
 
International Journal of Reasoning-based Intelligent
Systems
 
ISSN online: 1755-0564 - ISSN print: 1755-0556
https://www.inderscience.com/ijris

 
E-commerce cloud computing data migration method based on
improved slime mould algorithm
 
Yujie Li, Ning Liu, Liming Dang, Yong Huang
 
DOI: 10.1504/IJRIS.2025.10071385
 
Article History:
Received: 30 March 2025
Last revised: 22 April 2025
Accepted: 23 April 2025
Published online: 11 June 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijris
https://dx.doi.org/10.1504/IJRIS.2025.10071385
http://www.tcpdf.org


Int. J. Reasoning-based Intelligent Systems, Vol. 17, No. 7, 2025 1 

Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under the  
CC BY license. (http://creativecommons.org/licenses/by/4.0/) 

E-commerce cloud computing data migration 
method based on improved slime mould algorithm 

Yujie Li, Ning Liu and Liming Dang 
Economics and Management School, 
Nanchang Institute of Science and Technology, 
NanChang 330108, China 
Email: liyujie@stu.ncpu.edu.cn 
Email: 18720937405@163.com 
Email: 18770051539@163.com 

Yong Huang* 
Business School, 
Jiangxi Modern Polytechnic College, 
NanChang 330000, China 
Email: yong08250017@163.com 
*Corresponding author 

Abstract: The inherent dynamism of e-commerce cloud environments, characterised 
by massive data volumes and high-concurrency demands, poses significant challenges 
to traditional data migration approaches. For this reason, this paper firstly improves the 
sticky mushroom algorithm (SMA) (BOSMA) by replacing the anisotropy operator of 
the SMA with a balanced optimisation operator, and adding a stochastic difference 
variance operator to the SMA to avoid premature convergence. To reduce the migration 
energy consumption, the e-commerce cloud computing data migration task dependency 
graph is designed, and the objective function to lower the energy consumption during 
migration is constructed. The BOSMA is adopted to discover the finest solution to the 
target function to acquire the migration of the task with the largest reduction in energy 
consumption. The simulation outcome implies that the BOSMA method can quickly 
search for solutions with less migration energy consumption. 
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1 Introduction 

At a time when the wave of digitisation is sweeping the 
world, the e-commerce industry is booming and generating 
huge amounts of data. Cloud computing technology, 
leveraging its powerful storage and computing capacity, 
serves as the backbone for e-commerce businesses in 
handling and managing data (Almarabeh and Majdalawi, 
2019). The efficiency and quality of data migration, as an 
important aspect of cloud computing applications, directly 
affects the continuity and stability of e-commerce business 
(Shakya, 2019). Efficient, secure, and affordable data 
migration in complex cloud environments has become a key 
concern for researchers and practitioners alike. E-commerce 
cloud computing data migration is a complex optimisation 
problem involving multiple objectives and constraints such 
as migration time, cost, quality of service, and resource 
utilisation (Andrikopoulos et al., 2013). When addressing 
such problems, conventional mathematical optimisation 
approaches frequently encounter significant challenges, 
including prohibitive computational complexity and the 
inherent difficulty in obtaining globally optimal solutions 
(Song et al., 2019). Heuristic optimisation algorithms, 
especially population intelligence algorithms, show 
significant advantages in solving cloud computing data 
migration problems by virtue of their powerful global 
search capability and robustness (Huang and Abnoosian, 
2020). Hence, optimising e-commerce cloud data migration 
using heuristic algorithms remains a critical and valuable 
research challenge. 

The traditional cloud data transfer approaches include 
stop-and-copy, iterative migration, and on-demand 
replication migration (Gholami et al., 2016). Li et al. (2019) 
proposed an overhead-sensitive cloud data migration 
method based on the overhead-sensitive cloud data 
migration method, but the method is not applicable to  
real-time migration. Shekhar and Sharvani (2021) 
conducted a systematic evaluation of multi-tenant data 
models to address real-time database migration in  
multi-tenant cloud environments. Their proposed iterative 
migration technique achieved minimal downtime while 
maintaining optimal performance during live migration of 
multi-tenant databases. Teli et al. (2016) find the target node 
based on the resource access and the size of the data to be 
migrated, the query operation during migration is done at 
the source node, and the update operation is done at both the 
source and destination nodes, but the migration overhead is 
high. Fahmideh et al. (2019) implemented a priority-based 
migration strategy that executes higher-priority tasks  
pre-migration, with dynamic priority adjustment during and 
post-migration. However, the approach demonstrated 
performance limitations under high-load conditions. 

Traditional methods often fail to cope with dynamically 
changing cloud computing environments, resulting in 
migration solutions that are locally optimal but overall 
ineffective. Heuristic optimisation algorithms are able to 
search extensively in the solution space to avoid falling into 
locally optimal solutions, thus finding a better data 
migration scheme. Zhao et al. (2023) offered an enhanced 

multi-objective virtual machine (VM) allocation strategy 
using ant colony optimisation (ACO) algorithm, which 
effectively solves issues of physical host load balancing and 
energy and power consumption, but the algorithm 
converges slowly. Chawla et al. (2020) improved processes 
such as mutation and mating in genetic algorithm (GA) to 
increase the probability of inheriting high quality genes to 
the offspring and utilised the improved GA to achieve cloud 
computing data migration with improved migration 
efficiency. Singh and Dhir (2019) used GA-optimised 
neural networks to predict the load on servers and thus 
allocate a small number of VMs to achieve the goal of 
energy saving. However, the diversity of resources in cloud 
data centres is ignored. Kak et al. (2024) proposed a VM 
placement and migration method based on sparrow search 
algorithm (SSA) but with low utilisation of physical servers. 
Durairaj and Sridhar (2024) optimised data migration 
strategy for cloud computing by using mayfly algorithm 
(MA) but without considering the communication between 
VMs and migration cost. 

In contrast to other heuristic optimisation techniques, 
the slimy mushroom algorithm (SMA) has a strong global 
search capability by simulating the positive and negative 
feedback mechanism of slimy mushrooms, which can 
adeptly manages the trade-off between global searching and 
local refining, ensuring it doesn’t settle for a suboptimal 
solution. Guo et al. (2017) achieved efficient deployment of 
VMs in cloud environments based on the SMA approach, 
which improved application performance also developed an 
energy-efficient management method for cloud data centres, 
but neglected the impact of the optimal solution on future 
node loads. Kumar and Rajesh (2023) introduced the SMA 
algorithm and the idea of simulated annealing to propose a 
heuristic dynamic migration strategy for VMs. The 
algorithm optimises the optimal solution for each cycle but 
neglects the cost spend of migration. 

Current research reveals that conventional cloud data 
migration approaches are inadequate for addressing the 
dynamic, heterogeneous complexities of e-commerce cloud 
environments, resulting in a significant increase in 
migration energy consumption. To address the above issues, 
SMA is firstly improved based on the balanced optimiser 
(BOSMA) and stochastic difference variance operator to 
address the problems such as the slow convergence speed of 
SMA. In place of the anisotropy operator in SMA, the 
search operator from BO is used. Use the historical optimal 
position of the population in the mining process of the SMA 
to guarantee the approach’s convergence to the best possible 
solution. The introduction of a stochastic difference 
variance operator enhances the algorithm’s exploration 
capability, reducing the probability of local optima 
entrapment and mitigating premature convergence issues. 
For the goal of reducing the migration energy consumption, 
the e-commerce cloud computing data migration task 
dependency graph is designed. And a mathematical model 
with the objective function of minimising the migration 
energy consumption is constructed. Finally, the BOSMA 
algorithm solves the objective function by migrating all the 
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tasks that can be migrated to the cloud as the initial solution, 
and then calculates the energy savings of the migratable 
tasks running on the mobile terminal one by one, and 
migrates the tasks with the largest savings to the mobile 
terminal in order. For each migrated task, the algorithm 
updates the energy savings of each task based on the 
communication time between the tasks. Simulation results 
indicate that the proposed method significantly reduces 
migration energy consumption and migration time, 
providing an effective way for e-commerce enterprises to 
realise fast and reliable data migration in cloud computing 
environment. 

2 Relevant technologies 

2.1 Overview of cloud computing related knowledge 

Cloud computing refers to a paradigm that combines  
large-scale, economical hardware devices through 
virtualisation technologies to create an extensive resource 
pool. This architecture abstracts underlying infrastructure 
details, allowing users to provision tailored resources and 
services based on diverse needs (Diaby and Rad, 2017). The 
architecture of cloud computing is shown in Figure 1, which 
includes software service layer, platform layer, 
infrastructure layer and hardware layer (Jawed and Sajid, 
2022). 

 Software layer: similar to consumers shopping in the 
supermarket, only need to choose the preferred product, 
for the product of the pre-late issues do not need to 
consider, these tasks are responsible for the completion 
of the cloud service provider. 

 Platform layer: the platform layer typically includes 
services such as operating systems, virtualisation 
technologies, storage, and platform services such as 
development, testing, deployment, monitoring, and 
management for applications. 

 Infrastructure layer: the cloud computing infrastructure 
layer provides a reliable base environment for 
applications and services, enabling developers and 
users to rapidly deploy and manage applications and 
services. 

 Hardware layer: these hardware components are 
integrated to form a large-scale distributed computing 
system, delivering cloud services characterised by high 
availability, scalability, flexibility, and robust security. 

2.2 Slime mould algorithm 

SMA represents the problem as a maze in which slime 
moulds are placed, and then observes the paths formed by 
the slime moulds as they search for food; these paths are 
used to optimise the solution of the problem (Son and Khoi, 
2024). In practice, SMA can be used to solve optimisation 
problems such as the traveller’s problem, data migration, 
etc. Compared with classical algorithms such as GA, PSO, 

ACO, etc., SMA has the advantage of being able to show 
excellent performance in dealing with large-scale problems, 
and it has strong parallelism. The approach encompasses 
three fundamental steps, as detailed below. 

1 Proximity to food. The behaviour of slime moulds was 
modelled as a mathematical formula to simulate the 
contraction pattern according to equation (1). 

 ( ) ( ) ( ) ,
( 1)

( ),
b b A B

c

X t v W X t X t r p

v
X t

X t r p

    
  

 
 (1) 

where t is the current iteration number, Xb(t) is the 
current optimal individual position, there are two 
random individual positions, one is XA(t) and the other 
is XB(t), the mass of the slime mould is W, which 
represents the fitness weight, the control parameters are 
vb and vc, r is an arbitrary number between 0 and 1, and 
the control variable p and the parameter a are implied in 
equation (2) and equation (3). 

tanh ( )p S i DF   (2) 

max

1
t

a arctanh
t

      
  

 (3) 

The current individual fitness is chosen to represent 
S(i), i = 1, 2, …, n, the best fitness value is DF, and the 
maximum amount of epochs is tmax. The updating 
strategy for W is shown below. 

( )
1 log 1 ,  1

( ( ))
( )

1 log 1 ,  0

bf S i
r if i

bf wf
W smell i

bf S i
r if i

bf wf

          
        

 (4) 

where smell(i) = sort(S), bf is the best iterative fitness 
value. 

2 Surrounding food. Slime moulds update their own state 
and adjust their own movement direction and speed to 
avoid obstacles and optimise their paths, and ultimately 
achieve the encirclement of food. 

 
( ) ,

( 1) ( ) ( ) ( ) ,

( ),
b b A B

c

rand UB LB LB rand z

X t X t ν W X t X t r p

ν X t r p

   
      
  

 (5) 

where UB and LB represent the upper and lower 
bounds of the seek region, respectively, rand is the 
number of randomisers, and z is a custom parameter. 

3 Acquisition of food. The organism employs chemical 
signalling to detect food presence in its vicinity, 
dynamically adjusting both locomotion direction and 
velocity in response to chemical concentration 
gradients to navigate toward the food source. 
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Figure 1 Cloud computing architecture (see online version  
for colours) 
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Figure 2 SMA search process (see online version for colours) 
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3 Optimisation of slime mould algorithm based 
on balance optimiser 

Intending to the issues of sluggish convergence rate, low 
initial population diversity, and poor global optimisation of 
standard SMA, this paper uses the balanced optimiser (BO) 
(Jia and Peng, 2021) and stochastic differential variational 
operator (Kharazmi and Zayernouri, 2019) to improve the 
conventional SMA (BOSMA) to equilibrate the algorithm’s 
ability to explore and exploit effectively, and increase the 
probability of the approach to seek out the best solution 
within the entire solution space, the flow of the approach is 
shown in Figure 3. First, the search operator from BO takes 
the place of SMA’s anisotropy operator. Then, in the 
exploration phase of the SMA, the individual historical 
optimum is used instead of the population historical 
optimum for updating, and during the SMA’s exploitation 
stage, the population’s historical best solution serves as a 
means to ensure the algorithm converges to the whole 
optimal solution. Finally, a stochastic differential variance 
operator is augmented with this element to improve the 
chances of leaping out of the local optimum and steer clear 
of premature convergence. 

BO represents a fresh approach to optimisation, 
influenced through the physical process of preserving mass 

balance in a control volume. The mass balance equations 
depict the physical occurrences of mass entering, leaving, 
and being generated within a defined volume. The updated 
formulation of BO is as follows. 

  (1 )eq eq
G

C C C C F F
λV

      (6) 

where C represents the present solution, Ceq is chosen at 
random from the balanced pool of solutions, F serves as a 
value to equilibrate partial and entire seek efforts, G serves 
as a measure of quality generation, thereby amplifying the 
algorithm’s local search effectiveness,  is a vector of 
arbitrary numbers between 0 and 1, and V = 1 represents the 
standard volume unit. F is adjusted dynamically based on 
the iteration count, as outlined below. 

 
1 ( 0.5) 1λtF a sign r e      (7) 

where a1 is the fixed weight value assigned to the global 
search component. As a1 increases, the exploration 
capability strengthens while the utilisation ability 
diminishes, and vice versa. sign() is the sign operation. r 
and  are arrays filled with stochastic numbers ranging 
between 0 and 1, t is the search time. The mass generation 
rate G is shown below. 

Figure 3 The flow of BOSMA (see online version for colours) 
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 (8) 

where r1 and r2 are random numbers in the range [0, 1] and 
GP stands for a generation probability value of 0.5. 

To enhance seek performance, the easy arbitrary seek 
operator in SMA can be replaced by the BO operator, and 
the formula for updating positions in BOSMA is as follows. 

 
 
 

( ) ( ) ( ) (1 ) /    

( 1) ( ) ( ) ( )    

( ) ( ) ( )    

eq eq

A B

b A B

X t X t X t F G F λV rand z

X t X t vb W X t X t r p

X t vc W X t X t r p

      
      
     

 (9) 
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where Xeq is a randomly selected solution from the 
equilibrium pool, X is the location of the search instance, 
Xb(t) emerges as the peak solution in the equilibrium 
landscape, and z is an empirical value, which usually takes 
the value of 0.6. Equation (9) demonstrates the stochastic 
differential variance operator, which performs an 
anisotropic operation on the dimensions of 4% of the search 
individuals in the population. As iterations accumulate, the 
exploration becomes less extensive. To improve BOSMA’s 
ability to explore and prevent it from getting stuck in local 
optima, a variation operation is performed on 80% of the 
searched individuals. This is designed to diversify the 
algorithm’s problem-solving techniques in the exploration 
phase to better search the solution space of the issue. 

To improve the possibility that BOSMA will leap out of 
the local optimum’s confines, the stochastic differential 
variational operator is added after the update of equation 
(9). The variational operator can be mathematically 
modelled as described below. 

 
( ) ( ( ) )

( 1)
( ) ( ) ( )    A B

X t BF rand UC LB LB L rand q
X t

X t R X t X t rand q

           
 (10) 

where CF serves as an adjustable shrinking coefficient, R 
varies randomly within the range of 0.2 to 1, L stands for a 
matrix composed of instances that are either 0 or 1, and the 
adjustable value of q is set to 0.2. XA and XB represent two 
solutions randomly sampled from the population. CF and L 
are calculated as in equation (11) and equation (12), 
respectively. 

1

max
1

max
t

a t

t

t
CF



    
 

 (11) 

,

1   

0   i j

rand q
L

rand q


  

 (12) 

where N denotes the number of individuals in the population 
and Dim represents the dimensionality of the issue. For the 
goal of preventing inefficient searching, the limits of the 
search agent’s exploration are validated using equation (13) 
after each positional change. 

 
 

, ,

, , ,

,

( ) / 2 ( 1)

( 1) ( ) / 2 ( 1)

( 1)

i j i j

i j i j i j

i j

X t UB X t UB

X t X t LB X t LB

X t others

  
    
 

 (13) 

In this paper, the computational complexity of BOSMA 
algorithm is compared with that of ACO, SSA, MA and 
SMA algorithms, as shown in Table 1, where N is the 
number of populations, n is the problem dimension, and D 
is the problem dimension, and it can be seen through  
Table 1 that BOSMA algorithm has lower computational 
complexity in terms of time complexity and space 
complexity than the other four algorithms. 

 

Table 1 Computational complexity of different heuristic 
optimisation algorithms 

Algorithm Time complexity Space complexity 

ACO O(ND2) O(D2) 

SSA O(DN + N log N) O(D N) 

MA O(D N + N2) O(D N) 

SMA O(D N) O(D N) 

BOSMA O(N) O(N) 

4 Blockchain technology application and 
optimisation algorithm in enterprise supply 
chain management 

4.1 Ecommerce cloud data migration task 
dependency graph design 

For the goal of reducing the migration energy consumption, 
this paper first designs the e-commerce cloud computing 
data migration task dependency graph, and construct a 
mathematical model with the objective function of 
minimising the migration energy consumption, and migrate 
all the tasks that can be migrated to the cloud as the initial 
solution, and then calculate the energy savings of the 
migratable tasks running in the mobile terminal one by one, 
and migrate the tasks with the largest savings to the mobile 
terminal in order. For each migrated task, the algorithm 
updates the energy savings of each task based on the 
communication time between the tasks. Finally, the 
BOSMA algorithm is used to solve the objective function 
and migrate the task that reduces energy consumption the 
most. 

Figure 4 Ecommerce cloud data migration task map (see online 
version for colours) 
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E-commerce cloud computing data migration involves both 
mobile and cloud, the dependency between the tasks that 
will be performed at both ends can be represented by a 
directed acyclic graph as shown in Figure 4. Each node in 
Figure 4 represents a task, and if there is a link from i to j 
between nodes i and j, it means that there is a dependency 
relationship between tasks i, j. Task i is said to be the father 
node of task j. 

As shown in Figure 4, the green node indicates that the 
task can only be executed on the mobile. Except for the 
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green node, all other nodes can be migrated, either to the 
cloud or to the mobile. A white node indicates that the task 
was migrated to the cloud; a blue node indicates that the 
task was completed on mobile. For two tasks with 
dependencies, if both tasks are realised in the cloud, the 
communication time and energy consumption between the 
two tasks are negligible; if two tasks with communication 
dependencies are realised on different ends, the 
communication time and energy consumption between the 
tasks need to be considered. 

4.2 Mathematical model construction for data 
migration in e-commerce cloud computing 

For a task graph with N tasks, which tasks are completed in 
the mobile and which tasks are completed in the cloud, and 
by scheduling the execution order of the tasks at both ends, 
the energy consumption of the mobile can be reduced under 
the constraint that the completion time T of the task graph is 
satisfied. The energy consumption on the mobile side 
consists of the energy used to perform both mobile tasks 
and transmission tasks. Assuming that l = 1 denotes that the 
task is executed on the mobile, l = 0 denotes that the 

character is executed on the cloud, and ( )l
jx t  denotes 

whether task j is executed on the mobile at time t, the 
following equations are in place, where mj denotes whether 
task j is realised on the mobile, and cj denotes whether task j 
is migrated to the cloud for realisation. 

0

1

( )
T

j j

t

m x t


  (14) 

1

1

( )
T

j j

t

c x t


  (15) 

The communication time required for cloud task i to 

transmit data to mobile task j is denoted as .cm
ijτ  Similarly, 

the communication time required for task i on mobile to 

upload data to task j in the cloud is denoted as .cm
ijτ  In 

particular, when i = j or when both i and j are in the cloud or 
mobile, the communication time and energy consumption 
between them is 0. The total communication energy 
consumption caused by the task migration is as follows. 

1 1 1 1

N N N N
mc cm

com T ij R ij

i j i j

E P τ P τ
   

    (16) 

The objective function for minimising mobile energy 

consumption based on the decision variables ( ),l
jx t  l{0, 

1}, i, j, = 1, 2, … N, and t = 1, 2, …, T can be defined as 
follows. 

1
min

N
m

j j com
j

P m Ek


    
 

 (17) 

The objective function established above must satisfy the 
following constraints. 

1 The total time required to complete all tasks does not 

exceed T, i.e., 0

1

0 ( ) .
T

N
t

t x t T


    

2 Each task node j can be executed only on the cloud or 
on the mobile, i.e., mj + cj = 1. 

3 All nodes of the task graph must satisfy the 
predecessor-successor dependency, such that 

mc cm.jk k jk jkθ w τ τ    Then we have equation (18), 

where j < k, t = wj, …, T–jk. 

1 1

0 1 0 1

( ) ( )
jkt θ t θ

l l
k j

l s l s

x s x s
 

   

   (18) 

4 At any moment t, multiple tasks are executed serially 
on the mobile side, such that L = min{t + wj–1, T}, 

there is 
1

0

1

( ) 1
N

j

L

s
jx s


  . 

5 For any task k, before k is executed, it has to wait for 
the completion of the previous task before it can be 
executed, and the completion time of k is the time of 
the completion of the previous task plus the time 
needed for its own completion, as follows. 

1 1

0 1 0 1

( ) ( )l cm mc l
j jk jk k k

l ι l ι

T T

t x t τ τ w t x t
   

        (19) 

6 Constraint on the number of tasks that can only be 
executed on mobile: the number of tasks that can only 
be executed on mobile is n, and the serial numbers of 
such tasks are b1, b2, …, bn, then there are 1

ibm  , 

where i = 1, 2, …, n. 

4.3 Mathematical model solving based on improved 
slime mould algorithm 

With the above constraints satisfied, the BOSMA algorithm 
is used to solve the objective function and migrate to the 
task that reduces energy consumption the most. The 
migration is repeated until the time constraints cannot be 
met. When a task node is migrated, the communication time 
and energy consumption associated with the task node 
change. The total energy consumption on the mobile 
includes the energy used to perform tasks on the mobile and 
the total energy used for communication. When a task node 
is migrated from the mobile to the cloud, the energy used to 
perform the task on the mobile decreases; conversely, when 
a task is migrated from the cloud to the mobile, the energy 
used to perform the task on the mobile increases. 

1 The tent mapping (Nagaraj, 2022) was used to initialise 
the slime mould population as a representative of the 
chaotic mapping, and the resulting chaotic sequences 
were uniformly distributed in [0, 1], so that the slime 
mould population was uniformly distributed in the 
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search space. The mathematical model of the tent 
mapping is as follows. 

 1

, 0

1
, 1

1

k
k

k
k

k

X
X h

h
X

X
h X

h



   
 



 
 (20) 

where k is the number of mapping, k = 1, 2, …, n is the 
value of the kth mapping function; h is the chaos 
parameter, which is a random value between 0 and 1. 
When h = 1/2, tent has the best performance, and the 
resulting chaotic sequence is uniformly distributed in 
the search space. 

2 Using equation (9) to update the position of the 
population, the best individual Xb(t) and two random 
individuals XA(t) and XB(t) are used to guide the search 
direction of the population individuals during the global 
search. 

3 According to the search direction, for the tasks marked 
as “undivided”, the task node that meets the following 
conditions is migrated to the mobile terminal. After this 
node is migrated, the optimal solution calculated by 
BOSMA satisfies the time constraint. Under the 
condition that the constraint is satisfied, the task node 
that saves the most energy consumption on the mobile 
terminal after migration is found. 

4 At the end of the iteration, the individuals of the 
population will gradually approach the current optimal 
solution Xb, which may lead to the stagnation of the 
population search. Therefore, BOSMA introduces a 
random traceless -point variant to promote diversity 
within the population as iterations progress, so as to 
increase the local optimisation at the stagnation stage of 
the search, as shown below. 

 ( ) ' ( )i d b X i
X X t r d k SD     (21) 

  
2 1

1

1

2 1

d
T

i avg i avg
i

XSD X X X X
d





  
   (22) 

where SDx is the population covariance matrix, r is the 
scale factor, d is the dimension, and Xavg is the mean. 
The algorithm will select the best individual from the 
final 2d + 1 individuals generated as follows. 

  
0 2

( 1) arg minb i
i d

X t f X  


 (23) 

5 Migrate the best individuals first and mark the tasks 
that have been migrated from the cloud to the mobile as 
“migrated”. If the selected task nodes increase the total 
energy consumption of the migrated mobile, the 
algorithm process ends. 

5 Experimental results and analyses 

The experiments were done on Cloudsim’s simulation 
platform, which simulates a cloud computing environment 
consisting of multiple e-commerce cloud computing data 
centres and mobile. In the paper, 600 data centres and 50 
mobile sites are created, which are connected to each other 
through a high-speed network with different bandwidths. 
The simulation environment is Win11 64-bit operating 
system, Gen Intel(R) Core (TM) i5-12450H CPU with 2.00 
GHz, 16.0 GB of RAM, and MATLAB R2022b simulation 
software. The maximum number of iterations was set to 
100, the dimension size to 30, and the population size to 30. 
The data used in the experiments are averages of 100 
experiments with the same settings. 

Figure 5 Comparison of convergence of different algorithms for 
solving objective function (see online version  
for colours) 
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The convergence comparison of the suggested BOSMA 
algorithm with the ACO, SSA, MA, and SMA algorithms 
for solving the objective function is shown in Figure 5. 
From Figure 5, it can be clearly seen that both SAM and 
BOSAM accelerate the convergence speed of the original 
optimal solution to a certain extent and improve the solution 
accuracy, among which the optimisation performance of 
SMA based on the BO and the stochastic difference 
variational operator contribute the most to the optimisation 
performance of the SMA, and the use of the stochastic 
difference variational operator to initialise the population 
mainly improves the uniformity of the distribution of the 
individuals in the SMA, so that the probability of the 
optimal solution to be found is increased. The convergence 
curve of BOSMA is at the bottom, which indicates that the 
BOSMA algorithm has higher convergence speed and 
accuracy than the other four algorithms, and also shows that 
the introduction of multiple optimisation strategies is 
effective in improving the optimisation performance of 
SMA. 

To investigate the distribution pattern of optimisation 
results obtained by BOSMA and the competing approaches, 
Figure 6 shows the best fitness gained through performing 
100 independent runs for each of the five algorithms. The 
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outcome indicates that BOSMA is with smaller medians, 
upper and lower quartiles, fewer outliers, and a narrower 
distributional frame than most algorithms. In addition, the 
gaps in the box plots of BOSMA do not exhibit overlapping 
features with the BO and SMA, thus the BOSMA’s median 
can be assessed to be smaller with a 95% confidence level, 
which surpasses other algorithms by a substantial amount. 

Figure 6 Optimal fitness of different algorithms (see online 
version for colours) 

BOSMA SMA ACO MA SSA

0

1

2

3

4

5

 

In addition, the mean (Mean), standard deviation (STD) and 
minimum (Min) metrics are used in this paper to evaluate 
the performance of the algorithms and to compare the 
Friedman average rank (FAR) of the algorithms on different 
functions. Then Wilcoxon rank sum test is used to assess 
whether there is a significant difference between BOSMA 
and the compared algorithms and the results obtained for the 
five algorithms on the CEC2019 function are shown in 
Table 1. The dimensions, search ranges and theoretical 
optimal values of the five functions TF1, TF2, TF3, TF4 
and TF5 in CEC2019 are shown in the literature []. It can be 
seen that BOSMA obtains better average and minimum 
values on TF3, and only worse than SMA on TF1, which 
indicates that BOSMA has stronger mining ability than 
SMA. The mean and STD of BOSMA for the five functions 
are larger than those of other algorithms, indicating that 
BOSMA can find the optimal value of the function and 
quickly obtain a solution with higher accuracy. 

The energy consumption of BOSMA algorithm applied 
to e-commerce cloud computing data migration with four 
migration methods SKGA (Chawla et al., 2020), OGMA 
(Kak et al., 2024), OTSSA (Durairaj and Sridhar, 2024), 
and TSMA (Kumar and Rajesh, 2023) is are compared as 
shown in Figure 7. As the amount of migrated tasks rises, so 
does the total energy consumption of the mobile, because 
fewer tasks can be migrated and more tasks can be 
performed by the mobile. Nevertheless, the BOSMA 
algorithm is able to give lower energy consumption than the 
other four algorithms, indicating that the BOSMA algorithm 
is still feasible and efficient as the number of tasks changes. 

Figure 7 Comparison of migration energy consumption of 
different methods 
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Comparison of migration time of each method for different 
number of tasks is shown in Table 3, when the number of 
migrated tasks is 60, the migration time of BOSMA is 
130.27 ms, which is reduced by 41.15%, 33.06%, 23.5%, 
and 18.71% compared to SKGA, OGMA, OTSSA, and 
TSMA, respectively. SKGA implements cloud computing 
data migration through GA, but the search speed is 
relatively slow because GA is not able to utilise the 
feedback information from the network in time. More 
training time is needed to get more accurate solutions. 
OGMA is the introduction of SSA for cloud migration, but 
SSA falls into a local optimum at the initial stage, which 
affects the global search capability. OTSSA uses MA to 
optimise cloud migration strategies, but the method has 
limited exploration capability in the search space, resulting 
in the inability to jump out of the current local optimal 
region. TSMA implements migration policy optimisation 
based on traditional SMA without improving SMA, which 
leads to long search time for optimal migration direction. 
BOSMA not only accelerates the convergence speed, but 
also increases the probability of jumping out of the local 
optimum by adding the stochastic differential variance 
operator, avoiding premature convergence and improving 
the migration efficiency. 

To further verify the influence of each component in the 
BOSMA model on the model migration efficiency, this 
paper conducts ablation experiments on each component. 
The BOSMA algorithm is replaced with SMA algorithm 
denoted as – SMA, without using any optimisation 
algorithm denoted as – OR, and the complete migration 
method using the improved SAM algorithm is BOSMA. 
The results of the ablation experiments for each module are 
shown in Table 4. The migration efficiency of cloud 
computing data migration optimisation using SMA 
algorithm reaches 88.9%, the migration efficiency without 
applying any optimisation algorithm is only 81.2%, and 
BOSMA which incorporates all the components achieves 
the best migration efficiency. 
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Table 2 Comparison of migration times for various methods (ms) 

Algorithm Norm TF1 TF2 TF3 TF4 TF5 FAR Rank 

Mean 1.3682 3.6864 1.0408 1.6386 9.0106 1.94 1 

STD 0.1248 1.0170 0.0274 0.3698 9.9786 2.75 3 

BOSMA 

Min 1.0000 1.9950 1.0000 1.1522 1.0000 1.97 1 

Mean 4.0884 11.4327 1.2002 3.1699 21.0416 6.25 11 

STD 2.1187 3.8315 0.0950 0.5418 0.0409 5.81 9 

ACO 

Min 1.4092 5.9751 1.0922 1.7539 20.9843 6.78 14 

Mean 1.3682 9.3230 9.3230 2.7763 17.7164 4.16 6 

STD 0.1248 3.7318 0.0208 0.6744 7.6038 5.44 6 

SSA 

Min 1.0000 3.9849 1.0074 1.3442 1.0000 3.00 2 

Mean 1.1227 6.8371 1.0357 2.6977 14.9981 2.06 2 

STD 0.1907 1.7081 0.0203 0.3208 9.3206 2.69 2 

MA 

Min 1.0000 1.9950 1.0000 2.0859 1.0000 3.41 4 

Mean 1.3281 4.2502 1.0080 2.1428 21.1104 2.31 3 

STD 0.1669 1.2513 0.0107 0.4034 0.0327 1.75 1 

SMA 

Min 1.0000 1.9950 1.0000 1.5203 21.0302 3.28 3 

 
Table 3 Comparison of migration times for various methods 

(ms) 

Number of 
missions 
migrated 

SKGA OTSSA OGMA TSMA BOSMA 

20 110.69 81.32 66.34 50.11 30.12 

40 180.93 148.16 124.81 110.58 80.34 

60 221.35 194.62 170.29 160.25 130.27 

80 362.94 335.81 305.98 281.58 240.58 

100 470.81 432.69 410.35 389.63 326.91 

Table 4 Results of ablation experiments 

Method –SMA –OR BOSMA 

Migration efficiency 88.9% 81.2% 95.6% 

6 Conclusions 

This paper suggests an e-commerce cloud computing data 
migration method based on improved SMA, which aims to 
reduce migration energy consumption and improve data 
migration efficiency. Firstly, to address the problem of poor 
global optimisation of SMA, a balanced optimisation 
operator is incorporated into SMA, which helps the 
approach to strike a good balance between exploration and 
exploitation. Then, to improve the probability of the 
algorithm jumping out of the local optimal, the probabilistic 
divergence mutation operator is added in the iterative 
process of the approach, which boosting the algorithm’s 
capacity for exploration, increases the diversity of the 
population, and avoids premature convergence of the 
algorithm. To reduce the migration energy consumption, the 
dependency diagram of data migration task for e-commerce 
cloud computing is designed, and a mathematical model is 

constructed to minimise the objective function of migration 
energy consumption. The BOSMA algorithm is used to 
solve the objective function and realise the migration of the 
tasks that reduce the energy consumption the most. As an 
initial solution, all tasks that can be migrated are migrated to 
the cloud, and then the energy savings of the migratable 
tasks running on the mobile are calculated one by one, and 
the tasks with the highest savings are migrated to the mobile 
in order. For each migrated task, the algorithm updates the 
energy savings of each task in time based on the 
communication time between tasks. The experimental 
outcome indicates that the BOSMA algorithm not only has 
higher convergence speed and convergence accuracy, but 
also can quickly search for the solution that minimises the 
energy consumption of migration. 

In future work, this aspect will continue to be studied in 
depth by considering the impact of environmental 
fluctuations (i.e., network latency, bandwidth fluctuations, 
and server failures) on BOSMA application migration 
decisions. This paper will consider the optimisation 
objectives in a comprehensive manner in the later work by 
integrating multiple optimisation objectives (e.g., cost, 
energy consumption, and load balancing) into a single 
multi-objective optimisation problem study. Moreover, in 
this paper, simulation experiments will be conducted on 
multiple datasets and real scenarios to validate the 
scalability of the proposed approach. 
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