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Abstract: In this paper we present the design and implementation of an RNA 
structural motif database, called RmotifDB. The structural motifs stored  
in RmotifDB come from three sources:  

• collected manually from the biomedical literature 
• submitted by scientists around the world 
• discovered by a wide variety of motif mining methods. 

We present here a motif mining method in detail. We also describe the interface 
and search mechanisms provided by RmotifDB and report its current status. 
The RmotifDB system is fully operational and accessible on the web at 
http://datalab.njit.edu/bioinfo/. 
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1 Introduction 

Post-transcriptional control is one of the mechanisms that regulate gene expression  
in eukaryotic cells. RNA elements residing in the Untranslated Regions (UTRs)  
of mRNAs have been shown to play various roles in post-transcriptional control, 
including mRNA localisation, translation, and mRNA stability (Keene and Tenenbaum, 
2002; Kuersten and Goodwin, 2003; Mignone et al., 2002; Wilkie et al., 2003). RNA 
elements in UTRs can be roughly divided into two groups: elements whose functions are 
primarily attributable to their sequences and elements whose functions are attributable to 
their secondary or tertiary structures. For simplicity, they are called sequence elements 
and structure elements respectively. Well-known sequence elements include AU-Rich 
Elements (AREs), some of which contain one or several tandem AUUUA sequences and 
are involved in regulating mRNA stability (Bakheet et al., 2001; Chen and Shyu, 1995; 
Wilusz and Wilusz, 2004), and miRNA target sequences, which are partially 
complementary to cognate miRNA sequences and are involved in regulating translation 
or mRNA stability (Bartel, 2004; John et al., 2004; Lewis et al., 2003). 

Among all structure elements in UTRs, the histone 3’-UTR stem-loop structure 
(HSL3) and the Iron Response Element (IRE) have been most extensively studied 
(Marzluff and Duronio, 2002; Pesole et al., 2002). Both sequence and structure are 
important for the functions of structure elements. HSL3 is a stem-loop structure of about 
25 nucleotides (nt) that exists in 3’-UTRs of most histone genes. Figure 1(a) shows  
the graphical representation of HSL3 drawn by XRNA (http://rna.ucsc.edu/rnacenter/xrna 
/xrna.html). The HSL3 structure is critical for both termination of their transcription and 
stability of mRNAs. These functions are exerted by the Stem-Loop Binding Protein 
(SLBP) that interacts with HSL3. 

IRE is a stem-loop structure of ~30 nt with a bulge or a small internal loop  
in the stem. Figure 1(b) shows the graphical representation of IRE drawn by XRNA. 
IREs have been found in both 5’-UTRs and 3’-UTRs of mRNAs whose products are 
involved in iron homeostasis in higher eukaryotic species. IREs bind to the Iron 
Regulatory Proteins (IRPs) of these species, which control translation and stability  
of IRE-containing mRNAs. 

Figure 1 (a) An example of the HSL3 motif. and (b) an example of the IRE motif (see online 
version for colours) 
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HSL3 and IRE are similar in several aspects: both are small simple RNA structures with 
less than 40 nt; both exist in UTRs of several genes with related functions; and both  
bind to cellular proteins and are involved in post-transcriptional gene regulation.  
The regulations via HSL3 and IRE constitute a distinct mode of gene regulation,  
whereby expression of several genes can be modulated via a common RNA structure  
in UTRs. 

Functional sequence motifs in genomes have been heavily studied in recent years, 
particularly for the promoter region and sequences involved in splicing (Blanchette and 
Tompa, 2002; Boffelli et al., 2003; Fairbrother et al., 2002; Marino-Ramirez et al., 2004; 
Smith et al., 2005; Xie et al., 2005). In contrast, RNA structure elements have been 
investigated to a much lesser extent, largely due to the difficulties in predicting correct 
RNA structures and conducting RNA structure alignments, where huge computing costs 
are involved. While some success has been achieved using phylogenetic approaches  
to gain accuracy in RNA structure prediction (Akmaev et al., 2000; Rivas et al., 2001; 
Washietl and Hofacker, 2004), large-scale mining for conserved structures in eukaryotic 
UTRs has not been attempted. In addition, current methods for finding common  
stem-loop structures solely rely on structure similarities (Gorodkin et al., 2001).  
Gene Ontology information has not been used in the study of RNA structures. 

Here we present a database, called RmotifDB, that contains structure elements  
(or structural motifs) found in 5’ and 3’ UTRs of eukaryotic mRNAs. The structural 
motifs are linked with Gene Ontology entries concerning the motifs. A wide variety  
of motif mining methods are developed. In particular, we present here a histogram-based 
method for discovering motifs in eukaryotic UTRs. In the following section we describe 
RmotifDB and its search interface. In Section 3, we describe the histogram-based  
method in detail. Finally we conclude the paper and point out some directions for future 
research. 

2 The RmotifDB system 

RmotifDB is designed for storing the RNA structural motifs found in the UTRs  
of eukaryotic mRNAs. RmotifDB is a web-based database system which supports 
retrieval and access of RNA structural motifs from its database. The system allows  
the user to search RNA structural motifs in an effective and friendly way. RmotifDB  
is accessible on the web at http://datalab.njit.edu/bioinfo/. 

The RNA structural motifs stored in RmotifDB come from three sources: 

• collected manually from the biomedical literature 

• submitted by scientists around the world 

• discovered by a wide variety of motif mining methods. 

Figure 2 shows the interface where scientists can submit an RNA structural motif. 
Figure 3 shows the search interface of RmotifDB. The system provides two search 

options: Query By Sequence (QBS) and Query By Structure (QBR). With QBS, the user 
enters an RNA sequence in the standard FASTA format and the system matches this 
query sequence with motifs in the database using either our previously developed RNA 
alignment algorithm RSmatch (Liu et al., 2005) or Infernal (Eddy, 2002). Since RSmatch 
accepts, as input data, RNA secondary structures only, the system needs to invoke Vienna 
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RNA v1.4 (Hofacker, 2003) to fold the query sequence into a structure before a match  
is performed. With QBR, the user enters an RNA secondary structure represented by  
the Vienna style Dot Bracket format and the system matches this query structure with 
motifs in the database using RSmatch. The result is a ranked list of motifs that are 
approximately contained in the query sequence or the query structure. In addition, the 
user can search RmotifDB by choosing a Gene ID or RefSeq ID from a pre-defined list  
of Gene IDs and RefSeq IDs obtained from http://www.ncbi.nlm.nih.gov/RefSeq/ and 
provided by the RmotifDB system. This pre-defined list contains the IDs of the mRNA 
sequences used by our motif mining methods to discover the structural motifs stored in 
RmotifDB. The result of this search is a list of structural motifs found in the input mRNA 
sequence. 

The user can click each motif to see detailed information concerning the motif.  
Figure 4 shows the result of displaying a motif and its related information. Here the motif 
is an Iron Response Element (IRE) in human shown in the Stockholm format  
(Eddy, 2002), which is a multiple sequence alignment with structural annotation in the 
Vienna style Dot Bracket format. The graphical representation of the motif is shown in 
the bottom right-hand corner of the window. Also displayed are the Gene Ontology 
information concerning the motif and relevant articles that publish this motif. 

Figure 2 The interface of RmotifDB where scientists can submit an RNA structural motif  
(see online version for colours) 

 
 
 



   

 

   

   
 

   

   

 

   

   36 D. Wen and J.T.L. Wang    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 The search interface of RmotifDB (see online version for colours) 

 

Figure 4 The output showing a structural motif stored in RmotifDB and related information  
(see online version for colours) 
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3 A motif mining method 

We have developed several structural motif mining methods based on different RNA 
representation models. For example, in Chang et al. (1998), Wang et al. (1996, 1998)  
we represented an RNA secondary structure using an ordered labelled tree and designed a 
tree matching algorithm to find motifs in multiple RNA secondary structures.  
More recently we developed a loop model for representing RNA secondary structures. 
Based on this loop model we designed a dynamic programming algorithm, called 
RSmatch (Liu et al., 2005), for comparing two RNA secondary structures. The time 
complexity of RSmatch is O(mn), where m and n are the size of the two compared 
structures respectively. Figure 5 shows the alignment of two RNA secondary structures 
produced by RSmatch and drawn by XRNA. 

Figure 5 Alignment of two RNA secondary structures where the local matches found by 
RSmatch are highlighted with the (light) green colour (see online version for colours) 

 

We describe below a histogram-based scoring method to uncover novel conserved RNA 
stem-loops in eukaryotic UTRs using the RSmatch tool. This method is an upward 
extension of our previously developed histogram-based algorithm for DNA sequence 
classification (Wang et al., 1999a). Given a set of RNA secondary structures, the method 
uses RSmatch to perform pairwise alignments by comparing two RNA structures  
at a time in the set. Given an optimal local alignment between two structures  
A and B found by RSmatch, the set of bases in the aligned region of A is denoted  
by QA = {Ai, Ai+1, …, Aj} where Ai (Aj, respectively) is the 5’-most (3’-most, respectively) 
nucleotide not aligned to a gap. The set of bases in the aligned region of B is denoted  
by QB = {Bm, Bm+1, …, Bn} where Bm (Bn, respectively) is the 5’-most (3’-most, 
respectively) nucleotide not aligned to a gap. Each nucleotide Ak ∈ QA that is not aligned 
to a gap scores | j – i + 1 | points. All the other bases in the structure A receive 0 point. 
Thus, the larger the aligned region between A and B, the higher score each base  
in the region has. When aligning the structure A with another structure C, some bases  
in QA may receive non-zero points and hence the scores of those bases are accumulated. 
Thus, the bases in a conserved RNA motif will have high scores. 
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To validate our approach, we conducted experiments to evaluate the effectiveness  
of this scoring method. The conserved stem-loops we considered were IRE motifs, which 
contained about 30 nucleotides, located in the 5’-UTRs or 3’-UTRs of mRNAs coding  
for proteins involved in cellular iron metabolism. The test dataset was prepared  
as follows. By searching human RefSeq mRNA sequences from the National Center  
for Biotechnology Information (NCBI) at http://www.ncbi.nlm.nih.gov/RefSeq/,  
we obtained several mRNA sequences, within each of which at least one IRE motif  
is known to exist. We then extracted the sequences’ UTR regions as indicated by 
RefSeq’s GenBank annotation and used PatSearch (Grillo et al., 2003) to locate the IRE 
sequences. Each IRE sequence was then extended from both ends to obtain a 100 nt 
sequence. These sequences were mixed with several ‘noisy’ sequences with the same 
length. All the resulting sequences were then folded by the Vienna RNA package 
(Hofacker, 2003) using the ‘RNAsubopt’ function with setting ‘–e 0’. This setting can 
yield multiple RNA structures with the same free energy for any given RNA sequence. 

Figure 6 shows the score histograms for three tested RNA structures. It was observed 
that clusters of bases with high scores correspond to the IRE motifs in the RNA 
structures. Similar clusters of bases with high scores corresponding to the IRE motifs 
were observed in the other IRE-containing RNA structures, but not in the ‘noisy’ 
structures. This result indicates that our histogram-based scoring method is able to detect 
biologically significant motifs in multiple RNA structures. 

Figure 6 Diagrams illustrating the effectiveness of the proposed scoring method 
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Figure 6 Diagrams illustrating the effectiveness of the proposed scoring method (continued) 

 

4 Conclusion 

We presented in the paper an RNA structural motif database, called RmotifDB,  
and described some features of RmotifDB. We also developed a motif mining method 
capable of discovering structural motifs in eukaryotic mRNAs. The system presented 
here is part of a long-term project (Khaladkar et al., 2006; Wang and Wu, 2006)  
which aims to build a cyber infrastructure for RNA data analysis and mining 
(http://bioinformatics.njit.edu/rna/). Data mining in bioinformatics has emerged as an 
important discipline at the interface of information technology and molecular biology 
(Wang et al., 1999b, 2003, 2005). Our cyber infrastructure will contribute to the field of 
data mining and bioinformatics in general, and RNA informatics in particular. In future 
work we plan to develop new data mining methods and tools for RNA structural 
alignment, classification, clustering and motif discovery with applications to various 
organisms. 
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