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Abstract: Computerised dance movement evaluation has grown to be a 
prominent research focus as computer vision and deep learning algorithms 
develop. Although manual annotation and 2D picture analysis are used in 
traditional dance movement evaluation techniques, they find it difficult to 
capture the dancer’s 3D spatial information, therefore producing erroneous and 
inconsistent assessments. To address this difficulty, this work presents 
StereoDance-CNN-Transformer, a dance movement evaluation model 
leveraging stereo vision and deep learning techniques. Whereas transformer 
employs the self-attention mechanism for temporal modelling to capture dance 
movement temporal dynamics, the convolutional neural network (CNN) 
extracts spatial characteristics from the image and captures dance movement 
posture. Combining spatial and temporal data helps the model to grasp and 
examine difficult dancing motions. Under several dance forms, this work 
examined StereoDance-CNN-Transformer and showed it exceeds conventional 
techniques in evaluation accuracy, fluency, cross-stylistic generalisation, 
adaptability, and robustness. 

Keywords: dance movement evaluation; stereo vision; deep learning; 
convolutional neural network; CNN; transformer. 
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1 Introduction 

Automatic evaluation of dance movements has progressively become a research hotspot 
in the field of computer vision as deep learning algorithms and computer vision 
technologies continue to evolve (Li et al., 2024). As an art form that mostly depends on 
human motions, dance has tight standards on the correctness, fluidity, and timing 
consistency of motions. Conventional dance movement evaluation techniques mostly 
depend on manual annotation and video analysis, which is not only time-consuming but 
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also constrained by the subjective evaluation of human specialists (El Raheb et al., 2023). 
Research on automated dance movement evaluation has progressively attracted attention, 
particularly in terms of the accuracy and consistency of employing computer vision to 
collect and understand dance motions, after deep learning has been successfully applied 
in image processing and timing modelling. 

Stereographic vision methods have been extensively applied in depth estimation and 
motion capture in 3D space recently (Clark et al., 2019). In the realm of dance movement 
evaluation, stereo vision can offer extensive information on the spatial gestures of 
dancers and assist to precisely analyse the 3D aspects of dance movements. Stereographic 
vision’s key benefits are its ability to model human motions in 3D space after capturing 
the depth information of a scene from several points of view (Zhao et al., 2025). 
Stereoscopic vision technology is so extensively applied in multi-view image and 3D 
motion capture activities including motion capture in virtual reality, sports analysis, and 
dance movement analysis. 

Although most of the conventional dance movement evaluation depends on 2D image 
or video data, the intricacy and dynamism of dance movements sometimes make the 
acquisition and analysis of 2D data insufficiently able to effectively reflect the spatial 
dimension. Wang et al. (2025) have tried to introduce stereo vision technology in order to 
address this issue. Using stereo vision technology to capture dancers’ three-dimensional 
spatial information will yield more rich movement details than conventional  
two-dimensional techniques. For instance, the reconstruction of the 3D skeleton model of 
the human body using stereo vision can faithfully capture the spatial posture and 
movement trajectory of the dancer in the movement, so enhancing the accuracy and 
fluency of the evaluation (Nirme et al., 2020). 

Apart from stereo vision, deep learning-especially transformer models and 
convolutional neural network (CNN) has made tremendous development in computer 
vision and temporal modelling. As a classic model in deep learning, CNN works well on 
picture classification, target identification and posture recognition (Elngar et al., 2021). It 
is quite successful in analysing spatial aspects in dance movements and can automatically 
extract low-level features in images, record information like shape, colour, and texture of 
objects, and. CNN does, however, have certain difficulties digesting temporal data, 
particularly in relation to the temporal evolution and long-term reliance of dance 
movements. Shaikh et al. (2024) have presented the transformer model, which has 
significant potential especially in action sequence modelling and multimodal data fusion 
and shows superiority in handling long term dependencies, therefore addressing this 
challenge. In the domains of action recognition, human posture estimation, and motion 
capture, current efforts have shown decent outcomes. For human posture estimation, for 
instance, CNN-based deep learning techniques may effectively extract human skeleton 
information from photographs; transformer has been used to temporal sequence 
modelling of multi-frame images, so improving the accuracy and continuity of action 
detection. 

Still, there are several flaws in the current approaches even if certain research have 
made considerable progress in dance movement identification and evaluation. Though 
there are rather few in-depth combinations of 3D spatial analysis and time-series 
modelling of motions, most of the current studies centre on 2D photos. When handling 
complicated motions (e.g., fast-paced street dance or challenging ballet movements), 
most of the techniques confront the difficulties of recognition accuracy and timing 
consistency. Furthermore, most of the current models struggle to keep effective 
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performance in various dance forms while most of them lack cross-stylistic adaptability 
and perform just in a given dancing style. 

Aiming to produce accurate assessment of dance motions using  
multimodal information fusion, this work presents a deep learning model,  
StereoDance-CNN-Transformer, which integrates stereo vision technology, CNN and 
transformer, to address these challenges. The StereoVision method specifically gives the 
model rich spatial information; the CNN is in charge of extracting the low-level picture 
data; and the transformer models the temporal correlations in the dance moves. By means 
of this creative mix, this study not only increases the generalisation capacity of the model 
so enabling its adaptation to the movement assessment of several dance forms, but also 
improves the accuracy and smoothness of dance movement evaluation. 

This work has original points of interest as follows: 

1 Combining stereo vision and deep learning models: the first application of merging 
stereo vision technology with deep learning algorithms for dance movement 
evaluation is shown in this work. This work is able to offer more precise spatial 
aspects of motions than conventional 2D photographs throughout the assessment 
process by using stereo vision to record 3D spatial information of dancers. This 
novel multi-view deep information fusion helps the model to better grasp the dancing 
motions in the spatial dimension, so enhancing the accuracy and fluency of the 
assessment. 

2 Generalisation ability of multi-style dance movements: this study not only confirms 
the model under one dance style but also experimentally shows the outstanding 
generalisation capacity of the model over several dance forms. By means of  
cross-styles training and testing, the model is able to accommodate the movement 
assessment of many dance forms, so addressing the issue of significant performance 
variations across different dance forms and so enhancing the adaptability and 
flexibility of the model. 

3 Innovation of integrated assessment and feedback mechanism: this work also 
suggests a novel integrated assessment and feedback mechanism, which incorporates 
evaluation indices including the fluency and consistency of the dance movements in 
addition to concentrating on the spatial and temporal traits of the motions. By means 
of this integrated assessment approach, the model can offer a more thorough and 
extensive study of dance moves, therefore transcending the constraints of 
conventional techniques emphasising just on the quality of a single movement. 

2 Relevant technologies 

2.1 Stereo vision technology 

Stereoscopic vision technology replicating the ideas of the human visual system recovers 
the depth information of a 3D scene by using photos from several angles. The 
fundamental concept is to derive the position of the object in 3D space by means of two 
or more cameras obtaining pictures from various angles of the same scene and computing 
the parallax between them. Stereographic vision offers rich depth information, which is 
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appropriate for complicated dynamic scenes, and may get high-precision 3D 
reconstruction results by basic hardware configuration. 

Image matching and triangulation provide the foundation of stereo vision’s working 
idea. Assuming that the cameras matching two photos taken from various points of view 
are the left and the right cameras, first two images are acquired. First one must locate the 
matching spots of the same object in the left and right images to attain stereo matching. 
The parallax, d, is defined as the difference between the horizontal coordinates of the 
identical object in the left and right images: xL, yL for a point in the left image; xR, yR for a 
matching position in the right image. 

L Rd x x   (1) 

The relative depth information of an item is reflected by parallax; the object is closer to 
the camera the greater the parallax value; the object is further away the smaller the 
parallux value. Consequently, one can immediately determine the depth information of 
the object by knowing the parallax’s size. 

From the parallax value Z, one may determine the depth of an object point by 
triangulation. The depth of the object point can be computed with the following formula 
assuming a f focal length for the camera and a B baseline distance – that is, the distance 
between the two cameras: 

f B
Z

d


  (2) 

The formula reveals that the depth Z is inversely proportional to the parallax d, that is, the 
object is closer the larger the parallax and vice versa. 

Among the main challenges in stereo vision technology is the parallax map 
computation. Image matching is necessary to locate the related spots in the image so 
obtaining an accurate parallax map (Li et al., 2022; Zhai and Chen, 2021). Usually based 
on pixel intensity similarity, matching techniques figure the matching cost between every 
pair of pixels. Common matching cost functions include more intricate correlation 
measurements, sum of absolute differences (SAD), and sum of squared differences 
(SSD). Usually, this approach presents the cost function C(xL, xR) as the difference in 
intensity between the left and right pixels of the image at a given position: 

     ,L R L L R RC x x I x I x   (3) 

where IL(xL) and IR(xR) represent the pixel intensity values at respective locations xL and 
xR. This function aims to limit cost so as to get the best pixel matching relationship. 

Matching techniques based on image gradient and texture characteristics have been 
progressively embraced recently in order to raise the accuracy of stereo matching. For 
instance, the computation of picture gradient can assist to identify the edge information 
between pixels, so improving the robustness of matching. Image gradient has a 
computation formula like this: 

2 2
( , ) ( , )

( ),Grad x y
I x y I x y

x y

            
 (4) 
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where indicating the change in space, Grad(x, y) is the gradient value of the image at 
point (x, y). Larger gradients often suggest more obvious structural or edge changes in the 
image, and these areas typically have better matching accuracy. 

Stereopsis vision systems additionally use parallux smoothing methods to better 
improve the parallax map and lower noise. Parallax smoothing aims to create a spatially 
continuous and smooth parallax map therefore avoiding local mistakes or noise. Common 
parallax smoothing techniques rely on regularising the image’s gradient to prevent too 
significant variations in the parallax. One may formulate the goal function of this 
optimisation issue as: 

2 2

( , )

( ,
i

( ,
m

) )
n

d
x y

d x y d x y
L

x y

          
 

     
  (5) 

where 
2

( , )d x y

x

 
 
 

 represents the parallax map’s x-direction gradient and 
2

( , )d x y

y

 
 
 

 

is y-direction gradient accordingly. By means of the convergence of parallax values in 
nearby areas, the minimisation of this objective function essentially lowers noise and 
mistakes. 

Moreover, stereo vision depends much on camera calibration (Mentzer et al., 2019). 
Calibrating helps one determine both internal and exterior parameters-that is, focal 
length, principle point position, etc., as well as relative positions between cameras. 
Usually utilising a known calibration plate, camera calibration is done; from the 
relationship between the known world coordinates and picture coordinates, one deduces 
both internal and external camera parameters. The following lists often used calibration 
formulas: 

, , 1 |[ ] [ ][ , , , 1]T Tx y K R t X Y Z  (6) 

where [x, y, 1]T are the picture coordinates; [X, Y, Z, 1]T are the coordinates of the object 
in the world coordinate system; K is the internal reference matrix of the camera; R and t 
are the rotation matrix and translation vector, respectively, therefore reflecting the 
external parameters of the camera. 

Sterevision may effectively reconstruct 3D scenes and offer consistent spatial 
information for later movement analysis and evaluation using these methods and 
mathematical algorithms (Cheng and Matsuoka, 2021). Sterevision vision technology can 
precisely record the dynamic position changes of dancers and offer exact depth 
information in dance movement evaluation, therefore offering richer and more accurate 
data support for movement analysis. 

2.2 Deep learning in dance movement assessment 

Deep learning applied in dance movement assessment depends on computer  
vision, gesture estimation, and movement identification methods. Deep learning  
models-especially CNN and RNN-allow computers to automatically extract essential 
elements from photos or videos and conduct motion analyses to help evaluate dance 
quality, movement correctness, and spatial performance of the dancers. Deep learning is 
strong enough to properly execute movement detection and analysis in a range of 
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contexts and has the benefit of being able to manage challenging dynamic data in dance 
movement evaluation (Ferreira et al., 2021). 

Common application situations in dance movement evaluation comprise tasks 
including movement synchronisation, pose estimation, movement classification and 
recognition. Deep learning – especially the processing based on time-series data – can 
help to support real-time evaluation of dance motions. First, a basic first stage in dance 
movement evaluation, posture estimation helps one examine the skeletal structure and 
posture alterations of the dancer. Deep learning can extract the main point information of 
the human body and build a 3D skeleton model by predicting the locations of several 
important points based on technologies such CNN and fully connected network (FCN) 
(Djavanshir et al., 2021). 

Assume Figure 1 illustrates the breakdown of a ballet dancing movement at a specific 
instant. 

Figure 1 Illustration of the decomposition of dance movements (see online version for colours) 

 

Using an optimisation goal that can be characterised as the 3D location of the critical 
point estimated by the deep learning model: 

2
ˆ arg min

k

gt
k k k

p i

p p p   (7) 

where ˆkp  is the projected position output by the deep learning model and gt
kp  is the 

actual key point location in the calibration set. By means of this optimisation process, the 
deep learning model may progressively refine and precisely estimate the dancer’s key 
point coordinates. 

Second, the main activities of deep learning in dance action evaluation are action 
recognitions and classification. Deep learning models commonly process the time series 
data using RNN or LSTM for every dance movement sequence. By means of memory 
units, LSTM network can efficiently capture the long-term dependency of the movements 
in the time series, so addressing the issue of gradient disappearance that could arise for 
the conventional neural network handling long sequences. Assuming a dance action 
sequence X, one can represent X as follows: 

 1 2, , ..., TX x x x  (8) 

where at moment t the action feature is x. The LSTM uses this recursive algorithm to 
update the hidden state ht: 
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 1,t t th LSTM x h   (9) 

where ht, the hidden state at instant t, reflects the temporal qualities of the dance 
movement. The model can learn and categorise the intricate dance action characteristics 
using the multi-layer LSTM network. The following formula allows one to forecast the 
final categorisation results assuming y  {1, 2, …, N} as the action category labels: 

 ˆ arg max soft max T
y

Wy h b   (10) 

where ŷ  is the expected action category; W and b are the model’s parameters; hT is the 

hidden state at the last moment; softmax(∙) is the probability distribution that links the 
output to the category. 

Recently, multimodal data fusion methods have also been included into deep learning 
models in order to raise the recognition accuracy (Steyaert et al., 2023). Apart from 
image and video data, motion capture systems or sensor data (e.g., accelerometers, 
gyroscopes) is frequently employed in dance movement evaluation. Deep learning 
models can offer a more complete movement evaluation by combining aspects of several 
data sources. Assuming a data input with image features fimg and sensor features fsensor, for 
instance, the features can be merged via a fusion network to provide the ultimate 
assessment features: 

 final img sensorconcat ,f f f  (11) 

This fused characteristic then helps to classify or evaluate actions. By means of such 
multimodal fusion, the restriction of a single data source may be efficiently compensated 
for, hence enhancing the accuracy and resilience of the model. 

Apart from simple movement detection, deep learning has great application in dance 
movement evaluation for movement synchronisation and time alignment (Nogueira et al., 
2024). Deep learning models, for instance, can synchronise movement analysis between 
several phases of a dance performance to guarantee that the dancers’ motions match the 
rhythm or music. The transformer model computes the self-attention weights using the 
following formula assuming X as the dance movement input sequence: 

( ) soft mAttention , , ax
T

k

QK
Q K V V

d

 
  

 
 (12) 

where the query vector is Q, the key vector is K; the value vector is V; the dimension of 
the key vector is dk. By means of this technique, the transformer may dynamically change 
its attention to every time step, therefore producing more exact time synchronisation and 
movement analysis. 

By use of several deep learning models, it can efficiently record the movement 
features, gesture changes, and coordination with music beat in dance, so supporting dance 
education, competition scoring, and real-time feedback systems. 
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3 StereoDance-CNN-Transformer: a stereo visual deep learning model for 
dance movement evaluation 

Combining stereo vision techniques, CNN and transformer deep learning algorithms, the 
StereoDance-CNN-Transformer model seeks to precisely evaluate and analyse dance 
motions. Three primary components comprise the model: transformer timing modelling, 
StereoVision, and feature extraction and processing module. See Figure 2 to ensure the 
full process’s complementing functions of every module guarantee the comprehensive 
knowledge and effective evaluation of dance moves. 

Figure 2 StereoDance-CNN-Transformer model (see online version for colours) 
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3.1 Stereo vision module 

Using several cameras, the stereo vision module records photos of dancers from various 
angles, therefore producing depth maps and 3D skeletal information (Pristerà et al., 
2020). Recovering 3D information from 2D photos and offer correct spatial 
characteristics for further time-series modelling is the main goal of the module. 

Stereographic matching allows one to determine the parallax between images taken 
from several angles. Important information regarding the depth of the scene is given by 
the parallax value, which reflects the variation of every pixel point in the three 
dimensions. One may find the depth information of every pixel by applying the parallax 
values. Using the 3D coordinate reconstruction formula, the stereo vision module further 
translates every point in the 2D image to coordinates in 3D space following the depth 
information. The 3D coordinate equation is: 

 x

x

D x c
X

f

 
  (13) 
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 y

y

D y c
Y

f

 
  (14) 

Z D  (15) 

The depth, D, represents the distance from each pixel point to the camera; X, Y, Z are the 
coordinates in 3D space; (x, y) are the pixel coordinates in the image; cx, cy are the 
photocentre positions of the camera; fx, fy are the focal lengths of the camera. These 
techniques convert each 2D pixel point to 3D coordinates, therefore generating 3D 
skeleton data for further action evaluation. 

Processing the 3D data from consecutive frames, the stereo vision module derives the 
dancer’s movement trajectory in space following acquisition of the 3D skeleton 
information. The 3D skeleton representation xt for every frame can be obtained by first 
expressing these 3D skeleton points pt,k as the location of the dancer’s joint k in 3D space 
at time step t: 

 ,1 ,2 ,, , ...,t t t t Kx p p p  (16) 

where K is the overall count of joints. For the next feature extraction and timing 
modelling modules, the 3D skeleton data supplied by the stereo vision module offers rich 
spatial information at last. By means of spatial location and depth information of the 
dancer, these data enable the model to more precisely grasp the spatial variations and 
structural elements of the dance motions. 

3.2 Feature extraction and processing module 

Extraction of meaningful spatial and temporal information from the 3D skeletal data and 
photos supplied by the stereo vision module is the main goal of this module; these 
features should be transformed into inputs fit for next temporal modelling (Yue et al., 
2022). To finally produce a rich, multimodal feature representation, the module employs 
CNNs to extract spatial characteristics from the images and aggregates them with the 
depth information received from the stereo vision module. 

CNNs first harvest local spatial features from the image. By layer-by- layer 
convolution, the CNN can extract a spectrum of representations from low-level features 
(e.g., edges, textures) to high-level features (e.g., forms, objects) from an image. The 
convolutional layers’ computation is accomplished using the following equation: 

ReLU ij j ii

j

x bz W  
 





  (17) 

where Wij is the weight of the convolution kernel; xj is the input feature; bi is the bias 
term; zi is the output of the convolution layer; the ReLU activation function introduces 
nonlinearities allowing the model to learn more intricate features. 

The pooling layer then downsamples convolutional layer output to further lower 
feature dimensionality while maintaining significant spatial information. Usually carried 
out utilising maximum pooling, computed as follows: 

 max pool iip z  (18) 
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The maximum pooling process chooses the maximum value in every local area, therefore 
condensing the spatial dimension of the feature map and lowering the computational cost 
where pi represents the pooled features. 

Concurrently, this module incorporates the depth information supplied by the stereo 
vision module to improve the dancer’s spatial awareness of her motions. The merged 
feature ft is obtained by fusing the convolutional feature zt with the depth map 
information dt of every image frame: 

 concat ,t t tf z d  (19) 

The stitching procedure lets the spatial features and depth information of every image 
frame be fed together into the next temporal modelling module where ft is a fused feature 
including depth information and spatial characteristics. 

The fused features are handled through the completely connected layer to improve the 
expressive capability of the features even more. One may visualise this process by means 
of the following equation: 

 ReLUt f t fh W f b    (20) 

where Wf is the weight of the completely connected layer; bf is the bias term; ht is the 
high-level feature generated by the fully connected layer. By means of the fully linked 
layer’s processing, the dimensions of the data transfer to a new space, therefore enabling 
the model to learn a more abstract description of the dance motions (Kritsis et al., 2022). 

This module employs CNN and stereo vision data to extract fine spatial and temporal 
elements in general, then feeds temporal modelling from these inputs. These 
characteristics not only provide rich contextual information for later dance movement 
evaluation but also include the 3D spatial knowledge from the depth data, so reflecting 
the spatial structure of the image. 

3.3 Transformer timing modelling module 

The transformer temporal modelling module’s major goal is to use transformer deep 
learning architecture to replicate dance movement temporal aspects. The Module 
generates a high-level representation of the action by use of transformer’s self-attention 
mechanism to capture long-range dependencies in the temporal data and absorbs 
processed spatio-temporal features from the Feature Extraction and Processing module. 
By means of this module, the model may extract efficient spatio-temporal features from 
intricate dance action sequences in order to accomplish correct dance action evaluation 
and categorisation (Qin and Meng, 2025). 

First, a multi-head self-attention mechanism helps the transformer architecture 
understand the significant temporal aspects in the input sequence. The self-attention 
mechanism dynamically changes the weights of several points in the input sequence by 
computing their correlation. The self-attention computation method for the input feature 
sequence X = [x1, x2, …, xT] follows this equation: 

soft max
T

k

QK
A

d

 
  

 
 (21) 
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With Q as the query matrix, K as the key matrix, and dk as the dimension of the key 
vector, Calculating the similarity between the query and the keys allows the self-attention 
mechanism to acquire the weights; subsequently, it uses weighted summation on the 
value matrix V to generate the output features for every position. 

Transformer then employs a multi-head attention mechanism to process the inputs in 
parallel, hence enhancing the expressiveness of the model. Every head learns a different 
subspace representation and then stitches together the outputs of several heads to produce 
a richer feature representation. Multi-head attention produces outputs that might be 
expressed as: 

 1 2concat head , head , ..., headh oZ W   (22) 

 head Attention , ,i i i iQ K V  (23) 

where headi is the result of the ith head; Wo is the output weight matrix; h is the number of 
heads; and the produced feature is the last result. Z combines knowledge gleaned from 
several subspaces learned from several brains. 

Transformer’s encoder also features a component for positional coding to add 
positional information for every input sequence position. Transformer itself lacks the 
capacity to manage sequence order, thus position encoding embeds positions into the 
input features overcomes this issue. Position encoding has a formula: 

2 /
, 2 sin

10
(

,000
)

i d

t
PE t i

   
 

 (24) 

2 /
, 2 1 cos

10,000
( )

i d

t
PE t i

    
 

 (25) 

where i is the location coding dimension index, t is the time step; d is its dimension. Input 
data is location encoded so the model may manage timing data with position knowledge. 

Decoder following multi-layer encoder processing will finalise processing and 
classification of transformer output features. The transformer timing modelling module 
may so extract high-level characteristics with timing patterns and capture timing 
dependencies in dance movement sequences to evaluate and analyse dancing stirrup 
movements. 

This chapter describes the StereoDance-Transformer, a deep learning model with 
CNN, transformer, and stereo vision that precisely evaluates dancing actions. The stereo 
vision module first provides the model 3D spatial information needed for improved dance 
motion interpretation. CNN may then integrate spatial elements extracted from dancing 
video frames with depth information to produce rich input characteristics. Finally, 
transformer’s temporal modelling lets it detect long-distance dependencies in dance 
action sequences thereby improving action evaluation and classification. 

These three techniques enable the StereoDance-Transformer model to grasp spatial 
features and manage temporal information, therefore providing a more whole dance 
movement evaluation solution. Particularly in dance instruction, performance evaluation, 
and movement recognition, the method has many pragmatic applications. 
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4 Experimental results and analyses 

4.1 Experimental data 

The experimental dataset of this work is the multiview dance dataset. Designed for dance 
movement evaluation, this dataset comprises multiview video footage and matching 3D 
motion data, which is ideally fit for tasks integrating stereo vision and deep learning 
models. 

Every video in the dataset is filmed from a distinct perspective to guarantee sufficient 
variation and stereo information to facilitate the training of stereo vision systems. Every 
video has several frames, and each one offers 2D and 3D posture information of the 
dancer that may be utilised to train models of dance movement recognition and 
evaluation. Table 1 compiles the dataset’s key facts: 

Table 1 Multiview dance dataset information 

Item Details 

Data type Multi-view video data, 3D human pose data 

Dance styles Includes various styles such as modern dance, ballet, and street dance 

Video count Approximately 200 videos 

Frame rate 30 frames per second 

Number of views At least 4 different viewpoints per video 

Annotations 2D and 3D joint coordinates for each video frame 

4.2 Experimental evaluation 

Several important evaluation metrics are chosen in this work to assess the  
StereoDance-CNN-Transformer model in dance movement evaluation, which can 
sufficiently evaluate the model’s capabilities in terms of temporal modelling, spatial 
localisation and movement fluency. The particular evaluation criteria consist as follows: 

4.2.1 Temporal consistency score 

When running dance movement sequences, the stability and coherence of the model are 
assessed using the timing consistency score (Aristidou et al., 2022). Good temporal 
consistency helps the model to move fluidly between frames, therefore preventing sharp 
transitions or breaks. Calculating the similarity between the projected trajectory of the 
model and the actual trajectory with the formula helps one evaluate this metric: 

1

1
Predictio GroundTruth

N

i i

i

TCS n
N 

   (26) 

where N is the total number of video frames; Predictioni and GroundTruthi respectively 
refer to the expected and true values of the ith frame. 
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4.2.2 Spatial localisation accuracy 

The degree of localising dancer joint points in 3D space is evaluated using accuracy 
(Bera et al., 2023). Analysis of dance movement depends on precise 3D joint prediction. 
The Euclidean distance between the expected 3D joint coordinates and the actual joint 
coordinates-defined as-measures this statistic: 

     2 22

1

1 M

i i i i i i

i

SLA x x y y z z
M

  



       (27) 

where M is the total number of joints; (xi, yi, zi) and ( , , )i i ix y z    correspondingly indicate 

the 3D coordinates of the projected and real joints. 

4.2.3 Action smoothness score 

The model’s smoothness is assessed in producing dancing motions using action 
smoothness score (ASS). A key component of dance movement recognition, action 
smoothness tells if the change between movements is natural or not. ASS is assessed 
using the formula: 

1

2

1

1

N
i i

ii

v v
ASS

N v







   (28) 

where vi is the ith frame’s speed here. Reduced ASS values show more natural and 
smooth movements the model generates. 

4.3 Experimental procedure 

Two studies to assess the StereoDance-CNN-Transformer model for dance motion 
evaluation are presented in this chapter. The first experiment assesses the performance 
across dance forms and the accuracy of the model on a standard set of dancing actions. 
Modern, street, ballet, and Latin dance forms all test the model’s accuracy and temporal 
consistency. The second experiment evaluates the generalisability and robustness of the 
model among dancing forms. These two experiments taken together show the capacity of 
the model to evaluate different dancing motions. 

StereoDance-CNN-Transformer model for single-view and multi-view dance 
movement assessment is tested in first experiment. From every video in the collection, 
single-view and multi-view dancing frames are separated. Whereas the single-view 
condition assesses each video from a fixed viewpoint, the multi-view condition lets the 
model simultaneously examine video data from several camera angles. 

During preparation, all of the video data was standardised. CNNs extracted keypoints 
and early features from every video frame for single-view data, which the transformer 
model for temporal modelling was fed. Sterevision vision processing was applied for 
multi-view data to get the 3D spatial coordinates of every dance movement by fusion 
calculation of several camera angles fed into the CNN for feature extraction and 
temporally modelled using the transformer model. Adam optimiser parameter updates 
and a cross-entropy loss function guides training of the model. Training makes use of a 
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batch gradient descent method to guarantee model generalisation across several 
viewpoints. The experimental results show in Figure 3. 

Figure 3 Comparison results of the performance of dance movement evaluation under single 
view and multi-view perspectives (see online version for colours) 
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The model performs notably better in the multi-view condition than in the single-view 
condition, according to the experimental findings. The multi-view scenario produced 
lower scores on the spatial localisation accuracy (SLA) measurements, suggesting that 
the model was more spatial localised correctly. Furthermore, the much higher multi-view 
condition scores of ASS and temporal consistency score (TCS) show that, with  
multi-view, the model can better grasp the fluency and timing consistency of the dance 
motions. 

By means of this investigation, the significant benefit of multi-view input over  
single-view input in dance movement evaluation was confirmed to yield more accurate 
and reliable assessment findings. 

Experiment 2 assessed the StereoDance-CNN-Transformer model’s generalisation 
capacity on the multiview dance dataset including several dance forms. This dataset 
consists of Multiview Dance movies spanning several dance forms; so, this experiment 
intends to investigate the variations in the performance of the model under several dance 
forms and evaluate its adaptability among several dance styles. 

All videos are first normalised and then arranged based on dance forms during data 
preprocessing. CNN helps to extract important aspects of every video frame for every 
batch of data. The retrieved features are then fed into the transformer model for temporal 
modelling, and lastly the model produces assessment results for the dancing motions. 
Figure 4 shows the experimental findings. 

Modern dance’s experimental SLA score of 0.12 shows better model placement. With 
high ASS and TCS of 0.90 and 0.85, modern dance indicated strong movement fluency, 
timing consistency, and smoother, more steady transitions. Modern dancing fits the 
approach really nicely. 

Street dance has a high SLA score of 0.17, but the complexity of the movements and 
the significant rhythmic changes lower fluency and temporal consistency and make it 
difficult for the model to capture smooth transitions and temporal coherence. This reflects 
in the ASS and TCS scores of just 0.85 and 0.80. 
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Figure 4 Comparison of the model’s evaluation performance in different dance styles (see online 
version for colours) 
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With a lowest SLA score of 0.08, ballet shows good placement accuracy. Ballet is steady 
and consistent; the ASS and TCS are 0.92 and 0.90, showing smooth movements and 
great temporal consistency. 

With an ASS score of 0.89, showing great fluency, Latin dance has a somewhat 
higher SLA of 0.10 than ballet; yet, a TCS score of 0.84 is probably the result of the 
significant rhythmic variations in the motions, which provide worse timing consistency. 

5 Conclusions 

StereoDance-CNN-Transformer is a dance movement evaluation model based on stereo 
vision and deep learning techniques (CNN and transformer). The model combines CNN’s 
strong feature extraction with transformer’s temporal modelling to precisely analyse 
dancing actions from several angles using stereo vision to record their spatial 
information. 

Though it has certain results, StereoDance-CNN-Transformer has some dance 
movement evaluation limits. First, in complex dance genres including street dance, the 
model’s temporal consistency and movement fluidity are lacking. Second, this work used 
the multiview dance dataset for experiments; although its scope and variety might restrict 
model evaluation, this is still a valid approach. The model problems with visual quality 
and motion blur even with stereo vision. 

The following areas call more investigation: 

1 Expanding the dataset and diversity enhancement: the dataset could include more 
dancing forms and movement techniques in next research. More dance footage in 
diverse settings and lighting conditions will help the model to be more robust and 
generalising. Furthermore enhancing the cross-cultural adaption of the concept is the 
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cultural variety of dancing motions, integrating dance forms from several 
civilisations. 

2 Optimisation of stereo vision algorithms: future studies can investigate more 
sophisticated stereo vision algorithms, like stereo matching techniques based on deep 
learning, or the application of multi-view image fusion technologies to raise the 
depth map’s accuracy. Stability and robustness of the model in complicated dynamic 
situations can be raised by optimising stereo vision algorithms. 

3 Multimodal learning and self-supervised learning: future studies can incorporate 
multimodal learning to integrate several kinds of data, including audio, sensor data, 
and motion capture data, thereby offering a more complete dance evaluation model. 
Furthermore, a self-supervised learning method – using unlabelled data for training – 
can considerably raise the model’s performance in an unsupervised setting and 
increase its adaptability. 

Finally, this work shows the possibilities of merging stereo vision technology with deep 
learning algorithms in this field and offers a fresh perspective for evaluation of dance 
movements. As technology develops constantly, it is projected to enhance the 
performance of the model and increase its application range in the next years. 
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