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Abstract: Large biomedical abstract databases such as MEDLINE enable users 
to search for large bodies of biomedical knowledge quickly. In this study, we 
describe a new framework to improve the performance of MEDLINE document 
retrieval. We first analysed and built a normalized term frequency distributions 
for 1.8 million terms by sampling from 1,500,000 MEDLINE abstracts. Then, 
we developed a statistical model to identify significantly observed terms 
(‘gists’) in a document as additional document keywords to help improve 
document retrieval precisions. To improve document recalls, we integrated 
several biological ontologies that can expand user queries with semantically 
compatible terms. The framework was implemented in Oracle 10g. 
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1 Introduction 

Biomedical research publications contain a large amount of textual information.  
For example, the MEDLINE database (http://www.ncbi.nlm.nih.gov/entrez/) currently 
contains 15 million abstracts, or more than 1.5 billion English terms, from various types 
of biomedical papers published in the past several decades. These abstracts represent 
current accumulated knowledge, which is not captured elsewhere in relational databases. 
Many researchers routinely search these abstracts in order to review the scientific 
progress of their fields and develop new perspectives. However, even with PubMed 
(http://www.ncbi.nlm.nih.gov/entrez/; Schuler et al., 1996), a popular web-enabled 
software system based on MEDLINE, it is still primarily a trial-and-error process to 
search and retrieve relevant scientific literature. This is because large numbers of 
biomedical texts covering similar research topics often obscure the PubMed document 
retrieval and ranking engine, making it challenging for biologists to control how to define 
good search results. 

There are two conventional models to perform biomedical document retrievals.  
The first model, full-text based retrieval, uses all the terms from all MEDLINE abstracts 
to build term indices (Salton and McGill, 1983). When a user query matches any indexed 
term, all documents containing the indexed term will be retrieved, sometimes  
rank-ordered by a term occurrence score. The second model, keyword-based content 
retrieval, quite popular in data mining (Srinivasan, 2004; Rindflesch et al., 1999), uses a 
manually created list of keywords or MeSH terms as indices. 

To measure the effectiveness of document retrieval method, recall and precision 
measures are often used. Recall measures the percentage ratio of the number of  
relevant records retrieved to the total number of relevant records in the database.  
Precision measures the percentage ratio of the number of relevant records retrieved to the 
total number of irrelevant and relevant records retrieved. It is not difficult to observe that  
a full-text based document retrieval method has high recall (all text with a particular term 
appearance will be returned) but low precision (many retrieved text may be unrelated  
to the query term). A keyword based document retrieval method improves precision  
by retrieving only documents containing keywords; however, the use of keywords also 
lowers recall, because manually created keywords are usually far from enough to cover 
all key concepts of an paper. 

Several techniques have been developed to improve both recall and precision  
for biomedical document retrievals. Automated expansion of keyword list in  
keyword-based document retrieval systems has been explored to improve precision 
(Magnini and Prevete, 2000). However, unless the keyword list can be generated 
automatically and systematically from biomedical ontological systems, the level of 
precision for biomedical document retrievals will remain low. In full-text based 
document retrieval systems, adding term weight is a common method to improve overall 
precision and have been adopted by, for example, PubMed (Wilbur and Yang, 1996). 
Many other systems have also adopted methods that use inverse document frequency to 
calculate a term’s weight score from the following formula (Salton and Young, 1973):  

log( / )tf N df×  (1) 

where tf is the number of times a term T appears in a query document, N is the total 
number of documents from a document collection, and df is the total number  
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of documents with term T in them from the document collection. The calculated term 
weight score is generally high for rare terms such as ‘bcl2’, and low for common terms 
such as ‘patient’. 

Although using term weight scoring methods can improve precision for full-text 
based document retrieval, these calculated scores can be arbitrary and may not reflect the 
true significance of their occurrence in a document. For example, the common term 
‘patient’ may appear more than once per document in a document collection related  
to Alzheimer disease clinical trials. Using the simple term frequency method, one may 
conclude that the term ‘patient’ is more significant than the term for a novel Alzheimer 
disease drug, which may appear less than once per document. Using term inverse 
document frequency score may also fail, if the document collection is not sufficiently 
large, e.g., the term ‘patient’ may occur several times in only a few documents out  
of a biased sample of documents, inflating its weight score. Therefore, an advanced 
method that considers true statistical significance of terms based on sampling large 
biomedical texts need to be developed in order to improve precision for content-based 
biomedical document retrievals. 

In this work, we developed methods and a system to improve precision and recall  
of biomedical document retrievals. The paper is organised as follows. First, we collected 
frequency distributions of 1.8 million biomedical terms by sampling each term’s 
occurrence from 1.5 million MEDLINE abstracts. Second, we used these term statistics 
to derive a p-value for each term that occurred in a given biomedical document.  
Only significantly occurring terms that satisfy a certain threshold are retained and  
put into a document ‘gist’, an automatically generated list of keywords. Third, we 
addressed the problem of recall by allowing query term expansions, using three 
separately integrated data sources: gene ontology (Wheeler et al., 2000), cancer thesaurus 
(http://nciterms.nci.nih.gov/), and OMIM (http://www.ncbi.nlm.nih.gov/omim/). Fourth, 
we incorporated the above methods into a web-based software system (http://discover 
.uits.indiana.edu:8340/cgi-bin/TextMining/search_p.pl) built on the Oracle 10g text 
mining platform (http://www.oracle.com/technology/ industries/life_sciences/index. 
html). Fifth and lastly, we discuss the significance of our work. 

2 Term frequency distributions and statistical significance 

Essential to improving precision is a new method that requires the collection  
of each biomedical term’s statistical distribution found in large biomedical document 
samples. To accomplish this, we fetched 396 compressed MEDLINE files, 
medline03n0001.xml.gz to medline03n0396 gz, from the NCBI website. Each file 
contains 30,000 abstracts in XML format. For this work, we used about 1.5 million 
MEDLINE abstracts from 50 randomly selected files as the document population.  
This corresponds to approximately 10% representative subset of the total 15 million 
abstracts found in MEDLINE. 

We used the following technique to perform random document sampling.  
In each sampling process, we randomly select 10,000 MEDLINE abstracts from the 
document population. To guarantee ‘randomness’, we used two C program functions, 
srand48() and drand48(): the former initialises the seed, and the latter returns  
non-negative double-precision values uniformly distributed in the interval [0, 1). We seed 
the random number generator function with the Unix function time(). During each 
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sampling process, every term that occurs in the 10,000 MEDLINE abstracts is extracted 
and its occurrence is then counted. Title words and MeSH terms are also considered as 
part of an abstract and counted. The result is written to a file including two columns,  
i.e., term symbol and its raw counted frequency. The total number of terms for each 
sample is also recorded. Normalised term frequency is calculated as raw counted term 
frequency divided by the total number of terms in one random sample. 

Figure 1 shows the distribution of summed sample total term frequency binned from 
1,000 random samples. The x-axis represents the sample total term frequency range bins 
and the y-axis represents the count of samples in a given frequency range bin. The nice 
bell curve (near-normal distribution) is evidence that the sampling process is unbiased, 
because sample total term frequency demonstrates the statistical characteristics  
of a random variable. We also determined the total unique terms extracted from the  
1,000 random samples to be 1,819,228 (not shown in the figure). Each biomedical term’s 
occurrence frequency is different, ranging from millions to a few dozen. For example,  
In Table 1, we listed several common terms with the highest term frequencies.  
These terms usually appear many times in almost every abstract. Apparently, they are the 
worst candidates to be selected as document keywords. 

Figure 1 A histogram showing distribution of summed sample total term frequency binned from 
1,000 random samples (see online version for colours) 

 

Table 1 Common terms with highest term frequency (The frequency shown is summed over 
all 1,000 samples) 

Term Frequency 

Of 72454545 
The 71317305 
And 50872006 
In 41774072 
To 26561892 
With 18202942 
Was 13970537 
For 13446468 
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Table 1 Common terms with highest term frequency (The frequency shown is summed over 
all 1,000 samples) (continued) 

Term Frequency 

The 12933436 
Were 12008644 
That 10798401 
By 10750327 

We further show the term frequency distributions of all the extracted 1,819,221 terms  
in Figure 2. Here, we use the x-axis to represent the term frequency range bins  
(summed over 1,000 samples, shown in log scale) and the y-axis to represent count  
of terms in a given frequency range bin. We can divide the distribution curve into three 
portions: the left portion (frequency < 10), the middle portion (frequency between 10 and 
100,000), and the right portion (frequency > 100,000). The right portion represents 
abundant terms with very high frequency (some examples were shown in Table 1).  
The middle portion follows a nice power law distribution, and represents regular terms. 
The left portion is somewhat interesting: their distribution is quite different from the rest 
of the regular terms. The total number of unique terms in this range is huge (at 844,567),  
or approximately 46% of all the words. By examining these terms in detail (Table 2),  
we found that they are all belong to a class of ‘peculiar terms’, which are misspelled 
(e.g., ‘B!nding’ instead of ‘Binding’), extremely rare (e.g., ‘$1/day’), or synthesised by 
the author (e.g., ‘c-Series’). Additional examples of abundant terms and regular terms are 
shown in Table 2. The general trend is that as the term frequency increases, particularly 
moving from peculiar term frequency range to the regular term frequency range, terms 
become more comprehensible and general in biomedical documents. 

Figure 2 Distribution of frequencies of all terms in 1,000 samplings (see online version  
for colours) 
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Table 2 Example terms in different frequency ranges 

[1, 10) [10, 100) [100, 1K) [1K, 10K) [10K, 100K) 
$1/day $905/patient 0.5-fold 1-hour 10-fold 
1.5-4-kHz 2”-modified 1-aminobenzotriazole APS ADP-ribose  
2ndly B-carotene 2nd-order Generation Body 
B??hl c-ANCA-positive Mucosectomy Alphabeta Acceptor 
B!nding Decency Normoalbuminuria alphavbeta3 Elegans 
c-Series Earring Oncocytomas Burnetii Hydration 
early-growth failure-rate Propoxy butyrylcholinesterase Mammary 
steine gamelike radio-therapy Calreticulin Percutaneous 
p-hexyl Kings sham-operation Camptothecin Sputum 
mulitpotent z-test Sgk Campus Zidovudine 

We further investigated the term distributions between low-abundance regular terms (G0) 
and normal-abundance regular terms (G1). In Figure 3(a) and 3(b), we showed two 
examples of normalised term frequency distribution, 3(a) for the term ‘bind’ of G1 type 
and 3(b) for the term ‘sgk’ of G0 type. The normalised term frequency is calculated as 
term frequency over total terms in any given sample in a parts-per-million (ppm) scale.  
The x-axis represents normalised term frequency range bins and the y-axis represents the 
count of all samples which contains the given term in a specific frequency bin. 

Figure 3 Normalised frequency distribution of the term (a) ‘binds’ and (b) ‘sgk’ 

  
 (a) (b) 

For the term ‘bind’, the term frequency distribution is near-normal (Figure 3(a)). We can 
read that its mean µbind = 74.64 and its standard deviation σbind = 8.08. This near-normal 
distribution is typical for terms of the G1 type. For the term ‘sgk’ of type G0, however, the 
distribution is different. Because the term is rarely used (the total frequency is 64, still 
significantly larger than 10 expected of peculiar terms discussed early), its term 
frequency is quite small and sometimes zero in many document samples. Figure 3(b) 
shows the frequency distribution of the term ‘sgk’, which is not a ‘normal distribution’. 
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We store the entire term frequency distribution for each term in a relational  
database schema. Except for peculiar terms, we classify biomedical terms (both abundant 
terms and regular terms) into G0 and G1 types according to the term’s total frequency.  
If the term belongs to the G1 type, we note in our database that a normal  
distribution function using mean and standard deviation is available; otherwise,  
we note in the database that an empirical cumulative distribution function should be used 
instead. 

The calculation of term significance using p-value is done at the document querying 
stage as follows. When user issues a query search term, K0, K1, …, Ks, we retrieve these 
query terms against the MEDLINE documents stored in our text management relational 
database (Oracle 10g). The document collection, D0, D1, …, Dn, found in the database 
will be forwarded to the term significance evaluator system module. For each document 
Di in the collection, we find and record each term T0, T1, …, Tm, and their counted term 
occurrence in the given document in TFi,j (where i = 0, 1, …, m,  and j = 0, 1, …, n).  
DFi denotes the total number of terms occurred in the document Di. Note that the MeSH 
terms and the title are counted as part of the document. We calculate the p-value for term 
Ti of the type G1 using: 

,
, NormDist , , , = 0, 1, , and = 0, 1, , .i j

i j i i
j

TF
P i m j n

DF
µ σ

 
=   

 
… …  (2) 

If the term Ti is of type G0, we calculate its p-value using: 

,
, EmprDist  = 0, 1, , , and  = 0, 1, , i j

i j
j

TF
P i m j n

DF

 
=   

 
… …  (3) 

To implement the above algorithm, we downloaded a Perl module from CPAN 
(http://search.cpan.org/dist/Statistics-Distributions/), which is used to calculate  
statistical distributions. We report each p-value using natural logarithm–a standard 
practice in bioinformatics software–and set the lower-bound of p-value to be –999. 
Therefore, all term p-values would range between 0 (least significant) and – 999 (most 
significant). 

To illustrate how term occurrence p-value can improve precision of biomedical 
document retrieval, we first tested an arbitrary PubMed paper titled ‘Progress in cancer 
gene therapy’ (PubMed ID = 10522756). In Table 3, we listed most significant terms  
in the document, in descending orders of term p-value. By only reading this list  
of automatically generated keywords (which we call ‘gist’), we can tell the paper  
is related to ‘gene’ and, ‘imminogenetics’ particularly. It talks about ‘progress’,  
‘drug resistance’ of ‘oncogenes’ and ‘tumour suppressor genes’. Then, we performed  
a query using our text mining software (See Section 4) with the query term  
‘oncogenes progress’ (parameters: theme option on, expansion off). All top ranked 
documents appear related to advances of different tumour genes, and the document just 
analysed is ranked 4th. 
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Table 3 Terms of significance in the abstract ‘Progress in cancer gene therapy’ 

Gene –999.000 
Immunogenetics –999.000 
synergies –999.000 
Oncogenes –492.515 
Progress –347.353 
Naked –324.959 
Strategies –306.843 
Drug Resistance, Neoplasm –250.421 
Genes, Tumour Suppressor –236.575 
Drug Resistance, Multiple –218.411 
Vectors –210.553 

3 Thesaurus-based query term expansions 

We further investigate how to improve document recall, particularly when user interests 
vary among different domains. For example, a bioinformatician typing a query 
‘Alzheimer’ may be interested in retrieving literature that discusses Alzheimer-related 
genes, whereas a physician typing the same query may be interested in new patient 
treatments. In this case, using gene ontology and clinical ontology thesaurus to expand 
the term ‘Alzheimer’ may be appropriate. 

To build thesaurus, we used several public biological data integrated from  
different sources. The first data source is the NCI cancer thesaurus (http://nciterms.nci. 
nih.gov/) obtained from National Cancer Institute. It contains the working cancer-related 
vocabulary, covering clinical, translational and basic research as well as administrative 
terminology. There are 35,299 terms and 40,748 relationships. These terms connected by 
term relationships form a Directed Acyclic Graph (DAG) structure, which we provided 
software to visualise (see next section). 

A second data source that we integrated as thesaurus is Gene Ontology (GO) 
(Wheeler et al., 2000). The GO project provides consistent descriptions of gene products 
in different databases using controlled terminologies. It provides a standard vocabulary 
and a set of relationships among approved vocabulary terms. There are 18,385 GO terms 
and 26,249 GO relationships for the GO version that we used. Similar to the NCI 
thesaurus, GO terms and GO relationships also have a DAG structure. 

The third data source that we integrated is Online Mendelian Inheritance in Man 
(http://www.ncbi.nlm.nih.gov/omim/) It is a curated database of human genes and genetic 
disorders, which concerns mainly on inherited, or heritable, genetic diseases 
(http://www.ncbi.nlm.nih.gov/omim/). There are 9,213 OMIM records in the OMIM 
version of the database. OMIM records are crosslinked, but do not have tree-like 
relationship. 

To perform expanded keyword, the user can select a particular thesaurus to expand 
query term using, for example, the OMIM thesaurus. Prior to submitting the query term 
to the text search engine, the query engine will add the expanded gene symbols found to 
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be related to the query term such as ‘Alzheimer’. The rest of search will therefore be 
conducted based on all the initial and expanded query terms. 

4 Software system implementation 

We developed a Web-based biomedical document management software system.  
This system currently contains a random collection of 116,586 indexed biomedical paper 
abstracts, which we imported from MEDLINE. The software system is built with several 
new features of Oracle 10g database server, including build-in clustering algorithms, 
thesauri capability, and text mining cartridge. A snapshot of web user interface of this 
system is shown as Figure 4. Users can interact with the system by entering query terms 
in the search box, and choose different search parameters. Users can also click the ‘i’ 
button wherever available to obtain additional information about the search features. 
Furthermore, users can click on a thesaurus (either GO or NCI) and browse the 
relationship of terms in a tree-like visualisation environment. 

Figure 4 A snapshot of the web user interface to the biomedical document management system 
(se online version for colours) 

 

In Figure 5, we show a diagram of the system architecture. At the server side reside all 
the data management and functional modules. The Oracle 10g database provides 
document data management support and support the operations of other server-side 
functional modules. A few flat text files outside of the database are exported from the 
database server to support visualisation of document trees. SVM classification, SVM 
categorisation, document clustering, and cluster visualisations are bundled software 
system features supporting biomedical document management. At the client side, user 
queries can be input into web browser input boxes, and query results from the server can 
be displayed directly in users’ web browser. 
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Figure 5 System architecture 

 

We process document data into our systems using the following procedure. First, we 
download collections of MEDLINE documents in the XML format. Second, we load all 
the abstracts into the Oracle 10g database. Third, we use Oracle text mining utilities  
to extract abstracts, tokenise terms in the abstracts, and index them for each document. 
Fourth, we apply our method to derive a p-value for each index word in a MEDLINE 
document, using the term’s frequency distribution from our experiment described in the 
previous sections. Fifth, we expand terms using thesaurus data when available to improve 
recall of documents, whose topics are semantically related to users’ query terms.  
After these preparations, the documents stored in the database are immediately available 
for retrieval, classification, and clustering. 

We provide in our system a link to one gzipped text file which includes the 
information of all regular terms collected from 1,000 samplings. The file has two 
columns. The first column lists each individual term, while the second gives the average 
frequency (in the format of ppm) of the corresponding term. We hope that the 
information can be beneficial to other researchers and provide some insight to biomedical 
literature.  

5 Discussion 

In this work, we developed novel methods that can improve precision and recall  
of content-based biomedical text retrieval and mining. Our first method, used to improve 
precision, relied on our development of a comprehensive database of biomedical term 
statistical distributions derived from over 1.5 million randomly sampled MEDLINE 
abstracts. Therefore, given a query document, we were able to use the term’s a priori 
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frequency distribution to estimate a term occurrence p-value to assess the significance  
of observing each term in the document. This method enables us to accurately and 
quantitatively rank-order all the terms that occur in a document, produce document gist 
automatically, and use gists instead of short keyword list or the whole text to represent, 
retrieve, classify, and cluster biomedical documents. In the future, we plan to make 
quantitative comparisons on how well recall and precision are improved over existing 
methods. Our second method, used to improve recall, incorporated multiple biological 
data sources as thesaurus to help expand user query term. This is especially important 
because, during query expansions, users can control the thesaurus types and expansion 
levels according to his/her disease biology areas. Therefore, the retrieved documents are 
going to contain less generic information for a researcher interested in ‘breast cancer’,  
but more specific information such as ‘BRCA’ gene automatically expanded from Gene 
Ontology thesaurus. 

We also demonstrated that it is possible to incorporate our method into a novel 
biomedical document management system using Oracle 10g database as a platform.  
This system, with a large number of abstracts, can perform document search, clustering, 
and classification tasks with good level of interactivity. In the future, we plan to expand 
the system to allow integrated search of document’s metadata and to accommodate all the 
15 million MEDLINE abstracts. 

There are remaining challenges to improve document retrieval beyond single term 
queries. For example, a meaningful biomedical query phrase may consist of multiple 
words. For the moment, our method deals with multi-term query phrases by averaging the 
p-values of all the terms from the query phrase. However, the more accurate practice  
is to collect statistics of such phrases via sampling process. We plan to modify our 
method to address this issue in the future. For another example, thesaurus is critical to 
keyword based document retrieval. Therefore, it would be useful to introduce several 
important thesauri into the database to enable users expand keywords using thesaurus 
from their scientific domain. 
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