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Abstract: Heterogeneous gene expressions provide insight into the biological 
role of gene interaction with the environment, disease development and drug 
effect at the molecular level. We propose Time Lagged Recurrent Neural 
Network with trajectory learning for identifying and classifying gene functional 
patterns from the heterogeneous nonlinear time series microarray experiments. 
The proposed procedures identify gene functional patterns from the dynamics 
of a state-trajectory learned in the heterogeneous time series and the gradient 
information over time. Trajectory learning with Back-propagation through time 
algorithm can recognise gene expression patterns vary over time. This reveals 
more information about the regulatory network underlying gene expressions. 
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1 Introduction 

Understanding the function of each gene in the human/animal genome is not a trivial 
task. Learning the gene interactions with the changing environment, with the 
development of a disease or under different treatment is an even greater challenge and 
critical to improve human life. As an important step, extracting the knowledge from 
heterogeneous types of gene expressions may provide a better insight into the biological 
role of gene interactions with disease development and drug effect at the molecular level. 
Heterogeneous types of gene expressions contain different experimental conditions.  
The experimental conditions may correspond to different time points under different 
dosages of a drug, measures from different individuals, different organs or different 
diseases. DNA microarrays allow the measurement of expression levels for thousands of 
genes, perhaps all genes of a cell or an organism, within a number of different 
experimental conditions (Gasch et al., 2000). The dynamic patterns of genes expressed 
under different conditions can be useful indicators about gene state-trajectories and may 
reveal possible states and trajectories of disease and treatment effects (Holter et al., 2001; 
Ramoni et al., 2002; Yeung and Ruzzo, 2001; Yeung et al., 2003; Hastiel et al., 2000; 
Romualdi et al., 2003; Neal et al., 2000). Also, the analysis of the gene state patterns can 
help identifying important and reliable predictors of diseases, such as cancer, in order to 
develop therapies and new drugs (Brown et al., 2000). Biologists, computer scientists and 
statisticians have had a decade of research on the use of microarrays to model gene 
expressions (D’haeseleer et al., 1999; Herrero et al., 2001; Holter et al., 2001; 
Raychaudhuri et al., 2000 etc.). Most of the studies are interested in the genes that  
co-express in similar conditions with fewer results on the heterogeneous types of gene 
expressions. Moreover, most of these studies focus on the mean profiles of the gene 
expression time course, which can make the cluster or classification of gene expressions 
largely simplified but ignores the important time updated (varied) information. 

One feature of gene expression data in time series microarray experiment is that it 
includes a large number of attributes with high correlation and with high level noise. 
Because of its massive parallelism, potential for fault and noise tolerance, an Artificial 
Neural Network (ANN) based information processing is capable of taking the task to deal 
with this feature. ANNs can adapt their structure in response to the change of the gene 
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expressions under different conditions in order to extract knowledge, which contributes to 
a deep understanding of gene interactions and identifies certain causal relationships 
among the genes with diseases and drugs (Bishop, 1995; Haykin, 1999). 

The study of the heterogeneous gene expressions under different experimental 
conditions in a multivariate nonlinear time series may involve the study of dynamic 
changing of the statistical variations of non-stationary processes of gene expressions. 
There are several types of artificial neural networks for temporal processing, which can 
be used to model the natural characteristics of the gene changing under different 
conditions and update the information in the training data over time. Recurrent Neural 
Networks (RNNs) has the ability of dealing with time varying input and output and it can 
define neurons as states of the network (Pearlmutter, 1995). The output of the hidden 
layer is fed back to the input layer via time delay. An internal state of the network 
encodes a representation of some characteristics or a biological mechanism of gene 
interactions, based on the transition function of the state from a recursive neural network, 
eventually to control the production of the internal information. State space model can be 
viewed as a special case of RNN, which combines a stochastic process with observation 
data model uniformly based on the recursive neural network. Hidden Markov processes 
can also be used to model the gene activity systems in which the gene states are 
unobservable, but can be represented by a state transition structure determined by the 
state parameters and the state transition matrix while processing the patterns over time. 
Time Lagged Recurrent Neural Networks (TLRNNs) are extensions of conventional 
RNNs and outperform them in the terms of network size. A TLRNN use short memory 
structure instead of static topology networks to develop advanced classification systems 
and use a complex learning algorithm: Back-Propagation Through Time (BPTT) to learn 
the temporal pattern (Stornetta et al., 1988; Werbos, 1993). This dynamic learning 
process is well adapted to the heterogeneous time series gene expression domain. 
TLRNNs can be used in nonlinear time series prediction, system identification and 
temporal pattern classification. 

The goal of this paper is to investigate the performance of heterogeneous types of 
multivariate time series data using time lagged recurrent neural networks with dynamic 
trajectory learning. The question we are interested in is whether the dynamic 
heterogeneous gene activity patterns can be well identified or classified through the 
trajectory learning with a time lagged recurrent neural network. 

The rest of the paper is divided as follows: in Section 2 we describe how the data was 
acquired and preprocessed. In Section 3 TLRNNs, statistical criteria for searching for the 
optimal model and related learning algorithms are presented. Experimental results are 
given in Section 4. We survey related work in Section 5 and finally we provide some 
concluding remarks in Section 6. 

2 Data acquisition and preprocessing 

2.1 Data acquisition 

We used the widely studied set of yeast expression measurements data produced by  
Eisen et al. (Chu et al., 1998; Eisen et al., 1998; Spellman et al., 1998). The total data 
contained 2465 genes. Each data point represented the base two logarithm of the ratio of 
expression levels of a particular gene under two different conditions (CY5 and CY3 with 
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red and green fluorescence intensity). The gene matrix contained 79 experiments over  
a variety of experimental conditions. The data were generated from spotted arrays using 
samples collected at various time points during diauxic shift, the mitotic cell division 
cycle, sporulation, the temperature, reduing shocks, and was taken from the Stanford 
genome research website (http://www-genome.stanford.edu). The training labels were 
extracted from Saccharomyces cerevisiae functional catalogue databases (Jansen and 
Gerstein, 2000). The study divided the data into three cases: 

• Identify two classes of gene functional patterns: 121 ribosomal protein sample genes 
and 2346 non-ribosomal protein genes. We used two third of the data as training to 
construct the best model and the rest as testing the network performance. 

• Identify three different classes of functional gene expressions: three classes and the 
sizes are listed as can be seen in Table 1. 

• Identify multiple gene functional patterns from four to ten classes and see the 
network performance trends. 

Ten subclasses are also extracted from the original functional catalogue, the last class as 
negative control and the other nine as learnable classes. The selected data and 
corresponding classes are given in Table 2. 

Table 1 Three gene functional classes and size 

Class Size 

Ribosomal 121 
Transcription 159 
Secretion 96 

Table 2 Gene functional classes with heterogeneous data 

Class Size 

Cell 168 
Chromatin 48 
Cytoskeleton 72 
DNA 103 
mRNA 103 
Nuclear 43 
Protein 477 
Secretion 116 
Transcription 136 
Transport 129 

2.2 Data preprocessing 

Figure 1 gives scatter plots of data under different experimental conditions. Figure 2 
provides time series plots of gene expressions under different experimental conditions. 
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Figure 1 Scatter plots of three different classes of functional gene expressions (ribosomal, 
transcription and secretion) under heterogeneous conditions (see online version for 
colours) 

 

Figure 2 Time series plot of three classes functional gene expressions under heterogeneous 
conditions (see online version for colours) 

 

2.3 Smoothing the data 

As we have seen in the time series plots in Figure 2, the data contains high-frequency 
components and are non-stationary, which may make modelling difficult. To remove 
these factors, we processed the data by differencing the input series. After difference 
transformation, the time series were plotted in Figure 3. The figure shows that 
transformation can make the data more stationary. 

Figure 3 Time series plots after difference transformation for three classes functional gene 
expressions under heterogeneous conditions (see online version for colours) 
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2.4 Input selection 

Seventy nine inputs may be too large for a recurrent neural network, which is difficult to 
train (particularly if the data is noisy) and may result in overfitting problems, which do 
not provide good general solution. In order to select the neural network inputs, a 
statistical analysis has been carried out to determine the correlation between the inputs 
(experimental conditions) and the outputs (the class or pattern of genes). We compute the 
Pearson correlation coefficients of inputs and outputs, then based on the p-values we 
setup the acceptance threshold: if the p-value of the correlation coefficient is less than 
0.0001, then we consider correlation and accept it as input, otherwise we drop it.  
The selected inputs and computed correlation coefficients are given in Table 3.  
The number of inputs was reduced from 79 conditions to 47. Several input permutation 
runs were also employed in order to find the combination, which produce the lowest error 
in the testing set. After we filtered out the low correlation inputs, the data were fed into 
the time lagged recurrent neural network. One advantage of the TLRNNs is that they can 
use the memory layer confined to the input, which can be used as further input 
preprocessors to reduce the redundant information. 

Table 3 Input selection: Pearson correlation coefficients of inputs and outputs (class), 
Prob > |r| under H0: Rho = 0 

Inputs Correlation coefficients 

alpha0 –0.29655 
alpha56 –0.26218 
alpha63 –0.21622 
alpha70 –0.20749 
alpha84 –0.34190 
alpha91 –0.26009 
alpha98 –0.44897 
alpha105 –0.2258 
alpha112 –0.39606 
Elu0 0.39482 
Elu60 –0.43226 
Elu90 –0.57070 
Elu120 –0.63138 
Elu150 –0.59320 
Elu180 –0.52208 
Elu210 –0.48014 
Elu240 –0.37021 
Elu270 0.34820 
Elu300 –0.25142 
cdc1570 –0.26273 
cdc1590 –0.32061 
cdc15110 –0.40302 
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Table 3 Input selection: Pearson correlation coefficients of inputs and outputs (class), 
Prob > |r| under H0: Rho = 0 (continued) 

Inputs Correlation coefficients 

cdc15130 –0.32735 
cdc15150 –0.23325 
cdc15210 –0.33316 
spo0 –0.22003 
spo2 0.63531 
spo5 0.61170 
spo7 0.58318 
spo9 0.41863 
spo511 –0.67660 
spoearly 0.67581 
spomid 0.67611 
heat10 0.57206 
heat20 0.77191 
heat40 0.60434 
heat80 0.57094 
heat160 0.47246 
dtt15 –0.25992 
dtt60 0.51186 
dtt120 0.75011 
cold20 0.32741 
cold40 0.38936 
cold160 0.59074 
diaua 0.33820 
diauf 0.65262 
diaug 0.67092 

3 Design of time lagged recurrent neural network 

3.1 Architecture 

The heterogeneous gene expression contains information in its time structure, i.e., how 
the gene expression changes with time. Time Lagged Recurrent Neural Networks are 
useful to identify the gene functional patterns with time information. TLRNNs are 
extensions of Multi-Layer Perceptrons (MLPs) with short-term memory structures.  
In our study we choose the network architecture with three layers, the feedback 
connection from the hidden layer back to the input layer. The input layer use the inputs 
delayed by L samples before presented in the network. The trainings of the TLRNN are 
processed using back-propagation through time with trajectory learning and the 
parameters can be learned by examples (Werbos, 1993). The advantage of the BPTT with 
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trajectory learning is that the learning system is trained to recognise or capture a set of 
patterns, which may vary with time since the number of inputs can be varied with time. 
Therefore it perfectly meets the requirements of the knowledge discovery purpose for 
biological systems and living systems like gene expression microarray data. In this case 
the static topology neural networks must be extended to dynamic networks, i.e., have 
short-term memory structures in which they capture the gene information of temporal 
patterns. 

There are three memory structures at the input layer we can choose from: one sample 
delay, Gamma memory, and Laguerre memory. In our study we employed three cases to 
search for the best structure for the selected data. Based on Akaike and Bayesian 
information statistical criteria and classification accuracy the Gamma structure worked 
better than the other two. 

3.2 Learning algorithms 

One way to achieve the best network structure without information loss and accuracy loss 
is constructing the learning algorithm based on its capability of decreasing the effective 
number of weights during training to reduce the danger of overfitting. There are two 
ways to achieve this, one is using back-propagation through structural learning with 
forgetting in which the small weights are dropped off through regularisation parameters 
or decayed values (Miller and Zurada, 1998). The other way is using Back-Propagation 
Through Time (BPTT) in which the number of parameters in the network can be confined 
with the memory structure (Werbos, 1993). The BPTT algorithm uses the derivatives 
from state updated functions and cost functions, then trains over a trajectory of the input 
space, enabling it to capture the temporal dynamics of the time series information. 
Trajectory learning is based on gradient information over time. BPTT can adapt the depth 
of the memory using gradient descent, instead of changing the number of inputs. Initial 
memory depth in our study is setup to ten, which later can be adapted by the network 
according to the type of the memory structure. The learning rule for each layer applied 
back-propagation with momentum, where the momentum was setup to 0.7. Tangent 
sigmoid transfer function works well for the given data. 

3.3 Statistical criteria for model selection 

The goal of model selection is to find the best network architecture that can achieve the 
balance between data fitting and model complexity in order to avoid over-fitting and to 
optimise generalisation performance. In a time lagged recurrent neural network, the 
model complexity level varies through trajectories with distinct types of common states. 
There are several dynamic parameters such as the number of hidden neurons, the memory 
taps (depth in the samples) and the number of trajectories in the search space that need to 
be optimised in order to achieve optimal models. The memory taps (the depth in samples) 
parameter can be adapted through BPTT. We designed two-way factorial arrays to search 
for the best values of the trajectory and the number of hidden neurons. In our study  
the number of trajectories is ranged from 2 to 20 and the number of hidden nodes  
from 2 to 20. 

To avoid a sequence of hypothesis testing for the model selection, we use statistical 
criteria such as the Akaike Information Criterion (AIC), or the Bayesian Information 
Criterion (BIC) to determine the optimal vales for optimal network size and structure 
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(Akaike, 1974). All these statistical criteria share the common form of composition, 
which is the model complexity criterion (equals to log-likelihood) plus a complexity 
penalty term. The advantage of using statistical criteria like AIC/BIC other than using 
sequential tests for model selection as proved by Stone (1974) is that there is an 
asymptotic equivalence of the choice by cross-validation and AIC. Therefore we can 
avoid the computational drawback of cross-validation and do not need to separate the 
data into cross-validation set when selecting the model. Note that the difference between 
AIC and BIC is that BIC includes the size of the input examples, and it may be more 
informative. The model with lowest AIC/BIC is considered to be the preferred one and if 
the model complexity is changed with the size of the sample, BIC is preferred, otherwise 
we prefer AIC (Li et al., 2000). The best neural network is the one with the highest 
classification accuracy and the lowest AIC/BIC. The best model was chosen for the rest 
of the gene classification and future predictions. 

4 Experimental results 

4.1 Two classes: ribosome and non-ribosome protein genes 

We used TLRNN with one hidden layer and Gamma memory function to identify two 
classes. The learning rule used back-propagation with momentum with step size 1, the 
learning rate was 0.7, and tangent sigmoid function was used as transfer function.  
After 1000 epochs of training the MSE dropped below 0.000059. Classification accuracy 
for testing set provided the mean with standard deviation value 99.427% ± 0.366% with 
ten independent runs. This result is even better than the reported results by prediction 
algorithm: CLEAVER, with a classification accuracy of 99.229834% for the same data 
(Raychaudhuri et al., 2000). 

We also employed Nearest Neighbor with Mahalanobis-Distances and Self-Organised 
Map (SOM) methods for comparison study, which gave correct classification rates of 
97.39% and 98.53%, respectively. Most of the methods are available with Neurosolutions 
4.1 software. 

4.2 Three classes: ribosomal, transcription and secretion gene functional 
classes 

Table 4 provides computed statistical criteria for model selection: values of AIC/BIC 
with average of five independent runs based on the number of trajectories and the number 
of hidden nodes for the case of three classes. Table 5 reports generalisation rates for the 
same runs. As it can be seen, the AIC/BIC values increase nearly linearly with the 
number of hidden nodes, while their values are essentially independent of the number  
of trajectories. Yet it is arguable if the low AIC/BIC values reported at trajectories 2, 5, 
and 18 are significant. Regarding Table 5 most of the low error rates are reported around 
the upper left corner, which corresponds to low number of hidden nodes with low number 
of trajectories, but the overall optimum can be found at four hidden nodes with  
18 trajectories. Since the number of classes to be recognised is only three, it is not 
surprising that small number of hidden nodes and number of trajectories can provide 
good performance. Table 5 also shows that the learning capability of the model varies 
with the complexity of the gene patterns, which mainly depends on the number of 
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patterns in the data and on the complexity of the trajectories. Our preliminary results 
show that by increasing the number of patterns (classes) to be recognised, the number of 
trajectories and the number of hidden nodes needs to be increased in order to get optimal 
performance. 

Table 6 provides comparison results with some other popular machine learning 
approaches for gene expression classification: Nearest Neighbor with Mahalanobis 
Distances (NNMD), Self-Organised Map and Support Vector Machine (SVM).  
The values given in the table provided us the confidence with the mean and standard 
deviation of the correct classification rate for five independent runs. SVM in our case did 
not provide higher performance than TLRNN as opposed to most gene expression 
studies. The reason may come from the heterogeneous expression data, TLRNN 
particularly performs well for this kind of time series data. We also computed the results 
with another recurrent neural network: the Jordan/Elman Recurrent Neural Network 
(JERNN). According to the results for the heterogeneous time series gene expression 
patterns with three classes the TLRNN works best. 

Table 4 Factorial array for model selection with dynamic trajectory learning: value  
of AIC/BIC based on the number of trajectories (T) and the number  
of hidden neurons (H) 

T\H 2 4 8 12 15 20 

2 1861/2143 3300/4289 7661/8698 11398/12970 14273/16234 19021/21629 
5 1846/2127 3828/4367 7638/8694 11404/12978 14316/16263 19092/21699 
8 1953/2234 3788/4327 7636/8692 11444/13018 14293/16254 19091/21700 
10 1904/2184 3861/4400 7631/8687 11410/12985 14154/16345 19046/21653 
12 1773/2250 3722/4582 7688/8744 11460/13033 14195/17325 19128/21735 
15 1945/2225 3815/4354 7679/8735 11505/13078 14288/16250 19111/21719 
18 1907/2187 3807/4346 7624/8680 11420/12992 14282/16243 19059/21666 
20 1936/2217 3834/4373 7665/8721 11445/13018 14378/16339 19139/21747 

Table 5 The generalisation error percentage with TLRNN based on the number of learned 
trajectories (T) and the number of hidden neurons (H) 

T\H 2 4 8 12 15 20 

2 4.42 3.96 5.72 4.70 5.30 5.01 
5 3.74 4.97 6.46 5.61 5.09 7.97 
8 5.73 4.36 5.29 7.99 6.16 7.72 
10 4.53 7.43 5.61 4.63 5.90 8.66 
12 5.43 6.53 9.15 9.31 7.36 11.60 
15 5.96 4.50 9.71 10.41 5.51 9.41 
18 4.39 3.48 5.75 6.23 5.03 5.90 
20 6.03 5.26 8.39 6.36 10.58 12.66 
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4.3 More broad functional classes: identify four to ten classes using TLRNN 

The data distribution for more broad gene functional classes is given in Table 2.  
The correct classification rates with TLRNN are given in Table 7, which are based on the 
optimal structure given by the AIC/BIC. As it can be seen in the table the correct 
classification rate decreases with the number of classes, which is not surprising. Also, as 
we discussed earlier both the number of hidden nodes and the number of trajectories 
increases as the number of classes increases for achieving better performance. 

Table 6 Correct classification rates of different methods for three classes 

Methods Correct classification rate (%) ± STD 

NNMD 73.28 ± 0.012 
SVM 74.65 ± 0.002 
SOM 80.44 ± 0.053 
TLRNN 95.61 ± 0.018 
JERNN 94.04 ± 0.015 

Table 7 The correct classification rates of TLRNN with BPTT with dynamic trajectory 
learning corresponding to the number of patterns to be discovered 

Number of patterns (classes) Correct classification rate (%) 

3 96.52 
4 87.14 
5 85.06 
6 76.15 
10 62.14 

5 Related works 

A large number of approaches have been proposed, implemented and tested by computer 
scientists and statisticians in order to discover or identify the gene functional patterns 
with microarray experiments (Golub et al., 1999; Alter et al., 2000). For example,  
a genetic network approach was discussed and developed by Thieffry and Thomas (1998) 
and D’haeseleer et al. (1999). Time series was studied by Socci and Mitra (1999) and so 
on. Self-organised hierarchical neural network was done by Herrero et al. (2001). 
Unsupervised neural network and associated memory neural network was done by 
Azuaje (2001) and Bicciato et al. (2001), classification and diagnostic prediction of 
cancers using gene expression profiling and artificial neural networks was investigated by 
Khan et al. (2001). Comparison of discrimination methods for the classification of tumors 
using gene expression data was done by Dudoit et al. (2002). We reported a Bayesian 
neural network approach earlier (Liang et al., 2002). Previous study showed that 
traditional statistical models can provide some insight into gene expressions and has 
precise results, but the weaknesses of statistical models are that they can not capture the 
dynamic changing of gene expressions from time to time well and are sensitive to noise 
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and assumptions. Neural networks are more efficient and flexible for studying gene 
expressions. We, as an addition to our efforts reported in this paper currently explore 
other kinds of neural network models for discovering correlation in gene patterns, and 
refine the Jordan/Elman neural network approach to study the heterogeneous time series 
gene expression patterns. 

6 Conclusion 

In this paper, we proposed and explored the use of TLRNNs with dynamic trajectory 
learning for investigating the gene functional patterns with heterogeneous microarray 
experiments. Results show that the TLRNN works better than the nearest neighbour with 
Mahalanobis Distances, SVM and SOM. For SVM, this is a little surprise since most well 
known results using SVM provided the highest performance, and it has properties of 
dealing with high level noise and large number of attributes, which both exist in the gene 
expression data. The possible reasons may be found in the heterogeneous time series  
gene expression data, since it involved different conditions with time information. 
Another reason is that TLRNN can iteratively construct the network, train the weights 
and update the time information. Results show that the best generalisation capability 
largely depends on the complexity of the patterns in which TLRNN can be monitored by 
the complexity of the trajectory with distinct types of states. With the increase in the 
number of gene functional patterns, the generalisation performance decreased. However, 
with changing the number of trajectories and the number of hidden nodes, the 
performance of the model can be improved based on the statistical criteria for model 
selection, in which two or three way factorial design can be employed in order to search 
for the best network architecture for prediction and medical diagnosis. 
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