

International Journal of Reasoning-based Intelligent
Systems

ISSN online: 1755-0564 - ISSN print: 1755-0556
https://www.inderscience.com/ijris

E-commerce cloud computing data migration method based on
improved slime mould algorithm

Yujie Li, Ning Liu, Liming Dang, Yong Huang

DOI: 10.1504/IJRIS.2025.10071385

Article History:
Received: 30 March 2025
Last revised: 22 April 2025
Accepted: 23 April 2025
Published online: 11 June 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijris
https://dx.doi.org/10.1504/IJRIS.2025.10071385
http://www.tcpdf.org

Int. J. Reasoning-based Intelligent Systems, Vol. 17, No. 7, 2025 1

Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under the
CC BY license. (http://creativecommons.org/licenses/by/4.0/)

E-commerce cloud computing data migration
method based on improved slime mould algorithm

Yujie Li, Ning Liu and Liming Dang
Economics and Management School,
Nanchang Institute of Science and Technology,
NanChang 330108, China
Email: liyujie@stu.ncpu.edu.cn
Email: 18720937405@163.com
Email: 18770051539@163.com

Yong Huang*
Business School,
Jiangxi Modern Polytechnic College,
NanChang 330000, China
Email: yong08250017@163.com
*Corresponding author

Abstract: The inherent dynamism of e-commerce cloud environments, characterised
by massive data volumes and high-concurrency demands, poses significant challenges
to traditional data migration approaches. For this reason, this paper firstly improves the
sticky mushroom algorithm (SMA) (BOSMA) by replacing the anisotropy operator of
the SMA with a balanced optimisation operator, and adding a stochastic difference
variance operator to the SMA to avoid premature convergence. To reduce the migration
energy consumption, the e-commerce cloud computing data migration task dependency
graph is designed, and the objective function to lower the energy consumption during
migration is constructed. The BOSMA is adopted to discover the finest solution to the
target function to acquire the migration of the task with the largest reduction in energy
consumption. The simulation outcome implies that the BOSMA method can quickly
search for solutions with less migration energy consumption.

Keywords: e-commerce cloud computing; data migration; sticky mushroom algorithm;
SMA; balancing optimiser; task dependency graph.

Reference to this paper should be made as follows: Li, Y., Liu, N., Dang, L. and Huang, Y.
(2025) ‘E-commerce cloud computing data migration method based on improved slime mould
algorithm’, Int. J. Reasoning-based Intelligent Systems, Vol. 17, No. 7, pp.1–10.

Biographical notes: Yujie Li received his PhD in Segi University of Malaysia. He has six-year
experience in international trade and e-commerce in the enterprise, and is currently a teacher in
the Economics and Management School at Nanchang Institute of Science and Technology. His
research interests include e-commerce, international trade and data mining.

Ning Liu received her Bachelor’s in Accounting from the Nanchang Institute of Science and
Technology. She is currently a teacher in the Economics and Management School at Nanchang
Institute of Science and Technology. Her research interests include machine learning and
financial management.

Liming Dang received his Master’s in Management from the University Sains Malaysia. He
currently a teacher in the Economics and Management School at Nanchang Institute of Science
and Technology. His research interests include international marketing, digital marketing and
digital marketing.

Yong Huang received his PhD in Management from the University Sains Malaysia. He is
currently a teacher in the Economics and Management School at Nanchang Institute of Science
and Technology. His research interests include data mining, international marketing and digital
marketing.

2 Y. Li et al.

1 Introduction

At a time when the wave of digitisation is sweeping the
world, the e-commerce industry is booming and generating
huge amounts of data. Cloud computing technology,
leveraging its powerful storage and computing capacity,
serves as the backbone for e-commerce businesses in
handling and managing data (Almarabeh and Majdalawi,
2019). The efficiency and quality of data migration, as an
important aspect of cloud computing applications, directly
affects the continuity and stability of e-commerce business
(Shakya, 2019). Efficient, secure, and affordable data
migration in complex cloud environments has become a key
concern for researchers and practitioners alike. E-commerce
cloud computing data migration is a complex optimisation
problem involving multiple objectives and constraints such
as migration time, cost, quality of service, and resource
utilisation (Andrikopoulos et al., 2013). When addressing
such problems, conventional mathematical optimisation
approaches frequently encounter significant challenges,
including prohibitive computational complexity and the
inherent difficulty in obtaining globally optimal solutions
(Song et al., 2019). Heuristic optimisation algorithms,
especially population intelligence algorithms, show
significant advantages in solving cloud computing data
migration problems by virtue of their powerful global
search capability and robustness (Huang and Abnoosian,
2020). Hence, optimising e-commerce cloud data migration
using heuristic algorithms remains a critical and valuable
research challenge.

The traditional cloud data transfer approaches include
stop-and-copy, iterative migration, and on-demand
replication migration (Gholami et al., 2016). Li et al. (2019)
proposed an overhead-sensitive cloud data migration
method based on the overhead-sensitive cloud data
migration method, but the method is not applicable to
real-time migration. Shekhar and Sharvani (2021)
conducted a systematic evaluation of multi-tenant data
models to address real-time database migration in
multi-tenant cloud environments. Their proposed iterative
migration technique achieved minimal downtime while
maintaining optimal performance during live migration of
multi-tenant databases. Teli et al. (2016) find the target node
based on the resource access and the size of the data to be
migrated, the query operation during migration is done at
the source node, and the update operation is done at both the
source and destination nodes, but the migration overhead is
high. Fahmideh et al. (2019) implemented a priority-based
migration strategy that executes higher-priority tasks
pre-migration, with dynamic priority adjustment during and
post-migration. However, the approach demonstrated
performance limitations under high-load conditions.

Traditional methods often fail to cope with dynamically
changing cloud computing environments, resulting in
migration solutions that are locally optimal but overall
ineffective. Heuristic optimisation algorithms are able to
search extensively in the solution space to avoid falling into
locally optimal solutions, thus finding a better data
migration scheme. Zhao et al. (2023) offered an enhanced

multi-objective virtual machine (VM) allocation strategy
using ant colony optimisation (ACO) algorithm, which
effectively solves issues of physical host load balancing and
energy and power consumption, but the algorithm
converges slowly. Chawla et al. (2020) improved processes
such as mutation and mating in genetic algorithm (GA) to
increase the probability of inheriting high quality genes to
the offspring and utilised the improved GA to achieve cloud
computing data migration with improved migration
efficiency. Singh and Dhir (2019) used GA-optimised
neural networks to predict the load on servers and thus
allocate a small number of VMs to achieve the goal of
energy saving. However, the diversity of resources in cloud
data centres is ignored. Kak et al. (2024) proposed a VM
placement and migration method based on sparrow search
algorithm (SSA) but with low utilisation of physical servers.
Durairaj and Sridhar (2024) optimised data migration
strategy for cloud computing by using mayfly algorithm
(MA) but without considering the communication between
VMs and migration cost.

In contrast to other heuristic optimisation techniques,
the slimy mushroom algorithm (SMA) has a strong global
search capability by simulating the positive and negative
feedback mechanism of slimy mushrooms, which can
adeptly manages the trade-off between global searching and
local refining, ensuring it doesn’t settle for a suboptimal
solution. Guo et al. (2017) achieved efficient deployment of
VMs in cloud environments based on the SMA approach,
which improved application performance also developed an
energy-efficient management method for cloud data centres,
but neglected the impact of the optimal solution on future
node loads. Kumar and Rajesh (2023) introduced the SMA
algorithm and the idea of simulated annealing to propose a
heuristic dynamic migration strategy for VMs. The
algorithm optimises the optimal solution for each cycle but
neglects the cost spend of migration.

Current research reveals that conventional cloud data
migration approaches are inadequate for addressing the
dynamic, heterogeneous complexities of e-commerce cloud
environments, resulting in a significant increase in
migration energy consumption. To address the above issues,
SMA is firstly improved based on the balanced optimiser
(BOSMA) and stochastic difference variance operator to
address the problems such as the slow convergence speed of
SMA. In place of the anisotropy operator in SMA, the
search operator from BO is used. Use the historical optimal
position of the population in the mining process of the SMA
to guarantee the approach’s convergence to the best possible
solution. The introduction of a stochastic difference
variance operator enhances the algorithm’s exploration
capability, reducing the probability of local optima
entrapment and mitigating premature convergence issues.
For the goal of reducing the migration energy consumption,
the e-commerce cloud computing data migration task
dependency graph is designed. And a mathematical model
with the objective function of minimising the migration
energy consumption is constructed. Finally, the BOSMA
algorithm solves the objective function by migrating all the

 E-commerce cloud computing data migration method based on improved slime mould algorithm 3

tasks that can be migrated to the cloud as the initial solution,
and then calculates the energy savings of the migratable
tasks running on the mobile terminal one by one, and
migrates the tasks with the largest savings to the mobile
terminal in order. For each migrated task, the algorithm
updates the energy savings of each task based on the
communication time between the tasks. Simulation results
indicate that the proposed method significantly reduces
migration energy consumption and migration time,
providing an effective way for e-commerce enterprises to
realise fast and reliable data migration in cloud computing
environment.

2 Relevant technologies

2.1 Overview of cloud computing related knowledge

Cloud computing refers to a paradigm that combines
large-scale, economical hardware devices through
virtualisation technologies to create an extensive resource
pool. This architecture abstracts underlying infrastructure
details, allowing users to provision tailored resources and
services based on diverse needs (Diaby and Rad, 2017). The
architecture of cloud computing is shown in Figure 1, which
includes software service layer, platform layer,
infrastructure layer and hardware layer (Jawed and Sajid,
2022).

 Software layer: similar to consumers shopping in the
supermarket, only need to choose the preferred product,
for the product of the pre-late issues do not need to
consider, these tasks are responsible for the completion
of the cloud service provider.

 Platform layer: the platform layer typically includes
services such as operating systems, virtualisation
technologies, storage, and platform services such as
development, testing, deployment, monitoring, and
management for applications.

 Infrastructure layer: the cloud computing infrastructure
layer provides a reliable base environment for
applications and services, enabling developers and
users to rapidly deploy and manage applications and
services.

 Hardware layer: these hardware components are
integrated to form a large-scale distributed computing
system, delivering cloud services characterised by high
availability, scalability, flexibility, and robust security.

2.2 Slime mould algorithm

SMA represents the problem as a maze in which slime
moulds are placed, and then observes the paths formed by
the slime moulds as they search for food; these paths are
used to optimise the solution of the problem (Son and Khoi,
2024). In practice, SMA can be used to solve optimisation
problems such as the traveller’s problem, data migration,
etc. Compared with classical algorithms such as GA, PSO,

ACO, etc., SMA has the advantage of being able to show
excellent performance in dealing with large-scale problems,
and it has strong parallelism. The approach encompasses
three fundamental steps, as detailed below.

1 Proximity to food. The behaviour of slime moulds was
modelled as a mathematical formula to simulate the
contraction pattern according to equation (1).

 () () () ,
(1)

(),
b b A B

c

X t v W X t X t r p

v
X t

X t r p

    
  

 
 (1)

where t is the current iteration number, Xb(t) is the
current optimal individual position, there are two
random individual positions, one is XA(t) and the other
is XB(t), the mass of the slime mould is W, which
represents the fitness weight, the control parameters are
vb and vc, r is an arbitrary number between 0 and 1, and
the control variable p and the parameter a are implied in
equation (2) and equation (3).

tanh ()p S i DF  (2)

max

1
t

a arctanh
t

      
  

 (3)

The current individual fitness is chosen to represent
S(i), i = 1, 2, …, n, the best fitness value is DF, and the
maximum amount of epochs is tmax. The updating
strategy for W is shown below.

()
1 log 1 , 1

(())
()

1 log 1 , 0

bf S i
r if i

bf wf
W smell i

bf S i
r if i

bf wf

          
        

 (4)

where smell(i) = sort(S), bf is the best iterative fitness
value.

2 Surrounding food. Slime moulds update their own state
and adjust their own movement direction and speed to
avoid obstacles and optimise their paths, and ultimately
achieve the encirclement of food.

 
() ,

(1) () () () ,

(),
b b A B

c

rand UB LB LB rand z

X t X t ν W X t X t r p

ν X t r p

   
      
  

 (5)

where UB and LB represent the upper and lower
bounds of the seek region, respectively, rand is the
number of randomisers, and z is a custom parameter.

3 Acquisition of food. The organism employs chemical
signalling to detect food presence in its vicinity,
dynamically adjusting both locomotion direction and
velocity in response to chemical concentration
gradients to navigate toward the food source.

4 Y. Li et al.

Figure 1 Cloud computing architecture (see online version
for colours)

So
ft

w
ar

e-
as

-a
-

Se
rv

ic
e

L
ay

er

(S
aa

S)

Pl
at

fo
rm

-a
s-

a-
Se

rv
ic

e
L

ay
er

 (
Pa

aS
)

In
fr

as
tr

uc
tu

re
-a

s-
a-

Se
rv

ic
e

L
ay

er

(I
aa

S
)

User
Access

Interface

Virtualization Technology

Application
Service

Interface

Application
Service

Registration

Application
Service

Selection

Application
Service

Discovery

Application
Service
Access

Application
Service

Workflow
...

Physical Resources

...

Resource
Pool Compute Storage Network ...

Database Service Middleware Service

Figure 2 SMA search process (see online version for colours)

End

Exploitation Phase

Phenotypic Switching

Start

Exploration Phase

Stochastic Dispersion

Foraging Behavior

Proximity Convergence

Nutrient
Encapsulation

rand1 < p

rand2 ≥ z

Avascular Zone

Angioarchitecture
Propagation

Vasculogenesis

Venous Pulsatility

rand1 ≥ p

rand1 < p

rand2 ≥ z

rand2 < z

Foraging
Behavior

Proximity
Convergence

Nutrient
Encapsulation

3 Optimisation of slime mould algorithm based
on balance optimiser

Intending to the issues of sluggish convergence rate, low
initial population diversity, and poor global optimisation of
standard SMA, this paper uses the balanced optimiser (BO)
(Jia and Peng, 2021) and stochastic differential variational
operator (Kharazmi and Zayernouri, 2019) to improve the
conventional SMA (BOSMA) to equilibrate the algorithm’s
ability to explore and exploit effectively, and increase the
probability of the approach to seek out the best solution
within the entire solution space, the flow of the approach is
shown in Figure 3. First, the search operator from BO takes
the place of SMA’s anisotropy operator. Then, in the
exploration phase of the SMA, the individual historical
optimum is used instead of the population historical
optimum for updating, and during the SMA’s exploitation
stage, the population’s historical best solution serves as a
means to ensure the algorithm converges to the whole
optimal solution. Finally, a stochastic differential variance
operator is augmented with this element to improve the
chances of leaping out of the local optimum and steer clear
of premature convergence.

BO represents a fresh approach to optimisation,
influenced through the physical process of preserving mass

balance in a control volume. The mass balance equations
depict the physical occurrences of mass entering, leaving,
and being generated within a defined volume. The updated
formulation of BO is as follows.

  (1)eq eq
G

C C C C F F
λV

     (6)

where C represents the present solution, Ceq is chosen at
random from the balanced pool of solutions, F serves as a
value to equilibrate partial and entire seek efforts, G serves
as a measure of quality generation, thereby amplifying the
algorithm’s local search effectiveness,  is a vector of
arbitrary numbers between 0 and 1, and V = 1 represents the
standard volume unit. F is adjusted dynamically based on
the iteration count, as outlined below.

 
1 (0.5) 1λtF a sign r e     (7)

where a1 is the fixed weight value assigned to the global
search component. As a1 increases, the exploration
capability strengthens while the utilisation ability
diminishes, and vice versa. sign() is the sign operation. r
and  are arrays filled with stochastic numbers ranging
between 0 and 1, t is the search time. The mass generation
rate G is shown below.

Figure 3 The flow of BOSMA (see online version for colours)

Begin
Initialize parameters:

N,Dim,max_t,lb,ub,z,q,a1,a2,V,
GP

Initialize search agent positions
& calculate fitness

Initialize equilibrium pool

Check boundaries & Compute
Fitness

Preserve better agents
Sort fitness & update bF and

wF

Compute fitness weight W Update equilibrium pool
Compute adaptive variables

t1,a,b,p

Update random variables
λ,r1,r2,rn,r,vb,vc,A,B

rand < z
Randomly select Xeq from

equilibrium pool

Compute exponential term F &
generation rate G

Update X(i,j)

Update X(i,j) Update X(i)j < Dim

i < N
Check boundaries & compute

fitness
Preserve better individuals

rand < q

Update X

Update X

t < max_t
Return optimal position Xb &

its fitness value
End

r(i,j) < p(i)

Yes

Yes

No

No

Yes

Yes

No

Yes

No

No

 1 2

2

0.5 ,

0,

eqr C λC F r GP
G

r GP

  


 (8)

where r1 and r2 are random numbers in the range [0, 1] and
GP stands for a generation probability value of 0.5.

To enhance seek performance, the easy arbitrary seek
operator in SMA can be replaced by the BO operator, and
the formula for updating positions in BOSMA is as follows.

 
 
 

() () () (1) /

(1) () () ()

() () ()

eq eq

A B

b A B

X t X t X t F G F λV rand z

X t X t vb W X t X t r p

X t vc W X t X t r p

      
      
     

 (9)

 E-commerce cloud computing data migration method based on improved slime mould algorithm 5

where Xeq is a randomly selected solution from the
equilibrium pool, X is the location of the search instance,
Xb(t) emerges as the peak solution in the equilibrium
landscape, and z is an empirical value, which usually takes
the value of 0.6. Equation (9) demonstrates the stochastic
differential variance operator, which performs an
anisotropic operation on the dimensions of 4% of the search
individuals in the population. As iterations accumulate, the
exploration becomes less extensive. To improve BOSMA’s
ability to explore and prevent it from getting stuck in local
optima, a variation operation is performed on 80% of the
searched individuals. This is designed to diversify the
algorithm’s problem-solving techniques in the exploration
phase to better search the solution space of the issue.

To improve the possibility that BOSMA will leap out of
the local optimum’s confines, the stochastic differential
variational operator is added after the update of equation
(9). The variational operator can be mathematically
modelled as described below.

 
() (())

(1)
() () () A B

X t BF rand UC LB LB L rand q
X t

X t R X t X t rand q

           
 (10)

where CF serves as an adjustable shrinking coefficient, R
varies randomly within the range of 0.2 to 1, L stands for a
matrix composed of instances that are either 0 or 1, and the
adjustable value of q is set to 0.2. XA and XB represent two
solutions randomly sampled from the population. CF and L
are calculated as in equation (11) and equation (12),
respectively.

1

max
1

max
t

a t

t

t
CF



    
 

 (11)

,

1

0 i j

rand q
L

rand q


  

 (12)

where N denotes the number of individuals in the population
and Dim represents the dimensionality of the issue. For the
goal of preventing inefficient searching, the limits of the
search agent’s exploration are validated using equation (13)
after each positional change.

 
 

, ,

, , ,

,

() / 2 (1)

(1) () / 2 (1)

(1)

i j i j

i j i j i j

i j

X t UB X t UB

X t X t LB X t LB

X t others

  
    
 

 (13)

In this paper, the computational complexity of BOSMA
algorithm is compared with that of ACO, SSA, MA and
SMA algorithms, as shown in Table 1, where N is the
number of populations, n is the problem dimension, and D
is the problem dimension, and it can be seen through
Table 1 that BOSMA algorithm has lower computational
complexity in terms of time complexity and space
complexity than the other four algorithms.

Table 1 Computational complexity of different heuristic
optimisation algorithms

Algorithm Time complexity Space complexity

ACO O(ND2) O(D2)

SSA O(DN + N log N) O(D N)

MA O(D N + N2) O(D N)

SMA O(D N) O(D N)

BOSMA O(N) O(N)

4 Blockchain technology application and
optimisation algorithm in enterprise supply
chain management

4.1 Ecommerce cloud data migration task
dependency graph design

For the goal of reducing the migration energy consumption,
this paper first designs the e-commerce cloud computing
data migration task dependency graph, and construct a
mathematical model with the objective function of
minimising the migration energy consumption, and migrate
all the tasks that can be migrated to the cloud as the initial
solution, and then calculate the energy savings of the
migratable tasks running in the mobile terminal one by one,
and migrate the tasks with the largest savings to the mobile
terminal in order. For each migrated task, the algorithm
updates the energy savings of each task based on the
communication time between the tasks. Finally, the
BOSMA algorithm is used to solve the objective function
and migrate the task that reduces energy consumption the
most.

Figure 4 Ecommerce cloud data migration task map (see online
version for colours)

2345

678911

10 12 1314

0 1

15 16

Mobility-Constrained Node

Mobile-Resident Node

Cloud-Offloaded Node

E-commerce cloud computing data migration involves both
mobile and cloud, the dependency between the tasks that
will be performed at both ends can be represented by a
directed acyclic graph as shown in Figure 4. Each node in
Figure 4 represents a task, and if there is a link from i to j
between nodes i and j, it means that there is a dependency
relationship between tasks i, j. Task i is said to be the father
node of task j.

As shown in Figure 4, the green node indicates that the
task can only be executed on the mobile. Except for the

6 Y. Li et al.

green node, all other nodes can be migrated, either to the
cloud or to the mobile. A white node indicates that the task
was migrated to the cloud; a blue node indicates that the
task was completed on mobile. For two tasks with
dependencies, if both tasks are realised in the cloud, the
communication time and energy consumption between the
two tasks are negligible; if two tasks with communication
dependencies are realised on different ends, the
communication time and energy consumption between the
tasks need to be considered.

4.2 Mathematical model construction for data
migration in e-commerce cloud computing

For a task graph with N tasks, which tasks are completed in
the mobile and which tasks are completed in the cloud, and
by scheduling the execution order of the tasks at both ends,
the energy consumption of the mobile can be reduced under
the constraint that the completion time T of the task graph is
satisfied. The energy consumption on the mobile side
consists of the energy used to perform both mobile tasks
and transmission tasks. Assuming that l = 1 denotes that the
task is executed on the mobile, l = 0 denotes that the

character is executed on the cloud, and ()l
jx t denotes

whether task j is executed on the mobile at time t, the
following equations are in place, where mj denotes whether
task j is realised on the mobile, and cj denotes whether task j
is migrated to the cloud for realisation.

0

1

()
T

j j

t

m x t


 (14)

1

1

()
T

j j

t

c x t


 (15)

The communication time required for cloud task i to

transmit data to mobile task j is denoted as .cm
ijτ Similarly,

the communication time required for task i on mobile to

upload data to task j in the cloud is denoted as .cm
ijτ In

particular, when i = j or when both i and j are in the cloud or
mobile, the communication time and energy consumption
between them is 0. The total communication energy
consumption caused by the task migration is as follows.

1 1 1 1

N N N N
mc cm

com T ij R ij

i j i j

E P τ P τ
   

   (16)

The objective function for minimising mobile energy

consumption based on the decision variables (),l
jx t l{0,

1}, i, j, = 1, 2, … N, and t = 1, 2, …, T can be defined as
follows.

1
min

N
m

j j com
j

P m Ek


    
 

 (17)

The objective function established above must satisfy the
following constraints.

1 The total time required to complete all tasks does not

exceed T, i.e., 0

1

0 () .
T

N
t

t x t T


  

2 Each task node j can be executed only on the cloud or
on the mobile, i.e., mj + cj = 1.

3 All nodes of the task graph must satisfy the
predecessor-successor dependency, such that

mc cm.jk k jk jkθ w τ τ   Then we have equation (18),

where j < k, t = wj, …, T–jk.

1 1

0 1 0 1

() ()
jkt θ t θ

l l
k j

l s l s

x s x s
 

   

  (18)

4 At any moment t, multiple tasks are executed serially
on the mobile side, such that L = min{t + wj–1, T},

there is
1

0

1

() 1
N

j

L

s
jx s


  .

5 For any task k, before k is executed, it has to wait for
the completion of the previous task before it can be
executed, and the completion time of k is the time of
the completion of the previous task plus the time
needed for its own completion, as follows.

1 1

0 1 0 1

() ()l cm mc l
j jk jk k k

l ι l ι

T T

t x t τ τ w t x t
   

       (19)

6 Constraint on the number of tasks that can only be
executed on mobile: the number of tasks that can only
be executed on mobile is n, and the serial numbers of
such tasks are b1, b2, …, bn, then there are 1

ibm  ,

where i = 1, 2, …, n.

4.3 Mathematical model solving based on improved
slime mould algorithm

With the above constraints satisfied, the BOSMA algorithm
is used to solve the objective function and migrate to the
task that reduces energy consumption the most. The
migration is repeated until the time constraints cannot be
met. When a task node is migrated, the communication time
and energy consumption associated with the task node
change. The total energy consumption on the mobile
includes the energy used to perform tasks on the mobile and
the total energy used for communication. When a task node
is migrated from the mobile to the cloud, the energy used to
perform the task on the mobile decreases; conversely, when
a task is migrated from the cloud to the mobile, the energy
used to perform the task on the mobile increases.

1 The tent mapping (Nagaraj, 2022) was used to initialise
the slime mould population as a representative of the
chaotic mapping, and the resulting chaotic sequences
were uniformly distributed in [0, 1], so that the slime
mould population was uniformly distributed in the

 E-commerce cloud computing data migration method based on improved slime mould algorithm 7

search space. The mathematical model of the tent
mapping is as follows.

 1

, 0

1
, 1

1

k
k

k
k

k

X
X h

h
X

X
h X

h



   
 



 
 (20)

where k is the number of mapping, k = 1, 2, …, n is the
value of the kth mapping function; h is the chaos
parameter, which is a random value between 0 and 1.
When h = 1/2, tent has the best performance, and the
resulting chaotic sequence is uniformly distributed in
the search space.

2 Using equation (9) to update the position of the
population, the best individual Xb(t) and two random
individuals XA(t) and XB(t) are used to guide the search
direction of the population individuals during the global
search.

3 According to the search direction, for the tasks marked
as “undivided”, the task node that meets the following
conditions is migrated to the mobile terminal. After this
node is migrated, the optimal solution calculated by
BOSMA satisfies the time constraint. Under the
condition that the constraint is satisfied, the task node
that saves the most energy consumption on the mobile
terminal after migration is found.

4 At the end of the iteration, the individuals of the
population will gradually approach the current optimal
solution Xb, which may lead to the stagnation of the
population search. Therefore, BOSMA introduces a
random traceless -point variant to promote diversity
within the population as iterations progress, so as to
increase the local optimisation at the stagnation stage of
the search, as shown below.

 () ' ()i d b X i
X X t r d k SD    (21)

  
2 1

1

1

2 1

d
T

i avg i avg
i

XSD X X X X
d





  
  (22)

where SDx is the population covariance matrix, r is the
scale factor, d is the dimension, and Xavg is the mean.
The algorithm will select the best individual from the
final 2d + 1 individuals generated as follows.

  
0 2

(1) arg minb i
i d

X t f X  


 (23)

5 Migrate the best individuals first and mark the tasks
that have been migrated from the cloud to the mobile as
“migrated”. If the selected task nodes increase the total
energy consumption of the migrated mobile, the
algorithm process ends.

5 Experimental results and analyses

The experiments were done on Cloudsim’s simulation
platform, which simulates a cloud computing environment
consisting of multiple e-commerce cloud computing data
centres and mobile. In the paper, 600 data centres and 50
mobile sites are created, which are connected to each other
through a high-speed network with different bandwidths.
The simulation environment is Win11 64-bit operating
system, Gen Intel(R) Core (TM) i5-12450H CPU with 2.00
GHz, 16.0 GB of RAM, and MATLAB R2022b simulation
software. The maximum number of iterations was set to
100, the dimension size to 30, and the population size to 30.
The data used in the experiments are averages of 100
experiments with the same settings.

Figure 5 Comparison of convergence of different algorithms for
solving objective function (see online version
for colours)

0 200 400 600 800 1000
3

4

5

6

7

8

9

10

O
bj

ec
tiv

e
fu

nc
ti

on

Epochs

 ACO
 SMA
 MA
 SSA
 BOSMA

The convergence comparison of the suggested BOSMA
algorithm with the ACO, SSA, MA, and SMA algorithms
for solving the objective function is shown in Figure 5.
From Figure 5, it can be clearly seen that both SAM and
BOSAM accelerate the convergence speed of the original
optimal solution to a certain extent and improve the solution
accuracy, among which the optimisation performance of
SMA based on the BO and the stochastic difference
variational operator contribute the most to the optimisation
performance of the SMA, and the use of the stochastic
difference variational operator to initialise the population
mainly improves the uniformity of the distribution of the
individuals in the SMA, so that the probability of the
optimal solution to be found is increased. The convergence
curve of BOSMA is at the bottom, which indicates that the
BOSMA algorithm has higher convergence speed and
accuracy than the other four algorithms, and also shows that
the introduction of multiple optimisation strategies is
effective in improving the optimisation performance of
SMA.

To investigate the distribution pattern of optimisation
results obtained by BOSMA and the competing approaches,
Figure 6 shows the best fitness gained through performing
100 independent runs for each of the five algorithms. The

8 Y. Li et al.

outcome indicates that BOSMA is with smaller medians,
upper and lower quartiles, fewer outliers, and a narrower
distributional frame than most algorithms. In addition, the
gaps in the box plots of BOSMA do not exhibit overlapping
features with the BO and SMA, thus the BOSMA’s median
can be assessed to be smaller with a 95% confidence level,
which surpasses other algorithms by a substantial amount.

Figure 6 Optimal fitness of different algorithms (see online
version for colours)

BOSMA SMA ACO MA SSA

0

1

2

3

4

5

In addition, the mean (Mean), standard deviation (STD) and
minimum (Min) metrics are used in this paper to evaluate
the performance of the algorithms and to compare the
Friedman average rank (FAR) of the algorithms on different
functions. Then Wilcoxon rank sum test is used to assess
whether there is a significant difference between BOSMA
and the compared algorithms and the results obtained for the
five algorithms on the CEC2019 function are shown in
Table 1. The dimensions, search ranges and theoretical
optimal values of the five functions TF1, TF2, TF3, TF4
and TF5 in CEC2019 are shown in the literature []. It can be
seen that BOSMA obtains better average and minimum
values on TF3, and only worse than SMA on TF1, which
indicates that BOSMA has stronger mining ability than
SMA. The mean and STD of BOSMA for the five functions
are larger than those of other algorithms, indicating that
BOSMA can find the optimal value of the function and
quickly obtain a solution with higher accuracy.

The energy consumption of BOSMA algorithm applied
to e-commerce cloud computing data migration with four
migration methods SKGA (Chawla et al., 2020), OGMA
(Kak et al., 2024), OTSSA (Durairaj and Sridhar, 2024),
and TSMA (Kumar and Rajesh, 2023) is are compared as
shown in Figure 7. As the amount of migrated tasks rises, so
does the total energy consumption of the mobile, because
fewer tasks can be migrated and more tasks can be
performed by the mobile. Nevertheless, the BOSMA
algorithm is able to give lower energy consumption than the
other four algorithms, indicating that the BOSMA algorithm
is still feasible and efficient as the number of tasks changes.

Figure 7 Comparison of migration energy consumption of
different methods

0 10 20 30 40 50 60 70 80 90 100
1.2×103

1.4×103

1.6×103

1.8×103

2.0×103

2.2×103

2.4×103

2.6×103

T
ot

al
 e

ne
rg

y
co

m
su

m
pt

io
n

(m
J)

Number of missions migrated

 SKGA
 OTSSA
 OGMA
 TSMA
 BOSMA

Comparison of migration time of each method for different
number of tasks is shown in Table 3, when the number of
migrated tasks is 60, the migration time of BOSMA is
130.27 ms, which is reduced by 41.15%, 33.06%, 23.5%,
and 18.71% compared to SKGA, OGMA, OTSSA, and
TSMA, respectively. SKGA implements cloud computing
data migration through GA, but the search speed is
relatively slow because GA is not able to utilise the
feedback information from the network in time. More
training time is needed to get more accurate solutions.
OGMA is the introduction of SSA for cloud migration, but
SSA falls into a local optimum at the initial stage, which
affects the global search capability. OTSSA uses MA to
optimise cloud migration strategies, but the method has
limited exploration capability in the search space, resulting
in the inability to jump out of the current local optimal
region. TSMA implements migration policy optimisation
based on traditional SMA without improving SMA, which
leads to long search time for optimal migration direction.
BOSMA not only accelerates the convergence speed, but
also increases the probability of jumping out of the local
optimum by adding the stochastic differential variance
operator, avoiding premature convergence and improving
the migration efficiency.

To further verify the influence of each component in the
BOSMA model on the model migration efficiency, this
paper conducts ablation experiments on each component.
The BOSMA algorithm is replaced with SMA algorithm
denoted as – SMA, without using any optimisation
algorithm denoted as – OR, and the complete migration
method using the improved SAM algorithm is BOSMA.
The results of the ablation experiments for each module are
shown in Table 4. The migration efficiency of cloud
computing data migration optimisation using SMA
algorithm reaches 88.9%, the migration efficiency without
applying any optimisation algorithm is only 81.2%, and
BOSMA which incorporates all the components achieves
the best migration efficiency.

 E-commerce cloud computing data migration method based on improved slime mould algorithm 9

Table 2 Comparison of migration times for various methods (ms)

Algorithm Norm TF1 TF2 TF3 TF4 TF5 FAR Rank

Mean 1.3682 3.6864 1.0408 1.6386 9.0106 1.94 1

STD 0.1248 1.0170 0.0274 0.3698 9.9786 2.75 3

BOSMA

Min 1.0000 1.9950 1.0000 1.1522 1.0000 1.97 1

Mean 4.0884 11.4327 1.2002 3.1699 21.0416 6.25 11

STD 2.1187 3.8315 0.0950 0.5418 0.0409 5.81 9

ACO

Min 1.4092 5.9751 1.0922 1.7539 20.9843 6.78 14

Mean 1.3682 9.3230 9.3230 2.7763 17.7164 4.16 6

STD 0.1248 3.7318 0.0208 0.6744 7.6038 5.44 6

SSA

Min 1.0000 3.9849 1.0074 1.3442 1.0000 3.00 2

Mean 1.1227 6.8371 1.0357 2.6977 14.9981 2.06 2

STD 0.1907 1.7081 0.0203 0.3208 9.3206 2.69 2

MA

Min 1.0000 1.9950 1.0000 2.0859 1.0000 3.41 4

Mean 1.3281 4.2502 1.0080 2.1428 21.1104 2.31 3

STD 0.1669 1.2513 0.0107 0.4034 0.0327 1.75 1

SMA

Min 1.0000 1.9950 1.0000 1.5203 21.0302 3.28 3

Table 3 Comparison of migration times for various methods

(ms)

Number of
missions
migrated

SKGA OTSSA OGMA TSMA BOSMA

20 110.69 81.32 66.34 50.11 30.12

40 180.93 148.16 124.81 110.58 80.34

60 221.35 194.62 170.29 160.25 130.27

80 362.94 335.81 305.98 281.58 240.58

100 470.81 432.69 410.35 389.63 326.91

Table 4 Results of ablation experiments

Method –SMA –OR BOSMA

Migration efficiency 88.9% 81.2% 95.6%

6 Conclusions

This paper suggests an e-commerce cloud computing data
migration method based on improved SMA, which aims to
reduce migration energy consumption and improve data
migration efficiency. Firstly, to address the problem of poor
global optimisation of SMA, a balanced optimisation
operator is incorporated into SMA, which helps the
approach to strike a good balance between exploration and
exploitation. Then, to improve the probability of the
algorithm jumping out of the local optimal, the probabilistic
divergence mutation operator is added in the iterative
process of the approach, which boosting the algorithm’s
capacity for exploration, increases the diversity of the
population, and avoids premature convergence of the
algorithm. To reduce the migration energy consumption, the
dependency diagram of data migration task for e-commerce
cloud computing is designed, and a mathematical model is

constructed to minimise the objective function of migration
energy consumption. The BOSMA algorithm is used to
solve the objective function and realise the migration of the
tasks that reduce the energy consumption the most. As an
initial solution, all tasks that can be migrated are migrated to
the cloud, and then the energy savings of the migratable
tasks running on the mobile are calculated one by one, and
the tasks with the highest savings are migrated to the mobile
in order. For each migrated task, the algorithm updates the
energy savings of each task in time based on the
communication time between tasks. The experimental
outcome indicates that the BOSMA algorithm not only has
higher convergence speed and convergence accuracy, but
also can quickly search for the solution that minimises the
energy consumption of migration.

In future work, this aspect will continue to be studied in
depth by considering the impact of environmental
fluctuations (i.e., network latency, bandwidth fluctuations,
and server failures) on BOSMA application migration
decisions. This paper will consider the optimisation
objectives in a comprehensive manner in the later work by
integrating multiple optimisation objectives (e.g., cost,
energy consumption, and load balancing) into a single
multi-objective optimisation problem study. Moreover, in
this paper, simulation experiments will be conducted on
multiple datasets and real scenarios to validate the
scalability of the proposed approach.

Acknowledgements

This work is supported by the Science and Technology
Research Project of Jiangxi Provincial Department of
Education in 2024 (No. GJJ2402804).

10 Y. Li et al.

Declarations

All authors declare that they have no conflicts of interest.

References

Almarabeh, T. and Majdalawi, Y.K. (2019) ‘Cloud computing of
E-commerce’, Modern Applied Science, Vol. 13, No. 1,
pp.27–35.

Andrikopoulos, V., Binz, T., Leymann, F. and Strauch, S. (2013)
‘How to adapt applications for the cloud environment:
challenges and solutions in migrating applications to the
cloud’, Computing, Vol. 95, pp.493–535.

Chawla, N., Kumar, D. and Sharma, D.K. (2020) ‘Improving cost
for data migration in cloud computing using genetic
algorithm’, International Journal of Software Innovation
(IJSI), Vol. 8, No. 3, pp.69–81.

Diaby, T. and Rad, B.B. (2017) ‘Cloud computing: a review of the
concepts and deployment models’, International Journal of
Information Technology and Computer Science, Vol. 9,
No. 6, pp.50–58.

Durairaj, S. and Sridhar, R. (2024) ‘MOM-VMP: multi-objective
mayfly optimization algorithm for VM placement supported
by principal component analysis (PCA) in cloud data center’,
Cluster Computing, Vol. 27, No. 2, pp.1733–1751.

Fahmideh, M., Daneshgar, F., Rabhi, F. and Beydoun, G. (2019)
‘A generic cloud migration process model’, European
Journal of Information Systems, Vol. 28, No. 3, pp.233–255.

Gholami, M.F., Daneshgar, F., Low, G. and Beydoun, G. (2016)
‘Cloud migration process – a survey, evaluation framework,
and open challenges’, Journal of Systems and Software,
Vol. 120, pp.31–69.

Guo, L., Zhang, Y. and Zhao, S. (2017) ‘Heuristic algorithms for
energy and performance dynamic optimization in cloud
computing’, Computing and Informatics, Vol. 36, No. 6,
pp.1335–1360.

Huang, L. and Abnoosian, K. (2020) ‘A new approach for service
migration in cloud‐based e‐commerce using an optimization
algorithm’, International Journal of Communication Systems,
Vol. 33, No. 14, p.e4457.

Jawed, M.S. and Sajid, M. (2022) ‘A comprehensive survey on
cloud computing: architecture, tools, technologies, and open
issues’, International Journal of Cloud Applications and
Computing (IJCAC), Vol. 12, No. 1, pp.1–33.

Jia, H. and Peng, X. (2021) ‘High equilibrium optimizer for global
optimization’, Journal of Intelligent and Fuzzy Systems,
Vol. 40, No. 3, pp.5583–5594.

Kak, S.M., Agarwal, P., Alam, M.A. and Siddiqui, F. (2024) ‘A
hybridized approach for minimizing energy in cloud
computing’, Cluster Computing, Vol. 27, No. 1, pp.53–70.

Kharazmi, E. and Zayernouri, M. (2019) ‘Operator-based
uncertainty quantification of stochastic fractional partial
differential equations’, Journal of Verification, Validation
and Uncertainty Quantification, Vol. 4, No. 4, p.41006.

Kumar, K.V. and Rajesh, A. (2023) ‘Multi-objective load
balancing in cloud computing: a meta-heuristic approach’,
Cybernetics and Systems, Vol. 54, No. 8, pp.1466–1493.

Li, C., Zhang, J., Ma, T., Tang, H., Zhang, L. and Luo, Y. (2019)
‘Data locality optimization based on data migration and
hotspots prediction in geo-distributed cloud environment’,
Knowledge-Based Systems, Vol. 165, pp.321–334.

Nagaraj, N. (2022) ‘The unreasonable effectiveness of the chaotic
tent map in engineering applications’, Chaos Theory and
Applications, Vol. 4, No. 4, pp.197–204.

Shakya, S. (2019) ‘An efficient security framework for data
migration in a cloud computing environment’, Journal of
Artificial Intelligence, Vol. 1, No. 1, pp.45–53.

Shekhar, C.A. and Sharvani, G. (2021) ‘MTLBP: a novel
framework to assess multi-tenant load balance in cloud
computing for cost-effective resource allocation’, Wireless
Personal Communications, Vol. 120, No. 2, pp.1873–1893.

Singh, N. and Dhir, V. (2019) ‘Hypercube based genetic algorithm
for efficient vm migration for energy reduction in cloud
computing’, Statistics, Optimization and Information
Computing, Vol. 7, No. 2, pp.468–485.

Son, P.V.H. and Khoi, L.N.Q. (2024) ‘Application of slime mold
algorithm to optimize time, cost and quality in construction
projects’, International Journal of Construction Management,
Vol. 24, No. 13, pp.1375–1386.

Song, Z., Sun, Y., Wan, J., Huang, L. and Zhu, J. (2019) ‘Smart
e-commerce systems: current status and research challenges’,
Electronic Markets, Vol. 29, pp.221–238.

Teli, P., Thomas, M.V. and Chandrasekaran, K. (2016) ‘Big data
migration between data centers in online cloud environment’,
Procedia Technology, Vol. 24, pp.1558–1565.

Zhao, H., Feng, N., Li, J., Zhang, G., Wang, J., Wang, Q. and
Wan, B. (2023) ‘VM performance-aware virtual machine
migration method based on ant colony optimization in cloud
environment’, Journal of Parallel and Distributed
Computing, Vol. 176, pp.17–27.

