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Abstract: Understanding the limitations of the Discounted Cash flow 
Methodology (DCF) has resulted in increased usage of the real option analysis 
for ship investment decisions under uncertainty. In this paper, our contribution 
is two-fold: We propose an equilibrium model for explaining aggregate 
investment behaviour in the new building industry for tankers and provide a 
framework for testing the real option markup hypothesis in our model for 
investment decisions in new tanker vessels. Under relevant aggregation 
assumptions, count data models are employed to test the robustness of the real 
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1 Introduction 

Real options analysis is used for evaluating investment decisions under uncertainty and 
irreversibility. The latter which are highly present in the shipping industry have recently 
motivated the application of the real option framework for ship investment decisions 
(Bendall and Stent, 2005; Bendall, 2002). However, it is well recognised that under 
competition the real option markup hypothesis may not survive (Dixit and Pindyck, 
1994). Furthermore, due to significant problems of aggregation and subjectivity in  
the parameters, no empirical study has examined the validity of the real option theory. 
Any test for the real options with aggregate investment data implies simultaneous testing 
of the aggregating assumptions and the real options markup hypothesis. Therefore the 
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objective of the paper is two-fold: Based on the specific characteristics of the tanker 
industry, a model for aggregate investment decisions is proposed. The model 
accommodates the empirical testing of the real option hypothesis in a partial equilibrium 
framework of investment activity in the tanker industry. The case of the ‘textbook 
perfectly competitive’ tanker industry provides a unique opportunity for testing the 
validity of the real option markup hypothesis. 

In the last few years, option theory has been important for economics and  
investment decisions. After the introduction of the ‘real option’ value, implicit in 
investment decisions by McDonald and Siegel (1984), it has been well understood that 
uncertainty has a key role in investment. Under uncertainty and irreversibility (Dixit and 
Pindyck, 1994, p.142) the Net Present Value (NPV) rule is incorrect for evaluating 
investment decisions; uncertainty and irreversibility drive a wedge between the critical 
value of the project and the direct or tangible cost of investment. A great deal of 
theoretical work has stressed the important role of uncertainty and irreversibility on 
investment behaviour. However, very few applications to specific investment models 
have been derived in this framework and empirical research has lagged considerably 
behind the theoretical contributions in this literature. This research has included empirical 
evidence on applications of real options with firm-level data, such as the explanation  
of asset prices (Quigg, 1993), or entry and exit decisions (Moel and Tufano, 2002).  
The above studies use firm specific data, forego issues of industry equilibrium, 
subjectivity in the choice of the parameters and firm heterogeneity.  

Due to significant problems of aggregation the theory of optimal investment decisions 
applies most directly to a firm or an individual decision maker. Different firms may have 
different action thresholds and the implications of the theory at the industry level depend 
crucially on the market structure of the industry. Therefore, it has been very difficult to 
test the real option hypothesis with industry-level (aggregate) data. In a macroeconomic 
setting Pindyck and Solimano (1993) tested the impact of uncertainty (volatility)  
on movements in investment, and they found supportive evidence for the theory. 
However, serious problems of aggregation still have not made it easy to test the ‘option 
value multiple’ (Dixit and Pindyck, 1994, p.184) hypothesis, namely that the option value 
of waiting to invest implies an action threshold, where the expected value exceeds the 
tangible investment cost, in industry equilibrium. 

Due to the significant problems of aggregation, as well as doubt under the conditions 
under which the real option markup survives under competition, the real option theory 
has been extensively applied in shipping, but always in the form of evaluating decisions 
of an independent decision maker. The first application of real options in maritime 
economics is in the seminal PhD thesis of Goncalves (1992) which received minimal 
attention by the Maritime Economics community. In the contrary, the work was cited in 
the influential monograph by Dixit and Pindyck (1994). Motivated by this work and the 
salient characteristics of bulk shipping, Dixit and Pindyck (1994) devoted more than  
30 pages in applying the theory for entry and exit decisions by the tanker industry.  
Ten years later Dikos (2004) reapplied real option models for deriving entry and exit 
decisions in a partial equilibrium framework, rather than the standard agent-based 
framework and Tsolakis and Hopp (2004) applied them for the evaluation of shipping 
projects. 

Motivated by the unique characteristics of the tanker industry and the recent 
applications of real options in shipping we propose a structural partial equilibrium 
framework for testing the real option hypothesis with aggregate data. We build on a 
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remarkable result by Leahy (1993), regarding investment in a competitive equilibrium, 
and use a general equilibrium framework. We propose structural models of investment in 
the tanker industry, which accommodate the first direct test of the real option value 
multiple hypothesis in industry equilibrium at the industry level. It is important to stress 
out that this industry accommodates all the underlying assumptions of the theory, 
necessary for overcoming “the serious problems of aggregation” (Dixit and Pindyck, 
1994, p.421). Finally, we bring our models to aggregate data of tanker vessel orders for 
each period; for this we use count data econometrics. 

As discussed in the introduction, there is a price to be paid for the use of aggregate 
data: our empirical tests necessarily test jointly our aggregation assumptions and the real 
option markup hypothesis. Our choice of the tanker market is motivated by Dixit and 
Pindyck (1994, p.237), as well as its particular structure, which provides the necessary 
framework for most of our aggregation assumptions. As noted by Dixit and Pindyck  

“oil tankers provide a particularly good example since the potential or actual 
owners of tankers face considerable profit uncertainty, as well as substantial 
sunk costs.” (Dixit and Pindyck, 1994)  

Uncertainty stems from the fact that tanker rates (the revenue per day for employing  
the tanker) are very volatile and fluctuate, on the one hand due to oil prices and on the  
other hand, due to geographical changes in the distribution and consumption of  
oil. Furthermore, the perfectly competitive nature of this market, as well as the existence 
of organised markets, provides unique necessary economic assumptions for the derivation 
of the model. 

The paper makes a three-fold contribution: we use the underlying theory in a proper 
empirical context (data and methods); we use a structural approach for modelling 
investment behaviour in a competitive equilibrium; we employ several tests on the 
specification of our empirical models and assess the validity of the hypothesis of interest; 
we do all this in an encompassing framework, in the sense that our tests are well defined 
within the context of our empirical model and the empirical model itself is well defined 
within the context of economic theory. Furthermore, the merit of the approaches that we 
propose in this paper is that they maintain the use of industry level data as indicators of 
investment activity, and they accommodate structural estimation methods. 

The rest of the paper is organised as follows. In Section 2 we present our model and 
put them in the context of the tanker industry; in Section 3 we describe our data set,  
we bring the model to the data, discuss a variety of empirical results; we offer some 
concluding remarks and extensions to the current research in Section 4. 

2 Model specification 

It is a remarkable result by Leahy that finds applicability in the tanker industry due to its 
unique salient characteristics that rescues the real option analysis under competition. 
However, Leahy’s remarkable myopic equivalence theorem holds under very restrictive 
conditions as discussed in Dikos (2004) and Dixit and Pindyck (1994). Adland et al. 
(2006) apply Leahy’s framework for deriving trading rules for generalised processes. 
However, a note of caution is required as Leahy’s theorem holds only for the log-normal 
process and all firms in Leahy’s equilibrium make normal profits, implying that there is 
no space for improvement through trading rules. 
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Following Rust (1995) there are two approaches one can follow in order to  
model investment behaviour: The first is the ‘top down’ approach, where investment is 
computed by using a measure of a hypothetical continuous aggregate capital stock K and 
optimal investment policies arise as a result of value maximisation, subject to convex 
costs of adjustment for capital. A significant benefit from this approach is that it allows 
us to use aggregate data to test the results of the models and the validity of ‘q-type’ 
investment decisions. 

At this point we should stress that optimal investment policies are derived with 
respect to value maximisation and we can not develop a theory of investment 
independently of the market structure in which the firm operates. The ability to span the 
under maximisation value in financial markets is also crucial for the connection between 
‘q-type’ sufficient statistics and market value. If this is the case and the market 
completeness assumption is adopted, then the value maximisation objective function will 
be unique. This observation will turn out to be crucial even in the ‘bottom up’ approach 
that will be described right now. Since the payoff of operating a ship is fairly 
straightforward (it is determined by the time charter rate minus the operating costs) and 
an organised market exists the assumption of complete markets in this case, is a realistic 
assumption. Under this assumption we do not need to solve a discrete time dynamic 
programming problem in order to determine the value function of the optimal investment 
policies. This value function is determined by the assets traded in financial markets.  
This takes the burden of estimating the parameters of the value function. 

An undoubted fact is that shipping investment decisions are discrete count decisions. 
As such count data methods, as introduced in the seminal paper by Hausman et al. (1984) 
are the natural candidate for bringing our model to the data. 

2.1 The efficient operator specification 

The shipping industry has some unique characteristics that allow us to conduct empirical 
tests. On the one hand, it is well known that it is one of the very few well-approximating 
examples of a perfect competitive industry, and on the other hand, freight rates are a 
sufficient statistic for the risky payoffs of operating a ship. Furthermore, the shipping 
industry is always suspect to unexpected regulation and pollution bills that affect  
directly the operating costs of vessels. Payoff uncertainty, as well as regulation and  
policy uncertainty imply that agents commit themselves to large-scale irreversible 
investments, when ordering a ship. From this point of view this industry has some unique 
characteristics that allow us to test the importance of irreversibility and uncertainty on the 
birth of investment decisions. 

Perfect competition and the simple structure of the payoffs still do not resolve  
the issue of aggregation for firm heterogeneity. Firm heterogeneity may arise from the 
different running costs of different operators, preferential finance terms to credible 
investors and finally from the ability of the manager to achieve a long-term time charter 
rate for the ship, before placing the order to the shipyard. In this paper, we shall  
tackle aggregation following the count data econometric specification, introduced by 
Hausman et al. (1984). In all three models we shall specify that the total number of 
investment decisions follows a generalised Poisson process P(λt ) with intensity 
depending on a set of factors Xt. This parametric model will be estimated using the 
conditional Poisson model introduced in the seminal paper by Hausman et al. (1984).  
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The same model was used by Becker and Henderson (2002) with a very intuitive 
discussion on the microeconometric foundation of such aggregate-type models. 

Following the ‘bottom-up’ approach to investment decisions, Becker and Henderson 
(2000) argue that at each point in time, there is a supply of agents willing to place orders 
for new vessels. They argue that this supply relation is upward sloping in positive NPV 
values. Since it is well established that NPV is NOT the appropriate maximising value 
under uncertainty and irreversibility, we shall assume that the supply of agents willing to 
commit themselves to shipping investment decisions is a positive function of the optimal 
value under uncertainty, as derived by Dixit and Pindyck (1994) and Hausman (1999).  
As we move up the supply curve, the higher this critical value, the more agents will place 
orders for new ships. Furthermore, the curve may shift outwards in periods where sources 
of finance are more accessible than in other periods. In the case where the underlying risk 
factors depend on unobservables (stochastic volatility), then the value function will 
depend on unobservables, too and this will shift the supply curve. The demand curve, or 
the number of shipyards willing to commit capacity in order to construct a ship within a 
prespecified period, depends on the magnitude of government subsidies and uncertainty. 

Total births of investment orders are then determined by the intersection of supply 
and demand. This gives a reduced form equation: 

( ; )jt jt jtB B X fj e= +  (1) 

where Bjt are the orders placed for ship type j at time t and Xjt is a vector including the 
critical real option investment rule, the accessibility of finance sources and other 
macroeconomic variables and fj are ship type fixed effects of unmeasured time invariant 
features. At this point we should note that since the underlying asset, namely the spot rate 
is nontradable, the critical value function shall depend on the market price of risk that 
will be estimated as a parameter of the model. Regarding the above specification of  
the model, there are two issues of concern as discussed in Becker and Henderson (2002). 
The first issue regarding the type of equilibrium this model does not apply in this market, 
due to perfect competition prevailing in this industry. The second issue regarding the 
nature of our data, namely discrete, with many zeros in periods of stagnancy and positive 
numbers makes the choice of the Poisson model a natural choice. 

In order to make aggregation feasible and to impose more structure in the form of the 
intensity of the birth model, the following observation is made. At each point in time the 
most efficient operator has a known value, denoted by Vn, if proceeding with placing an 
order for a new vessel that will cost him In. This value Vn will be fully determined by  
the optimal investment rule that takes into account irreversibility and the option to wait. 
This rule is derived by Dixit and Pindyck (1994) and is used in his discussion of 
telecommunications industry regulations by Hausman (1999). The value of this project 
Vn will be a function of the offer In by the shipyard, the depreciation rate of the asset, the 
current price of the underlying risk -factor, which is the time charter rate, and the first 
two moments of this process, as well as the market price of risk. 

Given this unobserved value the probability that the most efficient operator will not 
undertake investment will be given (assuming an extreme type-I error distribution) by the 
following formula: 

eff
1 .

1 exp( )
P

Vn
=

+
 (2) 
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This probability is then equal to the event that no birth of investment decisions will be 
observed in this period. Since this probability corresponds to the most efficient operator, 
if he does not undertake investment, no other operator will be expected to do so. If we 
now impose the additional restriction that the probability specified above should be equal 
to the probability of zero investment births, implied by the Poisson specification, then we 
have imposed a structure to the intensity of the count model, consistent with the real 
option literature. 

From our count data specification, the probability that no births will be observed  
at time t is given by: 

0 births exp( ).P tλ= −  (3) 

Equating these two equations we now obtain the following parametric form for the 
intensity of the birth model: 

eff
1ln ln( ).

1 exp( )t t P
Vn

λ λ 
= − ⇒ = − + 

 (4) 

Since Peff is the probability of the binary logit model, it is always restricted between zero 
and one, and as a consequence its negative logarithm is always positive, which is a 
necessary restriction for the intensity of the Poisson model. Furthermore, as discussed in 
Becker and Henderson (2000), in order to have a stable equilibrium of supply and 
demand for new ships, the sign of ∂Bjt/∂Xt, with Xt all the parameters that determine  
the value function, should be positive, which is the case indeed, for the above 
specification. Thus, the larger the value implicit in investing in a new vessel, the higher 
the probability investors will proceed, and the larger the number of observed orders 
(births in our model). 

The above model is simple, tractable, makes estimation identifiable and corresponds 
to a partial Nash equilibrium. It is similar to the ‘observed heterogeneity’ model 
introduced by Berry (1992, p.899), where the probability that N agents invest is equal to 
the probability that N agents have a positive investment rule. However, there are two 
significant defects of this model. As noted by Berry, on the one hand it places strong 
restrictions on possible combinations of entering firms and on the other hand it assumes 
an infinite supply of the vessels at the given price, without interaction and adjustment 
from the shipyards to supply and demand shocks. In our calculations this model will be 
denoted as Model I. 

2.2 A perfect competition model 

The tanker sector is a paradigm for perfect competition. We may therefore make the 
assumption that all operators are equally competitive to the eyes of the econometrician, as 
he observes aggregate data and the probability that each of them will invest is the same, 
and is fully determined by the value of the investment minus the value of the option to 
wait. This probability, under the assumption of type I structural errors, is given by: 

exp( )invest .
1 exp( )

Vopt
Vopt

π =
+

 (5) 
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The total number of ships ordered in each period is then given by the count variable: 

1,
i

i n
Y B

=

= ∑  (6) 

where Bi is the outcome of each agent, and the total number of agents is n. If the total 
number of agents is given by a Poisson process, since the outcome of each agent is an 
identically distributed Bernoulli trial, the total number of ordered ships will follow a 
Poisson process, with intensity n … π. This specification allows a more flexible 
parametrisation of the aggregate Poisson count model, since the number of operators, 
may depend on other variables, too. 

If we model the intensity of the number of operators as 

exp( ) (1 exp( )) exp( )n x Vopt n x c Voptα β π α β= + ⋅ ⋅ + ⇒ ⋅ = + ⋅ + ⋅  (7) 

where x are some exogenous variables. This model provides us a very straightforward 
parametrisation of the Poisson model, and it is the familiar exponential specification of 
the mean, which is the main common practice in most empirical studies that deal with 
count data. This model of perfect competition will be named Model II. The elegant form 
of this model breaks down if there are uninsured risks, due to market incompleteness.  
As far as all operators are equiprobable in entering the market and the value of the project 
is uniquely spanned in financial markets, the probability of action is unique and the same 
for each agent. Once the spanning assets are not enough, then each agent has a different 
probability and the Poisson aggregation argument breaks down. 

3 Data and results 

The tanker sector has always been considered as a paradigm of perfect competition. 
Investing in a new tanker requires a significant amount of capital, whose main source is 
bank finance. Shipping cycles exhibit significant variability and no individual has ever 
gained enough market power, in order to control freight rates. 

Regarding the data, the main source is Marsoft, Boston Inc., and it is the same source 
used by Dixit and Pindyck (1994, Chapter 7, p.238). Marsoft provided the orderbook  
(the orders placed for the construction of new vessels) for tanker ships (oil product 
carriers). This data set is accurate and precise. The data set is in quarters from 1980 until 
2002. This implies that we are given 91 observations for each type of tanker carrier. 
Given the five different types of ships we have 455 observations. For this time period the 
data on Time Charter Rates are fully available and precise, as well as the prices of new 
vessels. The operating costs are fairly straightforward. A drawback is that the data on 
operating costs contain errors from 1980 to 1991. After that period they are known 
exactly. 

The second source is Clarksons, London Inc. The available data are from 1993 until 
2002 and are monthly. They are consistent quarterly with the Marsoft data. However, 
there is strong evidence that on a monthly basis there are errors. 

If there are enough spanning assets, then the value of investing in a new tanker is 
uniquely determined and the correct investment rule is: “invest only when the value of 
this asset exceeds the option to wait”. I will name this excess value, the real option  
value (Vopt hereafter) and it will be derived in line with Dixit and Pindyck (1994).  
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Vopt depends not only on the underlying process for the time charter freight rates  
(which will be the lognormal, in line with Dixit and Pindyck), but also on the presence of 
bubbles. If all risks are traded, then this value is unique. 

Regarding the calculation of the real option value we follow closely Dixit and 
Pindyck (1994, Chapter 7, p.238) and their discussion on tankers. The ‘dividend’ rate  
δ is taken equal to 0.02 (since the growth of time charter rates δ is closer to 0.02 than 0 in 
their analysis and the risk adjusted return to shipping µ is closer to 0.04) and the 
depreciation rate ¸ is taken equal to 0.03, since ships have a life time of 30 years. There is 
however significant evidence that depreciation rates depend on market conditions in this 
industry. They use a real option markup of m = 2.5 in their discussion, but this markup  
is correct only if depreciation is omitted. As pointed out in their table in page 204,  
the existence of depreciation lowers the markup. Therefore, for σ = 0.2 and the  
above parameters, the correct choice for the markup mup seems to be mup = 1.30. 
Finally, regarding the ‘dividend’ payout rate δ, a value of 0.02 is mainly consistent with 
the dividend ratios of most listed shipping companies. Later on, we shall not impose any 
specific values on these parameters and instead we shall estimate the implied parameters. 
If the real option markup hypothesis holds, the implied parameters have to generate a 
mup at least higher than 1. Then the excess real option value which appears as a  
regressor is: 

mup .PVopt I
δ λ

= −
+

 (8) 

In the above formula I is the price of the new vessels and P is the revenue per year 
obtained from the 1 year time charter rate minus operating expenses. The calculation of 
the above formula for ships is accurate, since the value I is known and the revenue from 
employing the ship from 1 year is known from the 1-year employment rate. The above 
formula imposes a linear restriction on the revenue (that equals the time charter rate 
minus the operating expenses) and the price of a new vessel. The whole point in testing 
whether the real options markup hypothesis is valid in this data set simply falls down in 
testing whether the linear restriction imposed in equation (8) is valid. Therefore, what we 
really have to test is the robustness of this linear restriction, implied by the real option 
Theory. This will be our last task, after we have specified our structural model. 

Before testing the first model we should note that the number of ships ordered from 
1980 until 2002 is split in five different categories. Handymax, Panamax, Aframax, 
Suezmax and VLCC’s are the five different categories, classified on the transportation 
capacity of each category. Now let us test the first Model. 

3.1 Model I 

Given the efficient operator identification condition 

eff
1ln ln( ) ln(1 exp( ))

1 exp( )
t P t Vopt

Vn
λ λ 

= − ⇒ − ⇒ = + + 
 (9) 

the number of ships ordered in each period are 

( )Y P λ≈  (10) 
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or 

( ( ))( | ( )) exp( ( ))
!

kxP Y k x x
k

λλ λ= = − ⋅  (11) 

with 

ln(1 ) exp(ln(ln(1 )) ).t a Vopt a Vopt aλ λ λ λ= ⋅ ⇒ = + ⋅ ⇒ = + +  (12) 

Since we observe quarterly data and we do not know the decision-making frequency of 
the most efficient operator, we have to add a constant term in the exponential 
specification. This model is very restrictive since it imposes a coefficient of unity for the 
logarithm of the probability of zero investment, which is not the case in the specification 
of Model II. We shall now estimate this model by doing pooled maximum likelihood 
estimation, in line with HHG (1984). The data on new ships ordered contain 455 
observations with 65 zero counts and a maximum value of ships ordered 66 (small size 
60-DWT). Although our data set contains a significant number of zero orders, the 
average of ordered ships is 7.55 and the associated DWT is 0.71 million tons. There are 
two crucial observations at this point: On the one hand, the larger the tonnage category of 
the ship, the less the order counts observed in each period, and on the other hand once in 
the two periods of high freight rates investment ‘counts’ appear to be high. This is the 
main reason why, despite the big number of zero counts (15%) the average as observed in 
the descriptive statistics in Table 1. 

Table 1 Descriptive statistics 

Variable  Obs  Mean  Std. dev. Min.  Max.  

Ships 455 7.559471 9.296905 0 66 
DWT 455 0.7106032 0.9347692 0 7.44 

Number of ships ordered is 7.55. Another crucial fact is that for all our observations,  
time charter rates are always significantly higher than operating costs. However,  
only in periods when they are significantly higher, investment counts are positive.  
These observations are indicative, that on the one hand investment in large vessels and 
uncertainty affect investment decisions and intuitively they provide supportive evidence 
for choosing the real option value as an investment statistic. 

We now do pooled Poisson maximum likelihood using the negative logarithm of the 
“no-investment most efficient operator” probability, which we then compare with the 
NLLS estimates under the exponential specification and with robust standard errors. 
Although it is well known from the QMLE literature that maximum likelihood is still 
consistent, provided the conditional mean is correctly specified, a significant difference 
would indicate severe misspecification. The results of the estimation are displayed  
in Table 2. 

A significant improvement of the fit of the likelihood has been gained and a Hausman 
type test (1978) yields 1.65. We then get the negative binomial estimates, which improve 
the likelihood even more. Thus, we find evidence from significant heterogeneity among 
operators. Finally, the predicted counts with the actual data are compared and there is 
clear evidence that the Poisson specification fails to capture not only the zero counts,  
but as well the excess counts observed for high real option values. To verify this 
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observation the following diagnostic tests are conducted. Pearson’s statistic normalised 
for the 454 degrees of freedom yields a value of 74.92313, which is supportive for the 
excess overdispersion of the data set. 

Table 2 Model I estimation 

Model NLLS  PQMLE  NB OLS 

Lnp  0.3239 (0.012) 0.2901 (0.028) 0.3461 (0.040) 2.691 (0.352) 
Const  1.553 (0.027) 1.622 (0.067) 1.520 (0.071) 4.468 (0.380) 
Log likelihood –2413  –1623  –1358 n.a. 
Pseudo R2 0.1267 n.a. 0.0258 0.1451  

Furthermore, the ‘Goodnessof-fit’ χ 
2 statistic is 3447.149, and rejects the  

Poisson specification with Prob > χ 
2 (452) = 0.0000. Finally, the likelihood ratio for the 

parameter of overdisperion of the negative binomial rejects the H0: α = 0 with probability 
one and α = 1.080348. 

Before proceeding with testing the second model, we consider fixed and random 
effects models. The fixed effects model introduces a constant term for each of the five 
categories of ships. Intuitively, this implies that the frequency of investing orders differs 
among tonnage. The random effects model assumes heterogeneity among tonnage. 
Following Hausman et al. (1984), a Beta random effect specification is adopted, that 
leads to a closed-form formula for the maximum likelihood. The introduction of 
multiplicative effects across different categories is equal to an intercept shift, which holds 
only for the exponential mean specification and corresponds to different frequencies of 
decision making. The results are displayed in Table 3 and standard errors are reported. 
For a more formal derivation of the Fixed and Random Effects Specification see 
Cameron and Trivedi (1998, p.275). 

Table 3 Model I with fixed and random effects 

Model NB Fixed NB random Poisson FE  Poisson RE  

lnp 0.3802 (0.0273) 0.3799 (0.0273) 0.3859 (0.0137) 0.3857 (0.0137) 

const 0.2142 (0.1075) 0.2124 (0.1074) n.a. 1.473 (0.3070) 

Log likelihood –1201 –1237 –1491 –1528 

The coefficient of lnp is now slightly higher than in the previous specification and  
the Log-likelihood is significantly higher. All estimated coefficients are still statistically 
significant. The Hausman test between Poisson Random and Fixed effects does not reject 
the random effects specification since it yields a χ 

2(1) = 0.23 and the same result is 
verified for the Negative Binomial Random vs. Fixed effects Hausman test with  
χ 

2(1) = 0.03. The Likelihood Ratio test of the Negative Binomial Random Effects 
specification vs. the pooled estimates follows a χ 

2(1) with value 223.30, which indicates 
that the NB specification is far more suitable. Finally, by inspecting the predictions of the 
model it is clear that it captures successfully the low and zero counts, but it fails severely 
to predict the excess counts observed at the peak of the shipping cycle. Results are 
displayed in Table 4. Let us therefore proceed with Model II. 
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Table 4 Model II 

Model PQMLE NLLS NB(RE) OLS 

ship1  0.0362 (0.0051) 0.0240 (0.0057) 0.0611 (0.0067) 0.6212 (0.0806) 

Vopt  0.0135 (0.0021) 0.0149 (00.0050) 0.0130 (0.0029) 0.0724 (0.0210) 

V2opt –2.57 (0.645)e-05 –2.66 (0.100)e-05 –2.64 (0.653)e-05 –1.189 (0.433)e-04 

Newprice  –0.0158 (0.0037) –0.0291 (0.0131) –0.01114 (0.0027) –0.0551 (0.0172) 

Accident  –0.1517 (0.1483) 0.0854 (0.1617) –0.3551 (0.1757) 1.405 (1.720) 

Lrate  –0.02349 (0.018) 0.00602 (0.019) –0.0325 (0.0207) 0.0619 (0.132) 

Vopt; lag  –0.002072 (0.00118) –0.002129 (0.00150) –0.0008354 (0.00206) –0.0290 (0.0129) 

Const  2.444 (0.203) 2.787 (0.401) 2.097 (.2351)  4.734 (1.541) 

Pseudo R2  0.3623 n.a.  0.0980  0.5278 

Log likelihood  –1758 –1497 –1255 n.a.  

3.2 Model II 

We now assume that the probability of a positive count is the same for all operators, 
which is a fairly good assumption for a competitive market like the market of crude oil 
carriers. As a consequence the specification of the Poisson model has the following form: 

( ( ))( | ( )) exp( )
!

kxP Y k x
k

λλ= = − ⋅  (13) 

with 

( ) exp( )x x Voptλ α β γ= + ⋅ +  (14) 

Regarding the exogenous variables x that determine the expected number of investors, we 
use the following: A lag of the number of ships ordered one-quarter before, a squared 
value of Vopt and a dummy variable for the accident of Erika in December 1999.  
Since the predominant source of ship finance is the banks, we also include the lending 
rate in the regressors. We now run Poisson likelihood estimation (with robust standard 
errors), NLLS, Negative Binomial with Random Effects and OLS with robust errors. 

It is clear that the real option value appears statistically significant for all the  
above specification. Conducting some diagnostic tests, the Poisson χ 2 (n – k) has a value 
of 2140 and rejects the Poisson specification with probability one. Pearson’s  
statistic normalised for the degrees of freedom has a value 44.3 that indicates severe 
overdispersion and the likelihood ratio test on the overdispersion parameter of  
the negative binomial rejects the H0 : α = 0 with probability one. By inspecting the 
predictions of the negative binomial, the model fails to predict the zero counts as well 
some excess counts, especially for the lighter categories, where the most ‘excess events’ 
are observed. 

The results of the four different specifications are presented in Table 5 and it is clear 
that for all these specifications the 1-year time charter rate, the operating expenses and 
the price of the new vessel are statistically significant. The tcrate is always positive and 
the other two variables are negative as expected. What is even more impressive is that the 
magnitude of the coefficient of the operating expenses is of the same significance and 
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slightly higher than the corresponding coefficient of the time charter rates, which is as 
expected, since costs incur, even when the ships does not earn revenue (dry-dock, etc.). 
Furthermore, the tcrate and opex are on a per day basis. Thus, if we calculate the 
difference of these two coefficients and multiply it by 350 days (to take into account  
off-hire periods) and 365 days, respectively, the number we get is of the same 
significance as the coefficient of the new building price, but almost three times less, 
exactly as predicted by the real option literature. In order to make this point clear the 
estimation is repeated and instead of using tcrate and opex as regressors we use the value 
of the project Val, which is given by the formula Val = tcrate350 – opex 365/δ + λ⋅ 
and then the coefficient of this variable is compared with the coefficient of the newprice. 
If the real option literature is correct, the coefficient of newprice has to be higher than the 
coefficient of Val, which is exactly the case. Indeed, the real option markup implied by 
the data indicates a value close to 4, which corresponds to an implied volatility for the 
underlying profit flow process of 0.40! For the exponential mean specification the Akaike 
criterium indicates that the model performs better when the real option value is used as a 
regressor (with a markup of 1.3 for the excess option value) than using tcrate, opex and 
newprice as regressors. It is now clear that on the one hand the optimal combination 
between the variables that determine the value of the project and the option to wait is the 
one predicted by the real option literature and on the other hand, not much can be gained 
by assuming a time-varying markup specification. 

Table 5 Model II specification testing 

Model NLLS PQMLE NB(RE) OLS 

Ship1  0.0277 (0.0047) 0.0393 (0.0054) 0.0491 (0.0034) 0.6196 (0.0800) 
Tcrate  3.47 (0.897)e-05 4.37 (0.880)e-05 3.58 (0.543)e-05 2.65 (0.83)e-04 
Opex  –3.83 (1.87)e-05 –2.68 (1.83)e-05 –2.65 (1.50)e-05 –1.755 (1.091)e-04 
Newprice  –0.0293 (0.0082) –0.0230 (0.0046) –0.0166 (0.0032) –0.1127 (0.0300) 
Lrate  –0.0013 (0.019) –0.0361 (0.017) –0.0589 (0.017) 0.0252 (0.1281) 
Accident  0.2157 (0.2142) –0.1898 (0.1682) –0.3952 (0.1917) 0.4585 (10.700) 
Const. 2.642 (0.288) 2.390 (0.208)  1.122 (0.261) 4.702 (1.783) 
Pseudo R2  n.a. 0.3398 n.a. 0.5195 
Log likelihood  –1515 –1820 –1257 n.a. 

4 Conclusions 

In this paper, we have demonstrated that the real option value of a project as spanned  
in complete markets is a sufficient statistic for characterising aggregate investment 
decisions. In the case of irreversibility and uncertainty the correct specification for this 
value is the one expected by the real options literature. The value of the project not only 
has to exceed the investment cost, but also the option to wait. In the case of the perfect 
competitive market for new tankers, the statistical results for the last 22 years have 
verified both these hypotheses. Furthermore, count data models (a natural specification 
for investment orders) have provided a very good fit to the data. A natural extension of 
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this work is the application of the proposed framework for exit decisions (scrapping), as 
well as in other shipping industries or oil exploration projects. 
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