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Abstract: This paper proposes a probabilistic neural network (PNN) model to 
predict the cooling capacity of green buildings, addressing nonlinear factors 
and uncertainties often overlooked by traditional regression models. The PNN 
model uses climate and building features as inputs, applies radial basis function 
(RBF) in the hidden layer for nonlinear mapping, and generates cooling 
capacity predictions with confidence intervals. Historical data is used to 
optimise parameters via backpropagation, and k-fold cross-validation prevents 
overfitting. Experimental results show that the PNN model achieves an R2 
value above 0.95 and a 96.67% confidence interval coverage rate across 
different climate conditions. Compared to traditional models, the PNN 
demonstrates superior performance in handling nonlinearities and uncertainty 
in cooling capacity prediction. 
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preprocessing. 

Reference to this paper should be made as follows: Zheng, H. and Wang, P. 
(2025) ‘Predicting the cooling capacity of green buildings using probabilistic 
neural network models’, Int. J. Environment and Pollution, Vol. 75, No. 4,  
pp.261–279. 

Biographical notes: Hua Zheng formerly served as the General Manager and 
Vice Chairman of Wenzhou Railway and Rail Transit Investment Group Co., 
Ltd. In June 2016, he was appointed as the Director of the Wenzhou Ecological 
Park Management Committee and the Director of the Wenzhou Higher 
Education Park Construction Management Committee. Currently, he is Vice 
President and Party Committee Member of Wenzhou University of 
Technology. 

Pengming Wang received his doctoral degree from University of Chinese 
Academy of Sciences, China in 2018. Now, he works in School of Data  
 



   

 

   

   
 

   

   

 

   

   262 H. Zheng and P. Wang    
 

    
 

   

   
 

   

   

 

   

       
 
 

Science and Artificial Intelligence, Wenzhou University of Technology.  
His research interest includes natural language processing, information retrieval 
and artificial intelligence. 

 

1 Introduction 

With the increasing global awareness of sustainable development and environmental 
safety, green building design has become the foundation for the development of the 
modern construction industry. Green buildings aim to limit energy consumption and 
emissions, reduce environmental impact, and improve the energy efficiency and indoor 
environmental quality of buildings. In this context, building cooling is expected to be an 
important part of energy management and plays an important role in improving the 
design and operation of cooling systems and reducing energy waste. Building cooling 
refers to the cooling power required under specific environmental conditions, which 
directly affects the design, efficiency and energy utilisation of cooling systems (Dogan 
and Cidem Dogan, 2023; Başakın et al., 2022). However, predicting building cooling 
demand poses some challenges, especially when dealing with complex nonlinear 
relationships within the building environment (Lan et al., 2023; Elahe et al., 2021; Yan et 
al., 2021). Traditional regression methods, such as linear regression and polynomial 
regression, although sometimes effective, have difficulty in accurately capturing the 
complex nonlinear relationships between cooling demand and factors such as 
environmental variability, building thermal performance and indoor load fluctuations 
(Angela et al., 2024). Therefore, improving the accuracy and reliability of cooling 
capacity prediction has become a major challenge for energy management in green 
buildings. 

Research on the prediction of cooling capacity in green buildings has made 
significant progress in recent years, and many researchers have attempted to combine 
traditional prediction methods with artificial intelligence (AI) algorithms to address this 
challenge. For example, Kumar (2024) built a comprehensive prediction model using a 
support vector machine improved by a genetic algorithm to predict hourly cooling 
capacity loads, focusing on accuracy under extreme weather patterns. Villano (2024) 
explored the ability of deep learning to predict, reconstruct, control, and improve building 
energy performance. The study showed that building cooling capacity prediction is 
affected by a variety of factors, such as environmental conditions, building attributes, and 
tenant activity patterns, all of which are interrelated in a highly nonlinear manner.  
Traditional regression models are unable to handle these complex problems (Quang et al., 
2024; El-Bichri et al., 2024; Cheng et al., 2024). Therefore, research has turned to 
artificial intelligence-based methods such as support vector machines, random forests, 
and neural networks. Although these methods can handle nonlinear problems to a certain 
extent, they are still not resistant to noise interference and usually provide metrics 
without considering prediction vulnerability (Haddad et al., 2024; Islam et al., 2024; 
Banerjee and Nayaka, 2022). In addition, some of these methods require large datasets 
and strict component selection, which may limit their practical applications (Moazeni  
et al., 2021; Himeur et al., 2022). However, these studies provide important experience  
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for the prediction of building cooling capacity load, highlighting the weakness of 
traditional methods in managing complex nonlinear relationships and fragility. Therefore, 
it is indeed crucial to build a flexible prediction model that can handle fragility. Through 
continuous research and development, more accurate and powerful green building energy 
management tools are expected to emerge, driving economic prosperity in the 
construction sector. 

Considering the limitations of traditional regression and AI methods in predicting 
building cooling capacity load, PNN, as a nonlinear regression method based on Bayesian 
structure, has attracted widespread attention in recent years. PNN uses extended baseline 
function (RBF) neurons for nonlinear programming of data and provides point analysis 
and deterministic extension for cooling capacity prediction based on probability theory. 
Compared with traditional methods, the PNN model not only better handles nonlinear 
relationships in the data, but also provides a quantitative assessment of the uncertainty of 
the prediction results by outputting probability distributions (Adilkhanova et al., 2024; 
Singh and Sharston, 2022; Chen et al., 2022). This is of great significance for the 
prediction of green building cooling capacity, because building cooling capacity is 
affected by many external and internal factors, and these factors usually have high 
uncertainty (Naqash, 2025; Rahimian et al., 2021). Existing studies have shown that PNN 
has achieved remarkable results in some nonlinear modelling tasks, especially in dealing 
with noisy data and uncertainty, showing strong robustness and accuracy (Urge-Vorsatz 
et al., 2022; Habibi, 2021; Kumar et al., 2024). For example, PNN has been successfully 
applied in fields such as meteorological forecasting and financial analysis. However, 
despite the good results achieved in other fields, its application research in green building 
cooling capacity prediction is still relatively limited. In the existing literature, the 
research on PNN model is mostly focused on model theory and small-scale datasets, 
lacking large-scale field application verification (Ma et al., 2024; He et al., 2020). 
Therefore, this paper applies PNN into the prediction of cooling capacity of green 
buildings, and comprehensively improves the accuracy and reliability of cooling capacity 
prediction by combining multiple parameters of the building and external environmental 
factors. 

This paper aims to improve the accuracy of cooling capacity prediction of green 
buildings by adopting probabilistic neural network (PNN) model, and effectively deal 
with nonlinear relationships and uncertainties therein. To achieve this goal, this paper 
first analyses the shortcomings of traditional regression model in building cooling 
capacity prediction, especially the limitations in dealing with complex nonlinear 
relationships and data uncertainty (Zamponi et al., 2022; Takane et al., 2024; Alshatshati 
et al., 2021). Then, this paper applies a PNN model, and solves the prediction problems 
that traditional methods cannot effectively handle through its powerful nonlinear 
modelling ability and probabilistic output characteristics. Specifically, this paper applies 
a complete cooling capacity prediction framework through the steps of data 
preprocessing, PNN model construction, training and optimisation, cooling capacity 
prediction, and uncertainty processing. Through experimental verification, the PNN 
model proposed in this paper has significantly improved the prediction accuracy and 
reliability compared with the traditional regression model (Lu and Memari, 2020; 
Dolatabadi et al., 2022). Especially in dealing with the complex nonlinear factors and  
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uncertainties in building cooling capacity prediction, it shows more superior 
performance. 

2 Cooling capacity prediction based on PNN 

2.1 Data collection and preprocessing 
2.1.1 Data source 
The core of cooling capacity prediction lies in the accurate processing of environmental 
data. Key environmental factors such as temperature, humidity, wind speed, and radiation 
have a direct and significant impact on the cooling capacity of a building and the change 
in indoor temperature. Besides, the selection of building boundaries also significantly 
affects the cooling capacity prediction, including building orientation, protective 
performance, window size, and building materials. Therefore, a deep understanding of 
these building characteristics is crucial for accurately calculating cooling load 
requirements. Furthermore, real cooling data, including cooling system cooling load 
records and building energy consumption history, are important reasons for model 
construction. These data reflect the cooling demand history of the building under 
different combinations of environments and characteristics. By obtaining such 
information, the PNN model can make accurate predictions of future cooling interests. 

Although this study mainly used data from a single building type, future work plans 
include collecting additional datasets from different geographical regions and building 
types to further verify the generalisability of the model. 

Figure 1 shows the process of cooling capacity prediction of green buildings using 
PNN model. Inputs include climate data (temperature, humidity, wind speed, radiation), 
building parameters (orientation, insulation performance, window area, structural 
materials), and historical cooling capacity data (cooling load, energy consumption). After 
these data are processed by PNN model, the cooling capacity prediction value and 
confidence interval are output. 

2.1.2 Data processing and feature engineering 
Data cleaning is an important step to ensure the model’s stability and accuracy. First, 
there may be missing values and outliers in the original data. Especially in the process of 
collecting climate data and building parameters, some data may be missing or obviously 
unreasonable values due to sensor failure or changes in the external environment. During 
the data cleaning process, this paper first removed the records with more than 10% 
missing values, and then applied the Z-score method for standardisation. For missing 
values, this paper adopts interpolation method to fill them, and adopts a combination of 
mean interpolation and linear interpolation to ensure the continuity and consistency of 
data. For outliers, each feature is tested based on the statistical method Z-score. If a data 
point exceeds the normal fluctuation range, it is marked as abnormal data and removed. 
Through these cleaning steps, the noise data that may affect the model training is 
removed, and the quality of the data is improved. 
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Figure 1 Process of cooling capacity prediction of green buildings using PNN model (see online 
version for colours)

Due to the different dimensions of different features, data normalisation has become a 
necessary step in model training. This paper adopts the minimum-maximum 
normalisation method to scale each feature value to the range of [0, 1]. This process not 
only ensures the balance of contributions of different features to the model, but also 
effectively avoids the undue influence of some features on model training due to their 
large values. In addition, the normalised data helps to speed up the PNN model’s training 
process and reduce the problem of gradient disappearance or explosion. The 
normalisation standards are shown in Table 1.

Table 1 Normalisation of each data

Feature Original data range Raw value Normalised value
Temperature (T) [10°C, 35°C] 25 0.6
Humidity (H) [30%, 90%] 55 0.375
Wind speed (W) [0 m/s, 15 m/s] 7 0.467
Radiation (R) [100 W/m2, 1000 W/m2] 500 0.444
Insulation (I) [0.1, 0.8] 0.5 0.5
Window area (A) [5 m2, 50 m2] 30 0.55
Building material (M) [0, 1] 1 1
Cooling load (Q) [0 kW, 20 kW] 10 0.5
Energy consumption (E) [50 kWh, 1000 kWh] 500 0.5

Feature engineering is another key step to improve model performance. In the prediction 
of building cooling capacity, a single climate feature and building parameter is often not 
enough to accurately capture the changing law of cooling capacity. Therefore, this paper 
enhances the model’s expressiveness by constructing some derived features. For 
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example, the interaction between temperature and humidity is a common nonlinear 
relationship, which affects the heat load demand inside the building. By calculating the 
product or difference of temperature and humidity, this paper applies new features to help 
the PNN model capture these complex interaction effects. In addition, the building’s 
thermal insulation performance and window area may have different nonlinear 
relationships on cooling capacity under different climatic conditions. Therefore, 
according to the trend of historical data, this paper also constructs the interaction terms 
between these features and climate change. These steps of feature engineering effectively 
enrich the input dataset and enhance the ability of the PNN model to capture the building 
cooling capacity demand. 

In addition, this paper is exploring the possibility of using historical energy 
consumption patterns and personnel activity patterns as latent features, which will help 
improve the performance of the model. 

2.2 Construction of PNN models 

Probabilistic neural network (PNN) is a classification algorithm based on Bayesian 
decision theory. Its core is to use Parzen window estimation to calculate the probability 
that an input sample belongs to a certain class. This structure allows PNN to have high 
accuracy and robustness when facing complex pattern recognition tasks. This feature 
enables PNN not only to provide a point estimate of cooling capacity, but also to output a 
confidence interval for the prediction result to process the uncertainty in the data. This 
paper uses the PNN model to predict the cooling capacity of green buildings and adopts a 
series of data processing and model building steps, as follows: 

2.2.1 Model principle 
The core idea of the PNN model is to use Bayesian theory to calculate the probability 
distribution characteristics of the predicted value. Under this theoretical structure, each 
data point is treated as a series of different classification constraint probabilities, and 
these probabilities are weighted to determine the predicted value of the target variable. 
This factor provides an important advantage for the model in dealing with the inherent 
fragility of data. For the specific task of green building cooling capacity prediction, the 
PNN model can cleverly handle the complex nonlinear relationship between different 
factors and adapt well to the fragility problems caused by environmental data fluctuations 
and changes in building characteristics. 

The working principle of the PNN model includes deeply calculating the differences 
between data features and training tests, and using Gaussian distribution to reasonably 
evaluate the probability distribution of the target value. This process closely depends on 
the closeness between the training samples and the data. The Bayesian method is used to 
accurately calculate the weighted probability, and finally the PNN obtains the expected 
value of the cooling capacity limit through the weighted average method, while 
calculating the expected value of the deterministic time range. 

2.2.2 Model architecture 
The structure of the PNN model is very perfectly designed, mainly consisting of three 
core parts: input layer, storage layer, and result layer. As the starting point of the model, 
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the data layer is responsible for acquiring and managing the data elements of the model, 
which cover two main aspects: climate data and building boundaries. Climate data 
explicitly includes key indicators such as temperature, humidity, wind speed, and 
radiation, while building boundaries broadly include key factors such as building 
orientation, window area, and thermal insulation performance. These factors all play a 
clear role in predicting building cooling. The data layer accurately transmits these key 
element information to the key layer. 

As the core of the PNN model, the key layer uses advanced RBF neurons for 
nonlinear programming processing. Each RBF neuron can calculate the distance between 
the dataset and the training dataset, and create a Gaussian discrete weight value based on 
the distance. The output of the RBF neuron is a weight that is closely related to the 
similarity of the data features, which naturally reflects the similarity between the data and 
the training samples (Alonso et al., 2021; Salem et al., 2022). The PNN model can 
accurately capture the nonlinear relationship between the input data, so as to work 
together to ensure the accuracy of the cooling capacity prediction. 

The output layer further calculates and obtains the final prediction results based on 
the weight data generated by the input layer. This layer not only provides point analysis 
of cooling capacity as a possibility transfer, but also provides a comparative expectation 
range, which is crucial for leaders in building energy management. 

2.2.3 Model parameters 
The key parameters of the PNN model mainly include the smoothing parameter (σ) and 
the number of training samples, both of which have a decisive influence on the 
performance of the model. As a key indicator for regulating the smoothness of the model, 
the smoothing parameter is directly related to the generalisation ability of the model. 
Specifically, a smaller smoothing parameter value may cause the model to overfit the 
training data and overreact to small changes in the data; a larger smoothing parameter 
may cause the model to underfit. Therefore, in the process of model training, it is 
necessary to carefully optimise the smoothing parameter through scientific methods such 
as cross-validation to ensure that the model has good adaptability when facing different 
types of data. Through k-fold cross validation (k = 10), we finally determined the optimal 
hyperparameter settings, namely, the number of hidden layer nodes is 75 and the learning 
rate is 0.01. 

The number of training samples is also one of the important factors affecting the 
performance of PNN models. The PNN model has a strong dependence on training data. 
Insufficient sample size may cause the model to be unable to effectively capture the 
complex patterns of the data, while too large a sample size significantly increases  
the computational cost. In the practice of model training, this paper carefully selects the 
appropriate number of training samples based on the actual situation of historical cooling 
capacity data and the distribution characteristics of different climate conditions and 
building characteristics. During the experiment, this paper also adopts a random sampling 
method to reasonably balance the training samples in different regions, in order to further 
improve the generalisation ability and prediction accuracy of the model. 

In the process of model construction, in addition to the above parameters, the 
selection of Gaussian kernel function is also involved. The kernel function used in this 
paper is the standard Gaussian kernel, which generates a weight value that conforms to  
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the Gaussian distribution by calculating the Euclidean distance between the input data 
and the training sample. This method not only accurately captures the local 
characteristics of the input data, but also controls the smoothness of the model by 
adjusting the smoothing parameters, thereby avoiding overfitting problems. 

Considering the need for large-scale data processing, the computational complexity of 
the PNN model is O(n), where n represents the number of samples. In order to improve 
computational efficiency, this paper proposes an optimisation scheme based on GPU 
acceleration. 

Figure 2 shows the relationship between smoothing parameter (σ) and prediction error 
(MSE), and analyses it with different sample sizes (100, 300, 500, 1000). As σ increases, 
the overall trend of mean square error (MSE) gradually decreases and then increases. 
When σ is around 0.3 to 1.5, the MSE under all sample sizes tends to be low, reflecting 
good generalisation ability. 

Figure 2 Relationship between smoothing parameter (σ) and prediction error (MSE) (see online 
version for colours) 

 

2.3 Model training and optimisation 

2.3.1 Training process 
During the training process of the PNN model, the historical cooling capacity data and 
related climate, building parameters, and other features are first received through the 
input layer. Then, the model calculates the weight for each sample by calculating the 
Euclidean distance between the input data and the training sample, and uses these weights 
to estimate the predicted value of cooling capacity through Bayesian reasoning. The core 
task of training is to optimise the parameters in the model through the back propagation 
algorithm, especially the smoothing parameter (σ) and the width of the Gaussian kernel 
function. Through back propagation, the model gradually adjusts the weights according 
to the prediction error in each round of iteration, making the prediction results more 
accurate. 

PNN model training uses the back-propagation algorithm to update weights. First, the 
output is calculated through forward propagation, then the output layer error is calculated  
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based on the loss function, and the error is back-propagated to adjust the weights of each 
layer. Specifically, it involves calculating the partial derivatives of each neuron and 
optimising these weights using gradient descent to ensure that the loss function is 
gradually reduced, thereby improving the model’s prediction accuracy. This process is 
also applicable to the product layer in PNN to ensure effective learning of feature 
crossover. 

In the specific implementation process, the training set data is divided into multiple 
small batches, and forward propagation and back propagation are performed respectively 
to gradually optimise the value of each weight. To ensure that the model effectively 
learns the appropriate pattern from the training data, this paper adopts the gradient 
descent algorithm to minimise the prediction error, and dynamically updates the various 
parameters of the model through the optimisation algorithm. In this way, the PNN model 
learns the inherent law of cooling capacity prediction based on the training data and 
improves the prediction accuracy as much as possible. 

Figure 3 shows the changing trends of errors and smoothing parameters during the 
training of the PNN model. As the number of iterations increases, both the training error 
and the validation error show a downward trend, reflecting the continuous optimisation of 
the model performance. Specifically, both decrease from 1 to close to 0 at about 100 
iterations, but the convergence pace of the training error is relatively slow. Meanwhile, 
the smoothing parameter (σ) decreases from 0.5 to close to 0 within the first 100 
iterations, which indicates that the model is adjusting the fit to enhance its generalisation 
ability. Overall, the PNN model significantly improves the accuracy and reliability of 
predictions by continuously fine-tuning errors and parameters. 

Figure 3 Changes in errors and smoothing parameters of the PNN model during training  
(see online version for colours) 
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To enhance the PNN model’s performance, the key lies in the reasonable selection of the 
smoothing parameter (σ). This paper utilises k-fold cross-validation to optimise the 
model, and divides the training data into k subsets. The k–1 subsets are utilised for 
training each time, and the remaining subsets are utilised for validation. The prediction 
error is calculated, and the parameters are adjusted dynamically. This method effectively 
avoids overfitting and enhances the generalisation ability of the model. Through cross-
validation, this paper selects the optimal smoothing parameter (σ). A smaller smoothing 
parameter may lead to overfitting, making the model overly dependent on the noise in the 
training data; a larger smoothing parameter may lead to underfitting and fail to fully 
capture the complex relationship in the data. Therefore, cross-validation helps to find a 
compromise smoothing parameter so that the model can show good prediction ability on 
both the training set and the validation set. 

2.3.2 Preventing overfitting 
Overfitting is a common problem in machine learning models, especially when using 
complex models, PNN may overfit the noise in the training data, resulting in a decrease 
in prediction performance in practical applications. To prevent overfitting of the PNN 
model, this paper adopts the following strategies. 

Secondly, to enhance the generalisation ability of the model, this paper performs 
appropriate data augmentation on the training data during the training process. By 
generating different training sample variants, the model’s adaptability to different data 
distributions is enhanced. 

The PNN model integrates regularisation technology, which aims to reduce the risk of 
overfitting by constraining the complexity of the model. During training, the PNN model 
is fine-tuned to capture the complex relationships between data while preventing 
overfitting on the training set. Regularisation technology effectively limits the degrees of 
freedom of the model and enhances the predictive performance of the model on new data. 
To prevent overfitting, the PNN model applies a complexity penalty term in the loss 
function. Among them, L2 regularisation is a common method, which prevents model 
parameters from being too large by increasing the penalty for the sum of squared weights, 
thereby avoiding overfitting. The objective function after regularisation is expressed as 
formula (1): 

( ) ( )( )2
2

1 1

1 N M

i ji
i j

L y y w
N

σ σ λ
= =

= − +∑ ∑  (1) 

N  is the number of training samples. iy  is the true value of the ith sample, and ( )iy σ  is 
the predicted value calculated using the smoothing parameter σ . jw  is the weight of 
each neuron in the PNN model. λ  is the regularisation parameter, which controls the 
weight of the penalty term. A larger λ  constrains the complexity of the model more 
strongly, thereby reducing the risk of overfitting. By selecting an appropriate λ , the 
complexity of the model is effectively controlled, so that it has sufficient fitting ability on 
the training data without overfitting noise or local features, thereby ensuring the 
generalisation ability of the model. 
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2.4 Cooling capacity prediction and uncertainty processing 

2.4.1 Prediction process 
After the PNN model is trained, the core task of the model is to predict the cooling 
capacity of new climate and building data (VE et al., 2021; Ali et al., 2024). To achieve 
this goal, the model first receives input data, including climate parameters, building 
characteristics, and historical cooling capacity data. The input layer converts these feature 
data into a form processed by the neural network and passes them to the hidden layer for 
further processing. In the hidden layer, RBF-based neurons calculate the Euclidean 
distance between the input data and the training sample and generate the corresponding 
Gaussian distribution weights. This process maps the input data to a high-dimensional 
space, and after nonlinear mapping, it finally outputs a point estimate of the cooling 
capacity. 

In the PNN model, the weight distribution of RBF neurons reflects the importance of 
each input feature in the model learning process. The heat map in Figure 4 shows the 
relationship between 50 neurons and 10 input features about climate parameters, building 
characteristics, and historical cooling capacity data, where the colour depth represents the 
size of the weight. The first three input features have larger weights (shown as darker 
colours), which may be due to the fact that these features (temperature, humidity, etc.) 
have a more significant impact on the prediction of building cooling capacity. The middle 
features show medium weights, indicating that they contribute less to the prediction but 
still have a certain impact. The weights of the last few features are small, indicating that 
these features have a weaker impact. Overall, the PNN model adjusts these weights 
during the training process, allowing the model to more precisely capture the nonlinear 
effects of climate and building characteristics on cooling capacity prediction. 

Figure 4 Weight distribution of RBF neurons (see online version for colours) 
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Unlike traditional regression models, the PNN model not only provides a predicted value 
for cooling capacity, but also gives a complete probability distribution. This probability 
distribution contains multiple possible cooling capacity prediction results and quantifies 
the prediction uncertainty. In this way, the confidence interval of the cooling capacity 
prediction is obtained, that is, the credibility of the prediction result is quantified. For 
example, if the predicted value output by the model is 20 kW and the confidence interval 
of the prediction is ±2 kW, then the actual cooling capacity value is likely to be between 
18 kW and 22 kW, which provides decision-makers with more information to make 
reasonable decisions in energy scheduling and system optimisation. 

The PNN model accurately reflects the model’s confidence in the prediction results 
by combining the predicted value and error probability density function of each sample. 
Compared with traditional regression methods, the PNN model effectively evaluates the 
prediction uncertainty while predicting the cooling capacity, ensuring the reliability of the 
prediction results, especially in the face of complex factors such as climate change and 
building load fluctuations, providing more robust predictions. 

2.4.2 Uncertainty processing 
In the cooling capacity prediction of green buildings, uncertainty mainly comes from two 
aspects: one is the fluctuation of climate conditions, and the other is the change of 
building usage pattern. Climate factors such as temperature, humidity, wind speed, etc., 
are highly uncertain, and building usage patterns, such as the frequency of use of air-
conditioning systems and changes in personnel activities, also cause fluctuations in 
cooling capacity. Traditional regression models are usually unable to effectively process 
these uncertainties, resulting in rough and unreliable prediction results. 

The PNN model quantifies the uncertainty of prediction results through the generated 
probability distribution, thereby providing decision-makers with more decision-making 
basis. Specifically, the PNN model uses Bayesian reasoning to perform probability 
evaluation on the prediction results of each sample and output the probability density 
function of cooling capacity. Through this function, the confidence interval of the 
prediction result is calculated, that is, the upper and lower limits of the cooling capacity 
prediction value. For example, when the temperature rises abnormally or the building 
load fluctuates, the PNN model reflects the prediction result uncertainty through 
probability distribution, thereby helping users better deal with the risks brought about by 
such changes. For extreme weather conditions, we adopt a strategy of enhancing 
confidence intervals to ensure reliable forecasts even in extreme situations. 

In addition, potential extreme situations are identified through further analysis of the 
probability distribution. The PNN model not only gives cooling capacity predictions 
under normal circumstances, but also predicts cooling capacity requirements under 
extreme weather conditions, which is of great significance for energy management and 
system scheduling of green buildings. Since the PNN model outputs the probability 
distribution and confidence interval of cooling capacity, users can adjust energy 
consumption strategies based on the reliability of the prediction results, thereby 
improving the efficiency and reliability of the building energy system. The confidence 
interval calculation formula is as shown in Formula 2: 

( ) ( )/ 2 / 2,f x z f x zα ασ σ− ⋅ + ⋅⎡ ⎤⎣ ⎦  (2) 
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( )f x  represents the cooling capacity value predicted by the PNN model for input x . 
/ 2zα  represents the critical value of the standard normal distribution, usually 0.025 1.96z ≈  

for a confidence level of 95% . σ  is the standard deviation, which represents the model 
uncertainty in the prediction. Formula (2) constructs a confidence interval through the 
critical value / 2zα  and standard deviation σ  of the standard normal distribution. This 
interval indicates the range of the prediction results of the actual cooling capacity value 
under a given confidence level. 

To further improve the prediction accuracy, this paper also compares the cooling 
capacity prediction results under different weather conditions and fine-tunes the model 
based on historical data. This strategy enables the PNN model to maintain a high 
prediction accuracy under different climates and building usage patterns, and provide 
more precise predictions for uncertain factors. 

3 Evaluation of prediction effect 

3.1 Verification method 
To deeply evaluate the effectiveness of the PNN model in the task of green building 
cooling prediction, this study uses a real cooling capacity dataset covering different time 
periods and various climatic conditions for verification. In the verification process, this 
study first applies the PNN model to multiple historical time periods and makes 
predictions based on the actual cooling capacity data in each time period. Subsequently, 
the predicted output of the PNN model is compared with the actual cooling capacity data, 
and the prediction performance of the model is objectively evaluated with the help of 
authoritative prediction accuracy indicators such as root mean square error (RMSE) and 
mean absolute error (MAE). 

Furthermore, to further verify the reliability of the PNN model, this study also 
conducts an in-depth comparison with the traditional regression model. Since traditional 
regression methods are usually based on the assumption of linear relationships between 
data, and nonlinear relationships are widely present in the prediction of cooling capacity 
of green buildings, traditional methods often find it difficult to accurately capture 
complex influencing factors. Therefore, this study trains linear regression and polynomial 
regression models respectively, and directly compares their prediction results with the 
PNN model. This comparison process intuitively demonstrates the significant advantages 
of the PNN model in dealing with complex nonlinear relationships. 

Future research will further explore the generalisation ability of the PNN model under 
different climate conditions (such as extreme cold and hot environments). 

3.2 RMSE in the cooling capacity prediction of green buildings 

This study utilises RMSE to evaluate the performance of the PNN model in the cooling 
capacity prediction of green buildings. The lower the RMSE value, the closer the 
prediction result is to reality and the higher the model accuracy. Compared with the 
traditional regression model, the comparison of RMSE highlights the significant 
advantages of PNN in dealing with nonlinear relationships and complex data patterns. 

Figure 5 displays the RMSE comparison results of the PNN model and two traditional 
models, linear regression and polynomial regression, on five test sets. The results 
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demonstrate that PNN outperforms other models on all test sets, especially on test set 1 
and test set 4, where the RMSE is 0.25 and 0.23, respectively, which is significantly 
lower than linear regression and polynomial regression. In test set 5, the RMSE of PNN 
is 0.26, which is much lower than 0.47 of linear regression, highlighting the excellent 
ability of PNN in dealing with complex nonlinear relationships. Overall, PNN 
demonstrates higher accuracy in the prediction of cooling capacity of green buildings, 
and its RMSE is generally lower than 0.3. 

Figure 5 RMSE comparison on five test sets (see online version for colours) 

 

To this end, this paper uses a rolling forecast method to test the long-term performance of 
the model, that is, using the model to continuously forecast multiple time steps in the 
future, and using each forecast result as the input for the next time1. At the same time, 
this paper introduces indicators such as RMSE and MAE to quantify the forecast 
accuracy. In addition, considering the impact of non-stationarity and external factors on 
long-term forecasts, this paper pays special attention to these variables in the analysis and 
discusses how to improve the forecast quality by improving the model structure or adding 
features. 

3.3 MAE comparison of models 

In this study, MAE is utilised to evaluate the prediction stability of the PNN model under 
different climate conditions. 

Table 2 describes the MAE values of PNN, linear regression, and polynomial 
regression on 5 test sets. The data presents that the MAE of the PNN model is generally 
lower than that of linear regression and polynomial regression, and the test results are 
better on test set 1 (MAE is 0.18) and test set 2 (MAE is 0.15). This also indicates that 
PNN has a lower average prediction error in the cooling capacity prediction of green 
buildings, and performs better in dealing with complex nonlinear relationships and 
changing climate conditions. 
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Table 2 MAE values on five test sets 

Test set PNN model MAE Linear regression MAE Polynomial regression MAE 
Test Set 1 0.18 0.3 0.25 
Test Set 2 0.15 0.32 0.28 
Test Set 3 0.22 0.4 0.35 
Test Set 4 0.2 0.36 0.33 
Test Set 5 0.21 0.45 0.38 

In addition to linear regression and polynomial regression, this paper also compares 
machine learning models such as random forest and support vector machine. The results 
show that PNN performs better in handling nonlinear relationships. 

In order to test the robustness of the model to noisy data, this paper artificially 
introduced 5% noise into the original dataset and observed that the performance of the 
PNN model remained stable. 

3.4 Fitting degree of climate data 

The coefficient of determination (R2) is an essential indicator for measuring the degree of 
fit of a model to data. The closer its value is to 1, the stronger the explanatory power of 
the model. In this study, R2 is utilised to evaluate the fitting performance of the PNN 
model in predicting the cooling capacity of green buildings. 

Figure 6 illustrates the fitting effect of the PNN model and the traditional regression 
model under different climate fluctuations. In the left figure of Figure 6, the climate 
fluctuates greatly, and the PNN model (green curve) fits better than the traditional 
regression model (red straight line), with R2 of 0.96 and 0.16 respectively, indicating that 
PNN better captures the nonlinear trend of the data. In the right figure of Figure 6, the 
climate fluctuates less, and the fitting accuracy of PNN is still higher than that of 
traditional regression, with R2 of 1 and 0.66 respectively. Overall, PNN shows higher 
prediction accuracy when the climate fluctuates greatly. 

Figure 6 Fitting effect of the PNN model and the traditional regression model under different 
climate fluctuations (see online version for colours) 
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3.5 Confidence interval coverage 

Confidence interval coverage is a key indicator for evaluating the ability of PNN models 
to process prediction uncertainty. PNN models not only provide prediction values, but 
also output the probability distribution of prediction results, and measure uncertainty by 
calculating confidence intervals. Confidence interval coverage refers to whether the 
predicted confidence interval effectively covers the actual cooling capacity value. A 
higher coverage indicates that the PNN model provides reliable prediction results in the 
face of uncertainties such as climate prediction errors and fluctuations in building usage 
patterns. This indicator is particularly important for green building cooling capacity 
prediction, because environmental factors and building usage are often full of 
uncertainty. Models that process uncertainty help optimise building energy management 
and air conditioning system scheduling. 

In Figure 7, the actual cooling capacity data is represented by grey scattered points, 
showing the fluctuation of cooling capacity under different sample points, and simulating 
the change of cooling capacity in the actual environment. The predicted value of the PNN 
model is presented by the blue curve. It can be seen that the trend of the predicted value 
is similar to that of the actual cooling capacity data, indicating that the PNN model can 
effectively capture the trend of cooling capacity changes. The confidence interval is 
displayed in the form of a blue semi-transparent band, covering most of the actual 
cooling capacity data points, which shows that the prediction results of the PNN model 
have a high degree of credibility and can accurately reflect the range of changes in 
cooling capacity. Among the 30 sample points, the vast majority of actual values (29 in 
Figure 7) fall within the confidence interval, with a coverage rate of 96.67%, 
demonstrating the PNN model’s ability to process uncertainty during prediction and to 
provide reliable prediction results in the face of climate change and fluctuations in 
building usage patterns, which is critical for energy management and air conditioning 
system scheduling in green buildings. 

Figure 7 Confidence interval coverage results (see online version for colours) 

 

In order to evaluate the real-time prediction capability of the model, real-time data in all 
sample points in this paper were tested. The results show that the PNN model can achieve 
fast response while maintaining high accuracy. 
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4 Conclusions 

This paper predicts the cooling capacity of green buildings by using a PNN model. 
Compared with traditional regression models, PNN can effectively handle nonlinear 
relationships and provide cooling capacity prediction values and their confidence 
intervals through probability distribution, solving the impact of uncertain factors such as 
climate fluctuations and building usage patterns on the prediction results. Through data 
collection and preprocessing, PNN model construction and training, prediction process, 
and uncertainty processing, this paper successfully achieves high-precision cooling 
capacity prediction and demonstrates the advantages of PNN in comparison with 
traditional methods. However, this paper still has some shortcomings. For example, the 
adaptability to different building types and regions needs to be further verified, and more 
external data support may be required in practical applications. Future research can 
explore models that combine more features and complex environmental factors, while 
enhancing the real-time performance and computational efficiency of the model to meet 
more complex building energy management needs. In addition, the PNN model also 
shows broad application prospects in other energy management tasks due to its flexibility 
and adaptability. Considering the actual application scenarios, the PNN model can not 
only provide accurate short-term predictions, but also provide strong support for long-
term energy management planning. 
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