
 
International Journal of Artificial Intelligence in Healthcare
 
ISSN online: 3050-2470 - ISSN print: 3050-2462
https://www.inderscience.com/ijaih

 
Robust heart rate estimation during intensive physical training
using AI-enhanced particle filter
 
Kokila Bharti Jaiswal
 
DOI: 10.1504/IJAIH.2025.10073501
 
Article History:
Received: 08 April 2025
Last revised: 15 July 2025
Accepted: 10 August 2025
Published online: 20 October 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijaih
https://dx.doi.org/10.1504/IJAIH.2025.10073501
http://www.tcpdf.org


92        Int. J. Artificial Intelligence in Healthcare, Vol. 1, No. 1, 2025

Robust heart rate estimation during intensive
physical training using AI-enhanced particle filter

Kokila Bharti Jaiswal
Department of ECE,
Bhilai Institute of Technology,
Durg, 491001, India
Email: kokila.bharti@bitdurg.ac.in

Abstract: The remote photoplethysmography (rPPG) signal provides an
essential data for the estimation of heart rate (HR). However, rPPG signal is
often corrupted by noise due to motion, driving the conventional denoising
techniques to failure. Perhaps, the motion artefact is of more concern when it
is falsely captured as a real pulse signal. In this article, a novel methodology
is proposed leveraging particle filters (PF) for the robust HR measurement
in the presence of motion artefact. The proposed method improves the
measurement accuracy of HR specifically for the cases of physical exercise,
when the subject is severely corrupted by motion artefacts. Proposed approach
yields better results in terms of estimation of HR on benchmark datasets such
as UBFC-rPPG and PURE. Moreover, the proposed method is a stand-alone
technique, and can be easily associated with the existing algorithms.
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1 Introduction

It is evident from the epidemiological studies that exercise boost the immune system 
and has great benefits in cardiovascular system. At the same time it becomes hazardous 
and leads to morbidity if not monitored properly. Heart rate (HR) monitoring is an 
important phenomena in rehabilitation centres and for a person performing intensive 
exercise (Nauman et al., 2011). Present market is flooded with numerous devices to 
fulfill the purpose. Available devices can be worn at different body parts such as chest,
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abdomen and wrist. Wearable devices need to snugly fitted to the body part, so as to get
the accurate measurements.This exhibits resistance to the person exercising. Compared
to all other devices wrist worn devices may imparts little discomfort, but remote
photoplethysmography (rPPG) techniques shows its superiority needing no contact at all.
The basic phenomena of rPPG is that, the subtle variation in reflection of light through
the skin can be captured by a camera. This subtle change occurs due to change in blood
volume underneath skin in synchronisation with the heart beat.

Feasibility of the HR extraction from video was first demonstrated by Verkruysse
et al. (2008). Since then many advancements have been done limited to strict movements
and controlled environmental conditions. Large body movements may cause some loss
of information in tracking of subjects face which may hampers the measurement of HR
due to motion contamination. The motion artefact (MA) generally arises due to natural
movements of subjects face while monitoring through camera. In addition, for real-time
measurement, the subject are allowed to freely operate daily routine while monitoring
of HR. Thus if the HR measurement is corrupted with noise due to motion then other
clinical analysis relying on HR measurement would be affected. In recent years several
methods have been proposed to improve the robustness of rPPG in realistic conditions.
Blind source separation (BSS)-based methods such as PCA (Poh et al., 2010a) and ICA
(Poh et al., 2010b) decomposes the signal in linear fashion, and the signal associated
with the heart beat can be extracted. Signal filtering methods such as bandpass filtering
(Poh et al., 2010a), adaptive filtering (Li et al., 2014) and homomorphic filtering
(Liu et al., 2020) isolates the pulse signal from the mixture of noisy signals. Various
denoising methods proposed earlier extracts the PPG signal first from conventional
methods than denoising is performed using filters.

The existing filters for denoising used in the state-of -the-art methods suffers from
several limitations. LMS filters due to dependence on input size parameters suffers from
slow convergence (Li et al., 2014). DWT is also useful in denoising in Das et al.
(2022) but it is always uncertain to choose appropriate subbands, as the frequency
of noise is usually unknown. Bounded Kalman Filter approach used in Prakash and
Tucker (2018) is restricted to be used for Gaussian noise. Due to the low SNR of HR
signals, conventional filtering approaches do not give satisfactory results. Particle filter
(PF) (Gustafsson et al., 2002) is suitable for HR estimation due to its ability to handle
time series data and handle limited variations within a small range. PF is a popular
choice in tracking and estimation problems, especially when dealing with nonlinear and
non-Gaussian systems. It work by representing the underlying probability distribution of
the system with a set of randomly generated particles and then updating the particles
based on the observed data. This allows PFs to accurately track and estimate the HR in
real-time, even in the presence of measurement noise and other uncertainties.

In this paper, a new framework particle filter-based heart rate estimation (PAHRE)
is proposed. The proposed model utilises the PF to estimate the HR under the influence
of strong motion.

The contribution of the proposed method are as follows:

• A novel method is proposed for estimation of HR from signal contaminated with
wide variety of MAs specifically in the case of physical exercise.

• The proposed method utilises the Bayesian approach to rectify false HR estimates.
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• The method uses the signal acquired by tracking nose movement to update the
weight of particles in a PF, which helps to reduce the impact of measurement
noise caused by MAs.

This article is structured as follows. Previous works related to the MA removal is
discussed in Section 2. The design of motion robust HR estimation method using PF
is presented in Section 3. Experimental results are discussed in Section 4. Finally
discussion on work is presented in Section 5 followed by conclusion in Section 6.

2 Previous works done for MA removal from rPPG signals

Traditional HR estimation using PPG signals use BSS methods. In these demixing of
signal is done without any prior knowledge of mixing criteria. These methods use
PCA and ICA for separating signals. However they have assumed the signals to be
statistically independent and non-Gaussian. The limitation of these approach is the
requirement of long duration signals. Poh et al. (2010a) uses traditional Viola Jones
algorithm for face detection. After averaging all the channels of R, G and B independent
component analysis (ICA) is used to decompose the signal into various frequency
components and finally the component with highest frequency is selected as HR. Results
showcased by the above methods gives more accurate HR estimation than using Green
channel alone as proposed by Verkruysse et al. (2008). But the decomposed signal is
highly affected due to motion.

Lewandowska et al. (2011) employs principal component analysis (PCA), resulting
in much faster detection of HR. However, the subject is constrained to be in the
motionless state.

To measure the HR in a non-contact manner, facial region such as forehead and
cheeks, called as ROI needs to be tracked. Eventually, the rPPG signals are obtained
by applying different filters to the average pixels values of this ROIs. But in real life
case, the significant natural movements of face makes it difficult to get the correct
HR measurement from rPPG signal. For such cases motion robust methods designed
to counters the disruption caused due to motion, posses a significant reason to study.
Model-based methods like CHROM and POS were introduced by De Haan and Jeanne
(2013) and Wang et al. (2016). These methods utilises the optical properties of skin
and assumes standardised skin-tone. The RGB is divided into three components, which
makes the model more robust to motion.

For tracking the face, we need to first detect the face of a subject, which is majorly
done by Viola-Jones face detector in all the state-of-the-art methods (Asthana et al.,
2013; Fiaz et al., 2019; Lam and Kuno, 2015). Once the face is detected, the most
commonly used object tracking method such as Kanade-Lucas-Tomasi (KLT) (Bourel
et al., 2000) is used to track the desired face region. KLT is based on optical flow of
good features between two subsequent frames, results in the fast face tracking. However
the KLT fails to track the object when there is a large motion and also when the
face is partially occluded. To improve this a discriminative correlation filtering (DCF)
(Xu et al., 2019) and deep trackerFiaz et al. (2019) is proposed which provides better
accuracy at the cost of computational overhead.

Loosing a track of facial region is highly possible for large facial movements.
Researchers have developed many robust tracking mechanism. Li et al. (2014)
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incorporated normalised least mean square (NLMS) adaptive filter to counter the effect
of slight movements in the subjects’s face. Galli et al. (2017) uses the landmark position
of the face, then this landmark is tracked. PFLD method is proposed to track landmark
position, but in condition of large facial movement and occlusion, even this method
failed. Kumar et al. (2015) utilises signals from different regions of skin. Each region
has given different weights for HR estimation. Prakash and Tucker (2018) used a
bounded Kalman filter to estimate and track motion signals. To handle the blurring effect
occured due to uncontrolled head movements, blur identification and removal is done
in each frame, but that posses some limitations too.

Figure 1 Spectral analysis of rPPG signals with and without MA, (a) rPPG without motion
(b) periodogram of rPPG without motion (c) rPPG with motion (d) periodogram of
rPPG with motion (see online version for colours)

(a) (b)

(c) (d)

Tremendous performance growth of deep learning techniques in all areas, intrigued
researchers to use those techniques for rPPG also. Researchers have started using deep
learning techniques in rPPG to get the more robust measurements (Qiu et al., 2018; Niu
et al., 2019; Lokendra and Puneet, 2022; Spetlik et al., 2018; Yu et al., 2020). Deephys
(Chen and McDuff, 2018) is the intrusion of deep learning for HR measurement. This
is the first end-to-end method for HR estimation using convolutional neural networks.
Attention mechanism which takes the motion features as input guides the model for
correct HR measurement. Niu et al. (2018) uses the spatiotemporal representation of
input image to transform image into different representation, more informative and
learnable by CNN network to detect HR. However, the above methods do not perform
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well under unconstrained scenarios (condition when the person is engaged in physical
activity).

Figure 2 Flow diagram of Monte Carlo simulation

3 Methodology

The proposed method PAHRE detects the HR using two signals, one from cheeks and
another from motion signal of nose movements. The two signals are independently
extracted from the captured facial video. PAHRE consists of three important modules:

3.1 ROI detection and tracking

ROI detection is done using classical face detection algorithm, openCV Haar classifier
based on Viola Jones algorithm. The height and width of the face is fixed in the ratio
of 60:40. After face detection a region is curated consisting of skin region between eyes
and mouth. Exclusion of eyes and mouth is done to get the ROI free from any natural
movements such as blink or lip movements. Moreover, the eyes and mouth region has
no significant contribution to rppg signal, hence its absence does not results in a loss.
This patching strategy reduces the number of pixels to be processed which drastically
reduces the computational complexity while enhancing the SNR. ROI is tracked using
famous KLT algorithm (Bourel et al., 2000). RGB signals from the selected ROI is
averaged and used for further processing.
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Once the ROI is detected in each frame, mean value of all the pixels, belongs to each
channel is calculated. For noisy rPPG signal, CHROM method (De Haan and Jeanne,
2013) is implemented by projection of R, G, B channels in different subspace as follows:

Xn = 3E [Rn]−2E [Gn] (1)

Yn = 1.5E [Rn] + E [Gn]−1.5E [Bn] (2)

where E [.] denotes the mean operator and n = 1, 2, 3, ..., represents frame numbers;
Xn and Yn represent two orthogonal signals. The original chrominance signal, denoted
as Cn is the subtraction of two orthogonal signals and illustrated as follows:

Cn = Xn−Yn (3)

For further reduction of noise, a finite impulse response (FIR) bandpass filter (BPF)
with hamming window is applied on the original signal Cn. The clinical measurement
range of HR lies between 30 to 240 beats per minute. Therefore the cutoff frequencies
of the band pass filter is set to be 0.50 Hz and 4.04 Hz.

Secondly, the trajectory of nose provides motion signal. To select the nose rectangle
we have used Viola Jones nose detector. In the first frame, central point of the nose
m1 is calculated, and Euclidean distance is calculated between the central points
of first frame and subsequent frames m1 = ∆m1 +∆m2 +∆m3 + ...+∆mn. These
Euclidean distance values formed the motion signal.

The waveform of motion signal and trajectory of nose is different but their frequency
spectrum will be same. We have calculated periodogram of the PPG signal and motion
signal obtained from tracking nose. As we can see from Figure 1 the peaks due to
motion is overlapping with the actual HR peaks, hence the periodogram is unable
to provide distinction between real pulse and fake pulse. This fails the traditional
methods, which depends on the spectral analysis of signal for larger motion associated
with physical training. For accurate tracking of pulse signal in the presence of large
uncontrolled motion we need a robust tracking system discussed further.

3.2 Stage-2 PF

Let us represent the HR value at time t by ith particle xt
i. the range of x is 60–240 BPM,

which represents a normal HR of a healthy person during exercise. The PF algorithm is
explained in following steps:

3.2.1 Monte Carlo filter

The Monte Carlo Simulation process (Gustafsson et al., 2002) is designed to deal with
non-Gaussian and nonlinear noises. Any nonlinear and non-Gaussian time series data
can be achieved using the following state space model

pk = f(pk−1, vk)

qk = h(pk, wk) (4)
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where f(.) and h(.) are two functions named as state transition and state observation
respectively. vk and wk are called system noise and observation noise, respectively. The
state estimation function can be converted to probability density function represented
as shown in equation. The main challenge with state estimation problem is that we
need to estimate the p using observations of q (Q1, Q2, Q3, ..., Qk). The state estimation
problem is classified into three cases, based on observation states. The stages are as
follows:

3.2.1.1 Initialisation

Initial distribution of the particles is determined. In most of the database, during inital
few seconds the HR values are relatively low. This distribution is uniform and lies
between range 60 bpm and 170 bpm. The algorithm for generating particles is described
as follows:

1 We generate particles X0 = x0(i) where i = 1, ..., N from p(x0).

2 Calculate the weights of particle using

W (t)i = p(yt|xi
t|t−1) (5)

where t = 1, ..., T .

3 Normalise weight

Wn(t) = W (t)i
/ N∑

i=1

W (t)i (6)

3.2.1.2 Prediction

Probability density function is computed for the current time using all the past
observations using equation

P(pk|Q1:k−1) =

∫
P(pk|pk−1)(P(pk−1|Q1:k−1))dpk−1

HR aware prediction model is designed using the dataset of UBFC-rPPG values. A
histogram of the dataset is plotted, as shown in Figure 3, it is quite evident from the
figure that distribution forms a bell shaped curve and the change in bpm observed in
the window of 5 s. As we can see from figure that the range of bpm is mostly ±4 bpm.
these observations proves that the PF designed can be used to track any change occurs
in the 4 s window. The bell shaped spread of the HR values enables the PF to track
instantaneous HR values and also HR values that falls beyond the range also. Better
spread of the particles benefits the calculation of correct HR in few steps, even when
the previous measurement is largely deviated from true value.

3.2.1.3 Smoothning/weight calculation

To calculate the weights of the particle we use periodgram of rPPG signal obtained
from CHROM and periodgram of motion signal derived using trajectory of nose. The
unwanted peaks obtained in the periodgram of PPG signal due to motion can be
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suppressed by using bandpass filtering. The frequency range for bandpass filtering can
be obtained by motion signal. But this process is unable to completely eliminate the
MA in cases, where the frequency of noise due to motion overlaps the HR frequency.
Weight is calculated using equation:

W (t)i = p(yt|xi
t|t−1) (7)

Weight normalisation is done to ensure that the sum of all weights sums up to 1.

Figure 3 HR differences of UBFC-rPPG dataset (see online version for colours)

3.2.1.4 HR estimation and update

The PF output and the periodgram are used to determine the most likely BPM in this
stage. The estimation of the BPM’s likelihood of being the actual HR is made by

p(β) =
∑

xt|t−1=β

wt(xt|t−1) (8)

βmax is the maximum point and is likely to be the value of HR. In cases, when difference
of the estimated HR through PF and the peak position of the periodgram of true HR,
i.e., xn is less than threshold ‘t’, then xn is considered to be the HR value.

4 Experimental setup

The proposed algorithm is tested on two publicly available databases PURE (Stricker
et al., 2014) and UBFC-rPPG (Macwan et al., 2019) dataset. The databases are chosen
such that the criteria of application of the proposed method is feasible. In order to
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test the proposed algorithm the database must contain ground truth signal. In case of
unavailability of ground truth signal, first five seconds PPG signal can be considered
as ground truth. As this initial phase of data acquisition does not involve any voluntary
movements of a subject.

4.1 Datasets used

• PURE (Stricker et al., 2014): A benchmark video dataset, recruited ten healthy
subjects to acquire total 59 videos. The subjects are allowed to perform various
types of head motions, they are categorised as

1 no movement

2 talking

3 slow speed movement in parallel to the camera

4 fast speed parallel to the camera

5 small rotation

6 medium rotation.

The videos were captured with a camera by at a frame rate of 30 Hz and
resolution of 640 × 480 pixels. Ground truth data is collected using pulse
oximeter having a sampling rate of 60 Hz.

• UBFC-rPPG (Macwan et al., 2019): This dataset was created using a simple
low-cost camera with 30 fps and a resolution of 640 × 480 in eight-bit RGB
format. Ground truth is collected using pulse oximeter consists of PPG waveforms
as well as PPG HRs. All the recordings are done in indoor environment with
changing amount of sunlight.

Table 1 Comparision result of proposed method with state-of-the-art method on PURE dataset

MAE RMSE
Steady Talking ST FT SR MR Steady Talking ST FT SR MR

CHROM (De Haan 1.17 4.35 1.17 3.78 2.66 7.69 2.8 8.5 2.2 5.7 5.3 11.09
and Jeanne, 2013)
Our CHROM 1.16 4.03 0.8 2.67 2.5 3.5 2.8 7.5 1.2 1.9 1.01 9.2
PBV (De Haan 1.20 3.4 0.6 1.4 0.6 1.18 3.03 7.2 1.2 2.73 0.89 2.11
and Van Leest, 2014)
Our PBV 1.15 3.6 0.6 0.9 0.6 0.8 2.9 7.9 1.14 1.5 0.85 0.8
POS (Wang et al., 2016) 1.17 2.02 0.7 2.5 0.9 2.29 2.8 4.5 1.31 4.16 1.69 5.28
Our POS 1.14 2.5 0.6 2.02 0.8 1.32 2.7 4.8 1.11 1.56 1.03 3.70
Phys-Net (Yu et al., 1.76 6.2 0.9 1.5 2.5 3.2 3.89 10.7 1.9 3.09 4.9 6.4
2019)
Our Phys-Net 1.25 5.8 0.8 0.6 1.9 1.9 3.0 10.2 1.16 5.32 2.2 3.67

Notes: ST = slow translation, FT = fast translation, SR = small rotation,
and MR = medium rotation.
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Table 2 Performance analysis of 10 subjects from UBFC-rPPG database

Subject 1 3 4 5 8 9 10

MAE 3.16 1.4 0.23 2.7 2.79 0.2 0.82
RMSE 22.12 9.8 1.61 18.9 19.53 1.4 5.77

Table 3 Comparision result of proposed method with state-of-the-art method on UBFC-rPPG
dataset

MAE RMSE

CHROM (De Haan and Jeanne, 2013) 3.53 6.5
Ours-CHROM 3.2 4.3
PBV (De Haan and Van Leest, 2014) 4.6 9.39
Ours-PBV 3.9 7.4
POS (Wang et al., 2016) 3.36 6.50
Ours-POS 2.9 5.4
PhysNet (Yu et al., 2019) 0.73 1.87
Ours-PhysNet 0.6 1.56

4.2 Evaluation metrics

The commonly used evaluation metrics such as mean absolute error (MAE) and root
mean square error (RMSE) are used for evaluation of performance of the proposed
method.

1 MAE:

HRmae =
1

n

n∑
i=1

HRi
estimated −HRi

gnd (9)

2 RMSE: RMSE is calculated using formula given in equation (10)

HRrmse =

√√√√ 1

n

n∑
i=1

(HRi
estimated −HRi

gnd)
2 (10)

Lower RMSE values is an indication of strong correlation of data.

5 Results

The proposed algorithm is basically performing a denoising process, which can be
embedded with any core rPPG signal extraction algorithm such as CHROM, PBV,
POS and also with deep learning-based rPPG extraction methods like PhysNet. The
comparison is done between original rPPG signal obtained from core algorithms and
denoised rPPG obtained after embedding proposed algorithm. The experiment are
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conducted on two datasets i.e, PURE and UBFC-rPPG. PURE dataset provides a
challenging environment by variations in motion, which helps to check the efficiency of
the proposed method for motion robustness.

Table 4 Performance analysis of ten subjects from PURE database

Subject Case MAE RMSE

1 Steady 4.207218 13.30439
Talking 3.763329 11.90069
ST 0.543268 1.717965
FT 1.791255 5.664447
SR 2.325384 7.353509
MR 2.62114 8.288772

2 Steady 3.550839 11.22874
Talking 0.596635 1.886726
ST 1.861992 5.888137
FT 2.019778 6.387098
SR 0.784785 2.481707
MR 3.955538 12.50851

3 Steady 0.084094 0.26593
Talking 0.141372 0.447057
ST 0.425972 1.347042
FT 0.497418 1.572974
SR 0.438704 1.387303
MR 3.921608 12.40121

4 Steady 1.268748 4.012133
Talking 0.734054 2.321283
ST 2.083063 6.587223
FT 1.442243 4.560771
SR 1.989507 6.291373
MR 1.05473 3.335348

5 Steady 4.555777 14.40663
Talking 4.011605 12.68581
ST 0.278721 0.881393
FT 1.808068 5.717614
SR 1.201539 3.7996
MR 4.361422 13.79203

6 Steady 1.745322 5.519193
ST 6.031565 19.07348
FT 1.525263 4.823304
SR 3.26859 10.33619
MR 0.058266 0.184254

7 Steady 1.295781 4.097621
Talking 0.756145 2.39114
ST 0.508196 1.607056
FT 0.761427 2.407845
SR 3.906207 12.35251
MR 1.868391 5.90837
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Table 4 Performance analysis of ten subjects from PURE database (continued)

Subject Case MAE RMSE

8 Steady 2.912074 9.208788
Talking 2.251683 7.120448
ST 0.894561 2.828852
FT 5.049209 15.967
SR 0.212805 0.67295
MR 0.333977 1.056129

9 Steady 4.99497 15.79
Talking 3.676976 11.62762
ST 0.410569 1.298333
FT 0.06386 0.201944
SR 0.504851 1.59648
MR 0.875864 2.769725

10 Steady 4.380654 13.85284
Talking 5.721565 18.09318
ST 3.443686 10.88989
FT 2.782313 8.798446
SR 3.478123 10.99879
MR 0.631111 1.995748

Figure 4 MAE of each samples of PURE database using proposed tracking algorithm
integrated with CHROM (see online version for colours)

In Table 1, comparison is done for PURE dataset, the result shows that there is a
significant improvement in MAE and RMSE then the original method, when PF is
applied for tracking. Specifically for the case, fast translation and rotation for angle of 35
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degree there is a decrease in MAE and RMSE by large margin. The proposed algorithm
exhibit an average improvement of 29.3% improvement in MAE over CHROM, 8.07%
improvement in MAE over PBV, 2.08% improvement in MAE over POS and 23.7 %
improvement in MAE over Phys-Net.

Figure 5 MAE of each subject of UBFC-rPPG database using proposed tracking algorithm
integrated with CHROM (see online version for colours)

Figure 6 Predicted HR of subject-23 of UBFC-rPPG dataset compared with ground truth
(see online version for colours)
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Figure 7 Comparision of ground truth with state-of-the-art methods and our method
(see online version for colours)

Table 3 depicts the performance of proposed method in UBFC-rPPG dataset. It can be
observed that the the MAE improvement of 9.3%, 15.2%, 13.6% and 17.78% is gained
on CHROM, PBV, POS and Phys-Net respectively.

Overall from the results of both the datasets, it can be seen that the improvements
are more in motion scenarios rather than stationary conditions. This is obvious because
the algorithm is designed to work on fast motions.

Figure 7 shows the comparison of ground truth with core rPPG algorithm and
proposed algorithm. It can be seen from the waveform that the original methods exhibits
sudden high peaks. These anomaly in waveform is due to the abrupt motions. Whereas,
after embedding PF method to the original method, the rPPG signal follows the ground
truth signal with marginal error. These is in line with the hypotheses that the motion
robustness of the core rPPG algorithms would improve with tracking using PF.

6 Discussion

It can be inferred from results, that the proposed model embedded with the core HR
estimation algorithms provides robustness against motion. In this section we will analyse
the key components behind improved robustness.
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The PF-based HR estimation performs best for wide angle motions occurs during
physical excercise. In this paper we aimed to build a model with robustness towards
motion but without any compromise in performance. In a physical training process,
facial movements intends to occur, which interrupts HR measurements. In such cases,
landmarks which needs to be tracked may be lost, and thus the conventional method
fails. In the proposed method we have used the PF which allows the HR estimates to
quickly converge back to the original while tracking.

We have also evaluated our proposed method on yen subjects from UBFC-rPPG
dataset as shown in Table 5 by varying the range of particles. It can be observed that
the subject-9, the MAE is minimum as the particles is tracking the subject HR very
efficiently. Whereas, for subject-1 the MAE is large because there is no large motion
occur in the subject.

The performance analysis of the proposed algorithm for even more challenging
dataset, i.e., PURE database which offers wide variety of motion. The reason behind
choosing this database is the close similarity of motion occurred when a person is
performing any kind of exercise and the participants motion in the dataset. From the
results shown in Table 4 it can be depicted that the proposed method performs better
in case of large motions because the PF reacted quickly to unforeseen changes in HR,
which ultimately reduced a delay issue.

7 Conclusions

Our approach addresses the persistent challenge of MAs in remote HR measurement by
dynamically tracking the rPPG signal trajectory rather than merely filtering out motion
noise. Leveraging PFs, we ensure that the estimated rPPG signal closely follows the
ground truth, preserving signal integrity even under extensive motion. A key advantage
of this method is its independence from specific rPPG extraction techniques, allowing
it to be seamlessly integrated with existing methods to significantly enhance accuracy
and robustness. This tracking-based framework represents a versatile and effective
advancement in non-contact physiological monitoring.
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