colours)

Figure 9 presents the conflict management interface. The stakeholders review
all the relevant claims and then either agree on one claim or use the system to rank all the
claims by a weighted average method. Figure 10 shows the ranking result in an ordered
list.

 A socio-technical negotiation approach for collaborative design 205

Figure 9 A snapshot of conflict management (see online version for colours)

Figure 10 A snapshot of ranking argument claims (see online version for colours)

4.4 Initial IWANT applications

IWANT is being used by a few software development groups to increase software design
efficiency and validate the ASTN approach. Our plan is to integrate IWANT into their
software design life cycle to specifically serve the negotiation process. We also use
IWANT to compute negotiation efficiency and effectiveness statistics for future design
team reference. These application experiments are being conducted in both academic
units and software companies. A variety of user groups have been investigated and
different social and technical factors have been collected and analysed. A collaboration
statistics template has also been developed and provided to the experiment units.
Table 9 shows this example template. Using the template, IWANT is able to efficiently
collect the complete data sets, including tasks, stakeholders’ concept structures,
stakeholders’ perspectives, stakeholders’ arguments and conflicts.

 206 S.C-Y. Lu and N. Jing

Table 9 Example collaboration statistics template

Tasks

Task Name Initial State Expected State Has A Conflict (Y/N)

Stakeholders

Stakeholder Name Title Task Role Task Implementation

Concept structure

Concept Name Stakeholder Name Type Description Task Name

Perspectives

Concept Name Stakeholder Name Perspective Value Note

Argument

Data Warrant Backing Rebuttal Qualifier Stakeholder Name Claim

Conflict

Conflicting Task Involved
Stakeholders

Winner Claim Time Usage Conflict Description

 Practical Expected

In the ongoing experiments, an interesting issue in deploying the IWANT system was
found: one experiment unit already had a software design system and hence the
stakeholders were reluctant to manage the design process with IWANT. This situation
has inspired us to improve IWANT by directly importing the software design process via
a common data standard, such as XML. As such, the currently used software design
system in the experiment unit can export the design process in XML. IWANT will then
transform this XML data to its own format and render the process to the stakeholders.
This system application also opens the direction of future investigations on how to gain
the acceptance of the ASTN approach by user groups and how to better deploy IWANT if
the stakeholders already have other software design systems in use.

5 Conclusion and future work

This paper presents a new approach to support integrated socio-technical negotiation
activities in a collaborative software design process. We have investigated the critical
issues of such collaborative negotiation activities, including modelling negotiation
arguments based on social and technical factors and analyse these arguments to reconcile
the conflicts for software design tasks. To address these challenges, we have developed a
new approach based on the integration between the STCP and the ABNP.

We believe that software design is not only a technical decision making process
conducted by a group of software experts, but also a social interaction process among all

 A socio-technical negotiation approach for collaborative design 207

of the interested participating stakeholders. Based on this more comprehensive view, our
research approach removes some of the critical limitations of traditional software design,
such as providing a social interaction model to trace the source of the decision conflicts
and clearly specifying a negotiation process to resolve the conflicts in collaborative
design. Additionally, this new approach takes advantage of an ABNP that assists
stakeholders in generating and evaluating their argument claims systematically based on
their technical knowledge and social interaction. The identified conflicts among the
stakeholders are systematically handled by the negotiation activities and the software
design process is thus much improved. A software prototype called IWANT is being
developed and evaluated in several real-life software development projects.
User feedbacks and negotiation efficiency statistics are being collected to validate our
research and improve the approach. In conclusion, our approach provides a more
comprehensive yet practical method for stakeholders to negotiate conflicting opinions
and develop a shared software design solution.

Our future research work will refine the conflict management strategies by defining
design conflict profiles and their relationships with design tasks and stakeholders’
perspectives. Also based on the collaboration statistics template, we will further propose
a standard to evaluate the quality of collaboration according to negotiation efficiency and
conflict profiles. In addition, we hope to gain a deeper understanding of social
interactions and their relations to technical decisions that occur in many real-life software
design tasks. Furthermore, we plan to thoroughly validate this research framework and
exercise the software prototype by conducting more case studies with the software
industry. We also wish to transfer the lessons learned to other fields of engineering
designs, such as new product developments, to broaden our research impacts. When more
developments are conducted and application results are gathered, the framework
and system will be continuously improved to eventually leading to the establishment of a
scientific foundation for collaborative engineering.

Acknowledgements

We are grateful for the continual support provided by the US Army Construction
Engineering Research Laboratories (CERL) and the National Science Foundation.
We thank Dr. Michael Case and Francois Grobler of CERL for their technical
contributions. Special thanks are given to Mr. Andrew Wachter for his valuable technical
editing and advice. We thank all of our colleagues in the IMPACT Laboratory at USC
for reviewing this work, and for suggesting the use of Wiki media for internet based
discussion.

References
Aldrich, J., Garlan, D., Schmerl, B., Shaw, M. and Wing, J. (2006) Software Engineering Research

in the Computer Science Department of at Carnegie Mellon, A Web Tutorial,
http://www.csd.cs.cmu.edu/research/areas/softeng/

Amgoud, L., Maudet, N. and Parsons, S. (2000) ‘Modelling dialogues using argumentation,
multiagent systems’, Proceedings of Fourth International Conference, 10–12 July,
pp.31–38.

 208 S.C-Y. Lu and N. Jing

Avery, J., Yearwood, J. and Stranieri, A. (2001) ‘An argumentation based multi-agent system for
etourism dialogue’, Proceedings of International Workshop on Hybrid Intelligent Systems
(HIS’01), December, Adelaide, Australia, Vol. 12, pp.194–210.

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J. and Madachy, R. (1999) ‘A stakeholder
win-win approach to software engineering education’, Annals of Software Engineering,
pp.295–321.

Boehm, B., Port, D., Huang, L.G. and Brown, W. (2002) ‘Using the spiral model and MBASE
to generate new acquisition process models: SAIV, CAIV, and SCQAIV’, CrossTalk, January,
pp.20–25.

Chang A. M. and Han T. D. (1995), ‘Design of an argumentation-based negotiation
support system’, System Sciences, 1995. Vol. IV, Proceedings of the Twenty-Eighth Hawaii
International Conference on Volume: 4, 3–6 January, Vol. 4, pp.242–251.

In, H., Olson D. and Rodgers T. (2002) ‘Multi-criteria preference analysis for
systematic requirements negotiation’, IEEE International Computer Software and
Applications Conference (COMPSAC 2002), Oxford, UK, pp.887–892.

In, H., Olson, D. and Rodgers, T. (2001) ‘A requirements negotiation model based on multi-criteria
analysis’, Requirements Engineering, Proceedings of Fifth IEEE International Symposium
on 27–31 August, pp.312, 313.

Kazman, R. (2005) ‘The essential components of software architecture design and analysis’,
Software Engineering Conference, 2005. APSEC ‘05. 12th Asia-Pacific 15–17 December
2005, Page(s):1 pp. Digital Object Identifier 10.1109/APSEC.2005.103.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. and Carriere, J. (1998)
‘The architecture tradeoff analysis method’, Engineering of Complex Computer Systems,
1998. ICECCS ‘98. Proceedings. Fourth IEEE International Conference on 10–14 August,
pp.68–78.

Kraus, S. (2001) ‘Automated negotiation and decision making in multiagent environments’,
Lecture Notes in Artificial Intelligence 2086, p.150.

Lee, Y. and Choi, H-J. (2005) ‘Experience of combing qualitative and quantitative
analysis methods for evaluating software architecture’, Proceedings of the Fourth
Annual ACIS International Conference on Computer and Information Science (ICIS 2005),
pp.152–157.

Lu, S.C-Y. (2003) Engineering as Collaborative Negotiation: A New Paradigm for Collaborative
Engineering Research, the ECN Working Group of the International Institution of Production
Engineering Research (CIRP), see http://wisdom.usc.edu/ecn

Lu, S.C-Y. and Cai, J. (1999) ‘Modeling collaborative design process with a socio-technical
framework’, Proceedings of Sixth ISPE Int’l Conf. Concurrent Engineering, Bath, UK.

Moore, M., Kazman, R., Klein, M. and Asundi, J. (2003) ‘Quantifying the value of architecture
design decisions: lessons from the field’, Proceedings of the 25th International Conference on
Software Engineering (ICSE 25), Portland, Oregon.

Rong, J., Geng, S.J., Valasek, J. and Ioerger, T.R. (2002) ‘Air traffic conflict negotiation and
resolution using an onboard multi-agent system’, Digital Avionics Systems Conference, 2002.
Proceedings of the 21st, Volume: 2, Vol. 2, pp.7B2-1–7B2-12.

Saaty, T.L. (1980) The Analytic Hierarchy Process, McGraw-Hill, New York.
Selfa, D.M., Carrillo, M. and Del Rocio Boone, M. (2006) ‘A database and web application based

on MVC architecture’, Electronics, Communications and Computers, CONIELECOMP 2006,
16th International Conference on 27-01 February, pp.48–48.

 A socio-technical negotiation approach for collaborative design 209

Sierra, C., Jennings, N.R., Noriega, P. and Parsons, S. (1998) ‘A framework for
argumentation-based negotiation’, in Singh, R.A. and Wooldridge, M. (Eds.): Intelligent
Agent IV: 4th, International Workshop on Agent Theories, Architectures and Languages
(ATAL – 1997), Lecture Notes in Aritificial Intelligence, Springer-Verlag, Berlin, Vol. 1365,
pp.177–192.

Sillince, J.A.A. and Saeedi, M.H. (1999) ‘Computer-mediated communication: problems
and potentials of argumentation support systems’, Decision Support Systems, Vol. 26,
pp.287–306.

Sun Microsystems (2002) Designing Enterprise Applications with the Java 2 EE Platform, 2nd ed.,
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/titlepage.html

Toulmin, S. (1958) The Uses of Argument, Cambridge University Press, London.

