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Abstract: Comprehensive evaluation of common genetic variations through 
association of SNP structure with common complex disease in the  
genome-wide scale is currently a hot area in human genome research thanks for 
the recent development of the Human Genome and HapMap Projects. 
Computational science, which includes computational intelligence, has recently 
become the third method of scientific enquiry besides theory and 
experimentation. There have been fast growing interests in developing  
and applying computational intelligence in disease mapping using SNP and 
haplotype data. This review provides coverage of recent developments of 
theory and applications in computational intelligence for complex diseases in 
genetic association study. 
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1 Introduction 

DNA sequencing, the process of determining the exact order of the 3 billion chemical 
building blocks (called DNA base pairs or nucleotides and abbreviated A, T, C, and G) 
that make up the DNA of the 24 different human chromosomes, was the greatest 
technical challenge in the Human Genome Project. Achieving this goal has helped reveal 
the estimated 20,000–25,000 human genes within our DNA as well as the regions 
controlling them. The resulting DNA sequence maps are being used by 21st century 
scientists to explore human biology and other complex phenomena. In May 2006,  
Human Genome Project (HGP) researchers announced the completion of the DNA 
sequence for the last of the 24 human chromosomes. Many small regions of DNA that 
vary among individuals (called polymorphisms) were also identified during the HGP, 
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mostly Single Nucleotide Polymorphisms (SNPs). For the most part, chromosome 
composition is similar between two random persons. The term polymorphism’ refers to 
the set of possible genetic configurations (alleles) at a specific location (locus).  
About 90% of genetic variation in humans is attributed to differences in single bases  
of DNA (Collins et al., 1998). These single nucleotide polymorphisms have been dubbed 
‘SNPs’ in the literature. SNPs are single base pair positions in genomic DNA at which 
different sequence alternatives (alleles) exist in normal individuals in some population(s), 
wherein the least frequent allele has an abundance of 1% or greater (Brookes, 1999).  
In practice, the term ‘SNP’ is used more loosely. Most SNPs are without physiological 
effect, although a minority contributes to the delightful and beneficial diversity  
of humanity. A much smaller minority of polymorphisms affect an individual’s 
susceptibility to disease and response to medical treatments. 

Identification of genetic polymorphisms involved in the etiology of human disorders 
relies on the tools of linkage and association mappings. Linkage mapping searches for 
markers cosegregating with disease within family or pedigree, which have been 
developed for decades. Association mapping looks for association between disease 
phenotype and genetic polymorphism, which can be obtained either through family based 
study or general population. In order to increase the efficiency of analysis processes, 
association mapping has increasingly focused on genetic variations (polymorphisms) that 
occur naturally in the population. Availability of improved detail and resolution  
of genetic maps also resulted in increased use of association mapping because it is more 
powerful than linkage methods. 

The HapMap Project has collected genotypes of millions of SNPs from populations 
with ancestry from Africa, Asia and Europe and makes this information freely available 
in the public domain (The International HapMap Consortiu, 2003, 2004, 2005).  
While millions of SNPs have been identified, with an estimated two common missense 
variants per gene, there is a great need, conceptually as well as computationally,  
to develop advanced robust algorithms and analytical methods for characterising genetic 
variations that are non-redundant and identify the target SNPs that are most likely to 
affect the phenotypes and ultimately contribute to disease development. The recent 
extensive interest in genome polymorphism signifies a development in human genetics 
research that will have a major impact upon population genetics, drug development, 
forensics, cancer and genetic disease research (Cardon and Bell, 2001; Risch, 2000;  
Risch and Merikangas, 1996; Stephens and Donnelly, 2000). 

Knowledge of the interplay between genetics and environmental factors is central  
to the understanding of multifactorial disease processes (Ioannidis et al., 2006;  
Chatterjee 2006; Cordell 2004; Hunter 2005; Zondervan 2004; Azevedo et al., 2006).  
The biological interest is in how polymorphic genes interact with each other and with 
environmental factors to influence susceptibility and outcome in common, complex 
diseases. The risks of major common diseases such as cancer, cardiovascular disease, 
mental illness, auto- immune states, and diabetes, are expected to be heavily influenced 
by the patterns of SNPs one possesses in certain key susceptibility genes yet to be 
identified. The term ‘complex disease’ refers to the scenario in which these diseases  
are contributed to the susceptibility by many genes, many environmental factors that 
interact in a hierarchical fashion with nonlinear, polygenic, epistasis (the interaction 
between alleles at different loci) effects (Moore, 2003; Jasnos and Korona, 2007;  
Martin et al., 2007). By disregarding these interactions, effect sises of relative risk for 
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individual genetic variants are expected to be small. Disregarding gene-environment 
interaction also weakens exposure-disease and gene-disease associations. 

During the last few years, there have been fast growing interests in developing and 
applying computational and statistical approaches in disease mapping in genetic 
association study using SNPs and haplotype data (Chapman et al., 2003; Liu and Lin, 
2005; Halldrsson et al., 2004; Howie et al., 2006; Ke and Cardon, 2003; Akey et al., 
2001; Gabriel et al., 2002; Daly et al., 2003; Zhang et al., 2002a, 2002b; Meng et al., 
2004; Anderson and Novembre, 2003; Mannila et al., 2003; Beckmann et al., 2005; Levin 
et al., 2005; Schaid et al., 2002; Nothnagel et al., 2002; Hampe et al., 2003; Zhao et al., 
2005; Zaykin et al., 2002; Ott, 2001, 2004; He and Zelikovsky, 2006; Durrant et al., 
2004; Baker, 2005; Tzeng et al., 2006; Burkett et al., 2004; Greenspan and Geiger, 2004, 
2006;Thomas et al., 2003; Schwender and Ickstadt, 2006; Verzilli et al., 2006; Clark  
et al., 2005; Lam et al., 2000; Chang et al., 2006; Li and Jiang, 2005; Lin and Altman, 
2004; Horne and Camp, 2004; Ao et al., 2005; Kooperberg et al., 2001; Moore, 2007;  
Liu et al., 2001; Molitor et al., 2003; Toivonen et al., 2000; Ritchie et al., 2003). These 
computing approaches can be roughly categorised into several groups:  

• Statistical measure and testing based approaches. Examples including Mantel 
statistic; Scan Statistic; Score statistic; Minimum description length; Entropy-based 
measure (Chapman et al., 2003; Anderson and Novembre, 2003; Mannila et al., 
2003; Zhang et al., 2002; Beckmann et al., 2005; Levin et al., 2005; Schaid et al., 
2002; Nothnagel et al., 2002; Hampe et al., 2003; Zhao et al., 2005; Zaykin et al., 
2002; Ott, 2004; He and Zelikovsky, 2006; Durrant et al., 2004; Baker, 2005;  
Tzeng et al., 2006; Burkett et al., 2004; Greenspan and Geiger, 2004, 2006;  
Thomas et al., 2003; Schwender and Ickstadt, 2006). 

• Unsupervised learning algorithms, such as clustering and graph methods;  
Principal Component analysis; Haplotype Pattern Mining. tagSNP selections 
partially belong here (Li and Jiang 2004; Lin and Altman, 2004; Horne and Champ, 
2004; Ao et al., 2005; Kooperberg et al., 2001; Moore, 2007; Molitor et al., 2003; 
Toivonen et al., 2000). 

• Supervised learning algorithms and statistical models which require clinical 
outcomes such as disease status to guide the SNPs selection: Random forests; 
Multifactor Dimensionality Reduction (MDR); support vector machine; Multiple 
linear regressions; logistic-regression; haplotype trend regression. Some of these 
supervised approaches were also developed for modelling gene-gene interaction 
analysis such as logic regression and MRD. 

• Machine learning and statistical learning approaches (Ott, 2001; Clark et al., 2005; 
Lam, et al., 2000; Chang et al., 2006); Computational intelligence approaches 
including neural networks; genetic algorithms; genetic programming; evolutionary 
trees; hybrid systems: genetic programming neural networks (Clark et al., 2005,  
Lam et al., 2000, Ritchie et al., 2003a, 2003b; Banzhaf et al., 2006; Moore and 
White, 2006; Foster, 2001; Motsinger et al., 2006a, 2006b). Several surveys relating 
these approaches to disease mapping have been provided (Onkamo and Toivonen, 
2006; Salem et al., 2005; Molitor et al., 2004; Shah and Kusiak, 2004; McKinney  
et al., 2006). For instance, Onkamo and Toivonen (2006) provided a survey of data 
mining approaches of disease mapping in bioinformatics (Onkamo and Toivonen, 
2006); McKinney et al. reviewed a number of different machine learning methods 
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that have been applied to detect gene-gene interactions (McKinney et al., 2006). 
Although the number of publications of SNP-disease association study using 
computational intelligence approaches is lower than statistical modelling based 
approaches, some recent studies have demonstrated promises and future impacts  
of this field, especially when applied to complex disease association analysis  
(Clark et al., 2005; Lam et al., 2000, Ritchie et al., 2003; Banzhaf et al., 2006;  
Moore and White, 2006a; Ritchie et al., 2003; Foster, 2001; Motsinger et al., 2006a, 
2006b). This review focuses on recent developments in computational intelligence 
for diseases mapping in genetic association study. At the end of the review we 
uncover some areas which may be potential future directions in computational 
intelligence for genomic studies in complex diseases. 

2 Some computational challenges of association study in common complex 
diseases 

An important challenge that faces molecular association study in the post genomic era is 
to understand the inter-connections from a network of genes and their products that are 
initiated and mediated by a variety of environmental changes. The variety of phenotype 
definitions lead to a multiplicity of tests and also involve large number of comparisons, 
which often result in less power. Non-reproducibility of many reported significant 
associations in subsequent studies has led to criticism of association studies. 

For SNP and haplotype data in common complex diseases, in addition to being large, 
redundant, diverse and distributed, there are three important characteristics that pose 
challenges for data analysis and modelling:  

• complexity 

• heterogeneity 

• a constantly evolving nature. 

It is heterogeneous, in the sense that it involves a wide array of data types, including 
categorical, continuous, sequence data, as well as temporal data, incomplete and missing 
data. It is large with a lot of redundancy in SNP and haplotype databases. It is very 
dynamic and continuously evolving – both the data and the schema, which means that  
it requires special knowledge when design the modelling techniques. Finally but mostly 
importantly, SNP and haplotype data is complex with intrinsic features and subtle 
patterns, in the sense that it is very rich in associated complex phenotype traits  
or common multifactor disease. 

In complex diseases, it is likely that a combination of genes predisposing for the 
disease and environmental factors aggravate the impact of these genes are jointly 
responsible for disease development in populations (known as epistasis or epistatic 
effects). In addition, environmental factors which seem to have only a moderate impact  
at the population level might have larger relative risks in subpopulations with certain 
genetic predispositions. There are major methodological challenges in the study  
of gene-gene and gene-environment interactions. The other challenge is through these  
high-dimensional datasets to identify combinations of interacting SNPs that are predictive 
of common diseases. There is a need for useful and expeditious methods for analysing 
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massive SNP data in common complex diseases beyond that of traditional statistical 
approaches. 

3 The promise of Computational Intelligence 

The theoretical framework considered in the context of this review is  
Computational Intelligence (CI). CI (Pedrycz, 2000; Pedrycz and Vasilakos, 2000)  
is a well-established paradigm that seamlessly combines three main technologies aimed 
at the development of intelligent systems, named granular computing, neural networks 
and biologically-inspired (evolutionary) optimisation. As in the design of such systems, 
we have to address various challenging issues, such as knowledge representation, 
adaptive properties, learning abilities and structural developments. CI has to a cope with 
each one of them. Regarding the properties of intelligent systems being supported by the 
paradigm of CI, we envision two general points of view. These properties can be sought 
as intrinsic to any intelligent systems or they can be extrinsic to them. In the first case, 
we are concerned with the features that are crucial to the design of the systems, which 
usually do not manifest externally, so by analysing the performance of the system  
we cannot say whether a specific technology has been utilised. Essentially, we are not 
concerned about that. The extrinsic properties are dominant and become of a paramount 
relevance when dealing with communication of intelligent systems with others  
or facilitating an effective interaction with human users. This aspect is extremely relevant 
in providing the user a sense of intelligent, user-friendly and user-centric capabilities  
of the systems. Here we can stress that these capabilities are much diversified and could 
cover a vast territory. For instance, one can envision several interesting scenarios. 

• Coping with heterogeneous information. Quite often, in intelligent systems we 
encounter information coming not only from sensors (in which case these are 
numeric readings) but also from users (in the form of linguistic evaluations) or being 
a result of some initial aggregation or summarisation. Interestingly, these inputs are 
essential to the functioning of a system and cannot be ignored or downplayed.  
The heterogeneity of information requires special attention in the sense of the use  
of more advanced mechanisms of processing and representing such a mix of various 
pieces of evidence. 

• Establishing an effective, transparent, and customised communication with the end 
user when presenting the results of processing completed by a system. Here the 
notion of generality (abstraction) or granulation of information plays a pivotal  
role. A suitable level of granulation of information is essential to the effective 
communication and acceptance of a system (in whichever role we can envision the 
system to be utilised). This immediately leads us to the concept of adaptive and  
user-driven interfaces, which become an essence to most interactive and human 
centric systems including tutoring architectures, decision-support systems, and 
knowledge-based architectures (including expert-like systems and their more 
advanced topologies). 

Computational intelligence is generally accepted to include evolutionary computation, 
fuzzy systems, neural networks, and combinations thereof. One might also extend this 
definition to include reaction speeds and error rates approaching human performance as 
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an answer to Turing’s comment “we may hope that machines will eventually compete 
with men in all purely intellectual fields” (Turing, 1956). 

The term of CI being coined in the 1990s (quite commonly viewed as a synonym  
of soft computing) helps us establish a sound mapping between the technologies and their 
dominant role in meeting some specific requests of the domain. What is also very 
characteristic for CI today is a broad array of hybrid systems (called neuro-fuzzy systems, 
neuro-evolutionary systems, and genetic-fuzzy systems). They emerge as a result of an 
in-depth understanding of the benefits of individual technologies and their genuine 
complementarity. 

In what follows, we briefly highlight the essence of the contributing technologies  
of CI, discuss their synergies and elaborate on the resulting architectures: 

Granular computing. Granular information is everywhere. We granulate information all 
the time. We rarely reason on a basis of numbers. Our judgment is often triggered  
by some aggregates, which in a nutshell are a result of abstraction: a process which leads 
to human-like decision making. CI embraced fuzzy sets as the key vehicle of information 
granulation. It is worth stressing that the other fundamental environments for describing 
granular information are readily available and a suitable choice depends on a specific 
problem at hand. Figure 1 visualises the main developments in granular computing;  
it could help to gain a better view as to their possible linkages. 

Figure 1 Main developments of granular computing (see online version for colours) 

 

Neurocomputing is inherently associated with adaptive and highly flexible  
systems – neural networks. The learning abilities of the networks (either through 
supervised or unsupervised learning) are in the heart of networks. The learning is 
exploited when building systems that can learn from data, adapt to the nonstationary 
environment (including preferences of users) and help generalise to new, unknown 
situations. The spectrum of learning models, network architectures is impressive.  
Neural networks are highly distributed, which makes them fault tolerant. What has been 
said so far is definitely very encouraging. The drawback is the lack of transparency  
of the networks. The distributed character of processing can be pointed at as the most 
prominent reason of this deficiency. Similarly, as no prior domain knowledge could be 
‘downloaded’ onto the network, its learning is carried out from scratch, which by itself is 
not the most encouraging. 
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Evolutionary computing. The principle of evolutionary computing cast in the setting of 
CI becomes a synonym of structural optimisation, reconfigurability, combinatorial 
optimisation, and variant selection usually completed in large and complicated search 
spaces. From its inception in the 1970s, evolutionary computing with all its variations  
of genetic algorithms, evolutionary strategies, genetic programming, etc. is aimed  
at the global, structural system optimisation that is carried out in presence of very limited 
and general information about the optimality criterion. 

From the above summary, it becomes apparent that the main agendas of these 
technologies are different yet highly complementary leading to the scenarios in which the 
advantages and limitations of each one of them could be strengthened and compensated, 
respectively. This compensation effect is in essence a crux of the resulting synergy and 
helps to develop interesting and useful linkages. Figure 2 highlights the leading 
tendencies and identifies the ways in which the synergies have been invoked. 

Figure 2 Main synergistic links in Computational Intelligence 

 

As stressed, there are a significant number of possible interactions between the 
contributing technologies in the realm of CI. Bearing in mind the main objectives of 
granular computing and neural networks, we can envision a general layered type of the 
model in which any interaction with the external world (including users) is done through 
the granular interface (external layers) whereas the core computing part is implemented 
as a neural network or a neuro-fuzzy structure, in which case we may be emphasising the 
logic facet of ongoing processing faculties (see Figure 3). 

Successes in computational intelligence have been forthcoming. These methods  
have been widely used in networking and ambient intelligence Vasilakos and Pedrycz 
(2006), engineering for optimisation of plant control, scheduling, for the design of small 
robots for locomotion and for the evolution of a human expert-level checkers player all 
without human expertise. As suggested at the dawn of this era “the old phrase ‘the 
computer never knows more than the programmer’ is simply no longer true”. These same 
methods are now being applied to problems in molecular biology and bioinformatics  
(Fogel and Corne, 2002). 
 



   

 

   

   
 

   

   

 

   

    Computational intelligence for genetic association study 23    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 A layered style of CI constructs (see online version for colours) 

 

No technological advancement has been more directly responsible for the success  
of molecular biology over the last 50 years than the computer. Computers have become 
so important in biology that it is difficult to think of any significant advancement in the 
last 10 years that did not have direct assistance from a computer, whether this  
is as a viewer for three-dimensional structures, a controller for automated robot 
manoeuvring of 96-well plates for PCR, a means to interpret DNA sequencing gels, 
microarray data, etc. The revolution of the last 50 years has resulted in such a wealth  
of data that our understanding of the underlying processes would be significantly reduced 
if computers were not at hand as our assistants with respect to ‘bioinformatics’. The scale 
of the biological problems of interest and our understanding of those problems has 
closely paralleled Moore’s Law. Realistically, it was not until the 1970s and 1980s when 
computers became truly relevant for biological information processing at a rate 
commensurate with the data being generated. The 1980s and 1990s heralded the  
internet, which has become an invaluable resource for sharing biological information.  
However, in parallel with molecular biology, methods of computational intelligence also 
share their origins in the 1950s, with refinement over time into a wide array of algorithms 
useful for data mining, pattern recognition, optimisation, and simulation. Today, many of 
these same algorithms can be said to offer ‘computational intelligence’ something that 
can handle the large size of experimental output from modern biology. 

4 Computational Intelligence for SNP-disease associations 

There are two major computational challenges today in genome-wide association study 
for complex disease: First, SNP/haplotype structure discovery, which include the 
selection of informative SNPs from thousands of SNPs that are associated with a disease. 
There are two types of approaches here  

• tagSNPs, which are based on unsupervised methods with haplotype block concept 
and Linkage Disequilibrium (LD). These approaches intend to identify the clustering 
and block structure and then identify SNP blocks that are significantly associated 
with the disease of interest. 

• Disease-associating SNPs, which are selected on clinical data using supervised 
approaches and therefore are block free approaches. There have been a substantial 
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amount of statistical methods reported for this challenge. Second, modelling  
gene-gene (epistasis) and gene-environment interactions for complex diseases.  
Due to the complexity, there are relatively few works that are able to tackle this 
challenge. However, recently developed computational intelligence approaches  
for SNP-disease associations including genetic algorithms (Clark et al., 2005; Shah 
and Kusiak, 2004) neural networks (Ott, 2001; Motsinger et al., 2006a, 2006b), 
genetic programming (Moore and White, 2006a), evolutionary trees (Lam et al., 
2000), evolutionary algorithms (Hubley et al., 2003) and various hybrid approaches, 
such as neural networks with genetic programming (Ritchie et al., 2003), genetic 
programming with multifactor dimensionality reduction (Moore and White, 2006b) 
and so on have demonstrated some promises, which we will summarise below. 

Clark et al. (2005) developed a Genetic Algorithm (GA) to construct logic trees 
consisting of Boolean expressions involving blocks or strings of SNPs and applied to a 
candidate gene study of quantitative genetic variation. The blocks or strings of the logic 
trees consist of SNPs in high Linkage Disequilibrium. LD refers to the SNPs that are 
highly correlated with each other due to evolutionary processes. Studies showed that if 
high level LD occurred in the population and they are selected by the classification 
models, only one or two SNPs would be enough to obtain a good predictive capacity with 
no or only a modest reduction in power relative to direct assays of all common SNPs.  
In contrast, in a population, where lower levels of LD are observed at given loci, a larger 
number of SNPs are required to predict phenotype. Therefore, the capturing of such block 
structure of the gene offers the possibility of significantly reducing the number of SNPs 
required to completely genotype a sample with no information loss. In Clark’s methods, 
at each generation of the GA, a population of logic trees is modified using selection, 
cross-over and mutation operations. Logic trees are selected for the next generation using 
a fitness function based on the marginal likelihood in a Bayesian regression framework. 
Mutation and cross-over operations use LD measures to propose changes to the trees,  
and facilitate the movement through the model space. 

Genetic Programming (GP) is closely related to genetic algorithms. It makes use  
of genetic algorithms and they are a stochastic, population based, evolutionary 
approaches for search and optimisation. GP uses tree based strategies to represent  
a solution for a problem instead of a string of variables. Recent studies has shown that GP 
outperforms many traditional statistical, data mining and machine learning methods,  
such as linear regression and support vector machines. Ritchie et al. (2003) introduced  
a Genetic Programming Optimised Neural Network (GPNN) as a method for optimising 
the architecture of a neural network to improve the identification of gene combinations 
associated with disease risks Ritchie et al., 2003. The strength of this approach  
is the ability to discover the optimal NN architecture as part of the modelling process. 
Motsinger et al. applied a Genetic Programming Neural Network (GPNN) approach  
for detecting epistasis in case-control studies for SNPs data. They evaluated the power  
of GPNN for identifying high-order gene-gene interactions and applied GPNN to a real 
data analysis in Parkinson’s disease (Motsinger et al., 2006a). 

Motsinger et al. (2006b) developed a Grammatical Evolution Neural Network 
(GENN), a machine-learning approach to detect gene-gene and gene-environment 
interactions in high dimensional genetic epidemiological data. GENN has been shown to 
be highly successful in a range of simulated data. Regarding the power of GENN to 
detect interesting interactions in the presence of noise due to genotyping error, missing 
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data, phenocopy, and genetic heterogeneity, they have found that the GENN method is 
relatively robust to all error types‚ including genetic heterogeneity. 

Motsinger et al. further proposed an Ensemble Learning Approach for Set-association 
(ELAS) to detect a set of interacting loci that predicts the complex trait. In ELAS, they 
first search ‘base-learners’ and then combine the effects of the base learners. ELAS can 
jointly analyse single-marker effects and two way interaction effects for many markers 
including genome-wide association studies. Simulation studies demonstrated that ELAS 
is more powerful than single-marker tests. ELAS also outperformed the other three 
existing multi-locus methods in almost all cases. They also applied an application  
to a large-scale case-control study for Type 2 diabetes. ELAS identified eleven SNPs that 
have a significant multi-locus effect, while none of the SNPs showed significant marginal 
effect and none of the two-locus combinations showed significant two-locus interaction 
effect. 

Hubley et al. (2003) presented an evolutionary algorithm for multi-objective SNP 
selection, which approximates the set of optimal trade-off solutions for large problems 
with semi-supervised learning. This set is very useful for the design of large studies, 
including those oriented towards disease identification, genetic mapping, population 
studies, and haplotype-block elucidation. They implemented a modified version of the 
Strength-Pareto Evolutionary Algorithm in Java and concluded that evolutionary 
algorithms are particularly suited for optimisation problems that involve multiple 
objectives and a complex search space on which exact methods, such as exhaustive 
enumeration cannot be applied. They provide flexibility with respect to the problem 
formulation if a problem description evolves or changes. Results are produced as a  
trade-off front, allowing the user to make informed decisions when prioritising factors. 
Evolutionary algorithms are well suited for many other applications in genomics. 

Banzhaf et al. (2006) employed a variety of evolutionary computing methods, such as 
genetic algorithms in modelling epistasis. Haplotype fine mapping by evolutionary trees 
describe a method that seeks to refine location by analysis of ‘disease’ and ‘normal’ 
haplotypes, thereby using multivariate information about linkage disequilibrium.  
Under the assumption that the disease mutation occurs in a specific gap between adjacent 
markers, the method first combines parsimony and likelihood to build an evolutionary 
tree of disease haplotypes, with each node (haplotype) separated by a single mutational or 
recombinational step (from its parent). If required, latent nodes (unobserved haplotypes) 
are incorporated to complete the tree. Once the tree is built, its likelihood is computed 
from probabilities of mutation and recombination. When each gap between adjacent 
markers is evaluated in this fashion and these results are combined with prior 
information, they yield a posterior probability distribution to guide the search for the 
disease mutation. They show, by evolutionary simulations, that an implementation  
of these methods, called ‘FineMap’, yields substantial refinement and excellent coverage 
for the true location of the disease mutation. 

The detection of epistasis is an important priority in the genetic analysis of complex 
human diseases. The most challenging epistatic effects to model are those that do not 
exhibit statistically significant marginal effects. Identifying these types of nonlinear 
interactions in the context of genome-wide association studies is considered a needle  
in a haystack problem (Moore and Hahn, 2002). Given this complexity, it is unrealistic  
to expect that stochastic search algorithms will do any better than a simple random 
search. Hybrid computational intelligence approaches have been investigated for finding 
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epistatic needles with the assistance of expert knowledge (Ritchie et al., 2003, Moore and 
Hahn, 2002). 

Ritchie et al. (2003) proposed a neural network with genetic programming for 
studying SNP-SNP interaction and used expert knowledge to guide the genome-wide 
analysis of epistasis using stochastic genetic programming. They first developed and 
evaluated a genetic programming approach with one-objective fitness function with 
classification accuracy to SNP selection and classification and showed that GP is no 
better than a simple random search when classification accuracy s used as the fitness 
function. Then they further included pre-processed estimates of attribute quality  
(i.e., expert knowledge) using Tuned ReliefF (TuRF) in a multi-objective fitness 
function, which significantly improved the performance of GP over that of random 
search. Results showed that using expert knowledge to select trees performs as well as a 
multi-objective fitness function and can not only improve the accuracy of prediction, but 
also can achieve the same power at one tenth of the population size. 

Moore and White (2006b) developed a hybrid genetic programming with Multifactor 
Dimensionality Reduction (MDR) to pick SNPs for epistasis. They also found no 
evidence to suggest that GP-MDR performed better than random search on the simulated  
genome-wide data sets. They further modified GP-MDR to select SNP combinations for 
virtual recombination, mutation, and reproduction by using ReliefF filter algorithm. 
ReliefF filter provided statistical measures and prior information about the quality of each 
SNP as assessed during a pre-processing analysis, which the GP-MDR was based  
on. They found that the expert knowledge provided by ReliefF about which SNPs might 
be interacting significantly improved the ability of GP-MDR to identify epistatic SNPs  
in the absence of marginal effects over that of a simple random search. An important 
advantage of this hybrid approach is that any form of expert knowledge could be used  
to guide the stochastic search algorithm. For example, information about biochemical 
pathways, protein-protein interactions, Gene Ontology (GO), or even evidence from the 
literature could be used in addition to statistical measures. 

Moore and Hahn introduced Cellular Automata (CA) as a novel computational 
approach for identifying combinations of Single-Nucleotide Polymorphisms  
(SNPs) associated with clinical endpoints (Moore and Hahn, 2002). This alternative 
approach is nonparametric (i.e., no hypothesis about the value of a statistical parameter  
is made), model-free (i.e., assumes no particular inheritance model), and is directly 
applicable to case-control and discordant sib-pair study designs. Using simulated  
data, they demonstrated that the approach has good power for identifying high-order 
nonlinear interactions (i.e., epistasis) among four SNPs in the absence of independent 
main effects.  

Recently, Eppstin et al. (2007) described a random chemistry approach for detecting 
epistasis in genome-wide association studies and proposed a new evolutionary  
approach that attempts to hill-climb from large sets of candidate epistatic genetic  
features to smaller sets, inspired by Kauffman’s ‘random chemistry’ approach. As the 
authors pointed out although the algorithm is conceptually straightforward, its success 
hinges upon the creation of a fitness function to discriminate large sets that contain 
subsets of interacting genetic features from those that don’t. They employed an 
approximate and noisy fitness function based on the ReliefF data mining algorithm  
and applied to synthetic data sets with individual features having no marginal effects. 
Results show that the algorithm can successfully detect epistatic pairs from up to 1000 
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candidate SNPs. However, more accurate fitness approximator for large data sets with 
lower heritabilities.  

5 Discussions 

Designing, developing and implementing computational intelligence methods for 
identifying genetic triggers and components responsible for complex diseases, such  
as diabetes, cancer, cardiovascular disease, etc. is one of the new and challenging areas in 
human genetics and bioinformatics. Computational intelligence is a side branch  
of artificial intelligence, where well-crafted algorithms are being developed that solve 
complex, computationally expensive problems that are believed to require intelligence. 
Computational Intelligence is one of the most promising tools today to attack  
the remaining hard problems in bioinformatics and human genetics. This review covered 
some theories and applications of computational intelligence for SNP-disease association 
study. We demonstrated the promises and the importance of computational intelligence 
for today’s common complex diseases with SNP-haplotype data, especially focusing on 
gene-gene and gene-environment interactions and the notorious ‘curse of dimensionalit’ 
problem. Success in identifying SNPs and haplotypes conferring susceptibility  
or resistance to common diseases will provide a deeper understanding of the architecture 
of the disease, the risks and offer a more powerful diagnostic tool and predictive 
treatment. 
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