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Abstract: This paper combines computer intelligence technology to propose a 
spatiotemporal evolution analysis model that couples and coordinates digital 
economy (DE) and green development (GD), thereby providing new insights 
and enlightenment for the development of related fields and providing 
theoretical support for the transformation and high-quality development of 
green economy (GE). This paper combines subgroup decomposition Gini 
coefficient to improve the algorithm and proposes a Dagum-coupling model, 
and verifies the effect of the model with experiments. This paper uses the 
Dagum-coupling model to analyse the influencing factors of the CAD (CAD) 
level between DE and GD, and tests the robustness of the model. The 
experimental results verify that this paper uses Dagum-coupling model to 
analyse the CAD level of DE and GD, which has good practical effect. The 
strategic improvement adopted by the model proposed in this paper can 
promote the coordinated development of DE and GE in this region. 
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1 Introduction 

Against the background of global environmental pressure and resource constraints, the 
deep integration of DE and GE shows great potential to solve contemporary challenges. 
In particular, in the area of regional development, this convergence not only helps to 



   

 

   

   
 

   

   

 

   

   22 G. Chen    
 

    
 
 

   

   
 

   

   

 

   

       
 

optimise the allocation of resources, but also promotes the green transformation of the 
economic structure. Through analysis, this paper explores the application of digital 
technology in promoting regional sustainable development and the innovation 
opportunities it brings, and further understands how to realise the win-win strategy of 
economic growth and environmental protection through scientific and technological 
innovation and the promotion of environmental awareness, so as to open up a new path 
for regional development (Luo et al., 2022). 

The DE has the characteristics of high technology, synergy and penetration, and can 
promote job creation, innovation and development, stimulate consumption and drive 
investment through continuous and in-depth integration with various fields of society, 
including integration with the GE (Ma and Zhu, 2022). Under the increasingly severe 
global climate problem, countries around the world generally realise that the integrated 
development of DE and GE will become an important breakthrough in addressing climate 
challenges, and have launched a series of measures for the strategic collaborative 
development of DE and GE (Luo et al., 2023). 

With the development of electronic information, electronic waste has increased 
significantly in the process of production and life. In addition, the energy consumed by 
the development of the DE cannot be ignored. Therefore, whether the impact of the DE 
on the environment is negative has become a question. In fact, using information 
technology to build smart grids, detecting carbon absorption and managing carbon 
emissions through big data can promote the green and efficient transformation of energy, 
and vigorously promoting the GD of the DE can curb the adverse impact of the DE on the 
climate. Moreover, adhering to GD is an objective requirement to deal with the 
deterioration of the ecological environment, and it is also the only way to achieve the 
‘double carbon’ goal. The emerging technologies and innovation capabilities contained in 
the DE can improve the efficiency of environmental supervision and resource utilisation, 
contribute to industrial economic development and social ecological governance, and GD 
can guide the healthy development of the DE, which is a development concept that 
should always be upheld. Therefore, studying the coordination relationship between DE 
and GD is of great significance for promoting the coordinated development of the two, 
and then promoting the high-quality development of China’s economy (Yang et al., 
2024). 

 Traditional financial services have some problems, such as liquidity stratification of 
financial resources, mismatch between allocation structure and efficiency, etc., which 
lead to low quality and efficiency of financial services. As a product of financial 
innovation, digital inclusive finance, on the basis of strengthening the application of 
digital technology and big data, can improve resource use efficiency and slow down 
environmental pollution by optimising resource allocation, alleviating financing 
constraints, and stimulating innovation. On the other hand, as the threshold of financial 
services is lowered, financing channels are widened, financing costs are reduced, and the 
coverage of financial services is expanded, production and consumption will be further 
stimulated, leading to an increase in energy consumption and environmental pollutant 
emissions. 

This paper combines computer intelligence technology to propose a spatiotemporal 
evolution analysis model that couples and coordinates DE and green development (GD), 
thereby providing new insights and enlightenment for the development of related fields 
and providing theoretical support for the transformation and high-quality development of 
GE. At the same time, this paper combines subgroup decomposition Gini coefficient to 
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improve the algorithm and proposes a Dagum-coupling model, and verifies the effect of 
the model with experiments. By comparing the goodness of fit of different models, this 
paper confirms that the Dagum-coupling model has a better effect on the analysis of 
influencing factors of panel data. 

2 Related works 

2.1 The relationship between DE and GD 

Ren et al. (2022) discussed the benefits of DE to GD from the perspective of the internet 
of things, and believed that using the internet of things for information transmission and 
remote control could reduce the use of human resources, and its convenience and 
intelligent management avoided the consumption of huge resources, which was 
conducive to the development of low-carbon economy. Hao et al. (2023b) analysed the 
energy consumption and environmental impact characteristics of the DE, and analysed 
from multiple perspectives that the greening of the DE is an inevitable choice for China’s 
high-quality development. Li et al. (2022) believed that the continuous implementation of 
technology integrating DE and GE created opportunities for the construction of urban 
infrastructure, the improvement of sectoral productivity, and the development of 
knowledge economy and experience economy, and improved the quality of urban 
environment and urban life, thus achieving sustainable development. Wang et al. (2022), 
from the perspective of green stimulus, believed that the GE and the DE can promote 
each other, and the coordinated development of the two can promote the economic 
recovery after the epidemic. 

2.2 Quantitative analysis 

Liu et al. (2022) empirically found that technological innovation is an important means 
for DE to improve the efficiency of GE. Lyu et al. (2023) studied the relationship 
between economic recovery and GD during the epidemic, and believed that the 
development of DE and clean energy can increase my country’s economic aggregate, but 
the challenges in the process of labour transformation will slow down the progress of 
economic recovery to a certain extent. Xu et al. (2022) constructed the  
Malmquist-Luenberger productivity index based on the DDF model for analysis, and 
believed that the DE can significantly improve the green total factor productivity of my 
country’s industry. Ran et al. (2023) used DFGMM model and threshold regression 
model to conduct empirical research, and the results showed that the level of DE can 
generally promote green economic efficiency. 

2.3 Impact of information technology on energy 

Dou and Gao (2022) believed that with the development of DE, the impact of coal-based 
energy structure on carbon emissions gradually weakens. Zhao et al. (2023) used the data 
of Chinese manufacturing enterprises for analysis, and believed that the increase of ICT 
technology application would reduce the energy intensity of enterprises. Liu et al. (2024) 
believed that information technology can indeed improve the operation efficiency of 
traditional industries, thus reducing resource utilisation and environmental pollution in 
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the process of product production. However, the information manufacturing industry 
itself will consume a lot of energy, and the accelerated upgrading of information 
equipment will also produce more electronic waste, which will increase the waste of 
natural resources. Hao et al. (2023a) pointed out that digital technology shows an 
inhibitory effect by improving energy efficiency and optimising industrial structure to 
reduce part of energy consumption. The improvement of energy efficiency will have a 
rebound effect, and the ICT industry itself is an energy-intensive industry, so it has a 
growth effect on energy consumption. Regarding the relationship between the two, Guo 
et al. (2023) found that there is a U-shaped relationship between ICT development and 
energy consumption. Meng and Zhao (2022) found through empirical research on 
China’s inter-provincial panel data that the level of economic greening first increases and 
then decreases with the improvement of the level of DE, and there is a quadratic curve 
relationship between DE and energy intensity. Nusratovich and Shermatov (2022) 
believed that the DE can promote GD by reducing energy consumption, reducing 
pollution emissions and improving production efficiency. 

From the above analysis, it can be seen that in the construction of digital 
infrastructure level indicators, few studies consider new infrastructure indicators. This 
paper uses most commonly used angles, and combines the digital industrialisation and 
industrial digitisation level into the degree of digital industry integration to construct the 
index system of DE development level, and takes the number of national data exchanges 
and the number of national supercomputing centres as new infrastructure indicators into 
the de infrastructure evaluation system. In terms of measurement methods, previous 
studies mostly use entropy method, while in recent years, subjective weighting method 
and principal component analysis method are rarely used. 

3 Regional differences and evolution trends in industrial GD efficiency 

This part measures and analyses the characteristics of digital economy and industrial 
green development level. Firstly, the evaluation index system of digital economy is 
constructed, and the entropy weight method is used to measure the development level of 
digital economy, and then the super efficiency SBM model is used to measure the 
efficiency of industrial green development; this paper analyses the characteristics of 
digital economy development level and industrial green development efficiency from two 
dimensions of time and space, and finally analyses the regional differences and sources of 
industrial green development efficiency by measuring Gini coefficient. 

Taking digital economy and green development as two systems, this paper analyses 
the coupling coordination mechanism between them, calculates their coupling 
coordination scheduling, and displays their coupling coordination level; then, the  
spatio-temporal evolution characteristics of coupling coordination degree are analysed, 
and the development status and development differences of provinces and cities are 
revealed from the perspective of time and space; finally, the spatial autocorrelation of the 
coupling coordination degree between digital economy and green development in each 
region is analysed. 
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3.1 Dagum Gini coefficient and its decomposition method 

Based on the problem that the traditional Gini coefficient cannot be decomposed, the 
overlapping problem between subgroups can be reflected according to the distribution of 
subgroups. 

This paper assumes that there are k regions and w provinces (Yu et al., 2022): 

1 1 1 1
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G is the Gini coefficient of the whole region, v(j) represents the v(j)th region in k regions, 
u(i) represents the u(i)th province in w provinces, wv(wj) represents the number of 
provinces in the v(j)th region, Yvu(Uji) represents the GD efficiency of the u(i)th province 
in the v(j)th region, and Y  represents the average GD efficiency of each region. 

1 1
22

 






v vw w

vu vr

u i
vv

v v

Y Y

G
w Y

 (2) 

In the formula, Gvv is the Gini coefficient within the region, which is used to measure the 
difference of GD efficiency within the region, Yvr represents the GD efficiency of the rth 
province in the vth region, and vY  represents the average GD efficiency of each province 
in the vth region. 
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In the formula, Gvj is the Gini coefficient between regions, which is used to measure the 
difference of GD efficiency between regions, and jY  represents the average value of GD 

efficiency in the jth region. When dividing the overall Gini coefficient G of a region, in 
order to avoid negative values in calculation, the sorting method is as follows (Che and 
Wang, 2022): 

    j v kY Y Y  (4) 

The contribution is divided into three parts, including the contribution of intra regional 
differences Gw, the contribution of inter regional differences Gnb, and the contribution of 
inter regional hyper variable density Gt: 

  w nb tG G G G  (5) 

Gt indicates the total contribution of the difference in GD efficiency between regions to 
the overall regional difference when there is cross-overlap between regions (that is, the 
efficiency value of the high-efficiency province in the low-efficiency region is greater 
than that of the low-efficiency province in the high-efficiency region). 
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In the formula, pv(pj) is the ratio of the number of regions included in the v(j)th region to 
the total number of regions, sv(sj) is the ratio of the sum of the GD efficiency of the v(j)th 
region to the GD efficiency of the total region, and Dvj represents the relative influence of 
the GD efficiency between the vth region and the jth region. dvj is the total influence 
between the vth region and the jth region. 

3.2 CAD mechanism between DE and GD 

As shown in Figure 1, DE and GD constitute a coupling system, and the two are 
interrelated and influence each other. Vigorously developing the DE is a strategic choice 
in the face of industrial structure upgrading and technological change. Moreover, it is a 
key measure to improve the level of economic development and international 
competitiveness. Adhering to GD is an objective requirement to deal with the 
deterioration of the ecological environment and a necessary requirement to meet the 
needs of a better life for the people (Zhang et al., 2021). 

On the one hand, the DE is the key to improving the efficiency of GD. The emerging 
technologies and innovation capabilities contained in the DE can improve the efficiency 
of environmental supervision and resource utilisation, and contribute to industrial 
economic development and social ecological governance. Using information technology 
to build smart grids, detecting carbon absorption and managing carbon emissions through 
big data can promote the green and efficient transformation of energy, and vigorously 
promoting the GD of the DE can curb the adverse impact of the DE on the climate. On 
the other hand, GD is the guarantee for promoting the sustainable development of the DE. 
Although the DE improves the efficiency of GD and is an important means to promote 
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low-carbon development, it does not mean absolute low-carbon. With the development of 
electronic information, e-waste has increased significantly in the process of production 
and life. In addition, the new digital infrastructure and the application industries it carries 
are high in electricity consumption and carbon emissions, so the large amount of energy 
consumed by the development of the DE cannot be ignored. GD aims at sustainability, 
takes into account both efficiency and fairness, and can guide the healthy development of 
the DE. It is a development concept that should always be upheld. Moreover, the two rely 
on each other and influence each other. 

Figure 1 Diagram of coordination mechanism between DE and GD 

 

However, coupling is an open and complex process, and the interaction between DE and 
GD will be affected by many factors. As can be seen from Figure 1, the input of external 
factors such as financial funds and scientific and technological talents will make them 
compete with each other, thus transferring limited resources between them. Only when 
the two work together and balance the allocation of resources can a virtuous circle of 
coupling system be formed, thereby promoting high-quality economic development and 
maintaining the sustainability of development while improving the overall economic 
benefits. Therefore, this paper further studies the dynamic coordination relationship 
between DE and GD. 

Coupling coordination degree model is widely used in studying the coordination of 
multiple systems. This paper assumes that there are r subsystems (r = 1, 2, …, R) under 
study, Ur is the comprehensive development index of the subsystem, and the calculation 
formula of the coupling degree C is shown in formula (14): 
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When the comprehensive level of subsystems is low, the coupling degree will be virtually 
high. Therefore, it is necessary to construct a coupling coordination model between the 
DE and GD to reflect the internal coordination of the DE. The formula is shown in 
formula (15): 
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1
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Among them, r is the weight reflecting the importance of the subsystem. Since this 
paper measures the coordination level of DE and GD without bias, they are given equal 

weights, namely 1 2
1

.
2

    T is the comprehensive development index that integrates 

the evaluation values of each subsystem, reflecting the overall level of the system, and D 
is the coupling coordination degree, D  [0, 1]. 

Figure 2 Conceptual mechanism of digital financial risk spatial spillover 

 

The spatial spillover effect of digital financial risks refers to the process in which the 
risks generated by digital financial activities gradually spread in geographical space and 
affect other regions or fields. The conceptual diagram of the spatial spillover mechanism 
of digital financial risks is shown in Figure 2. When digital financial risks occur in the 
region, relying on internet platforms and digital technologies, digital financial risks will 
spread rapidly through financial market risk linkage channels, financial institution 
network association channels, and investor herd channels. Under the interaction of 
multiple risk channels, the contagion of digital financial risks among regions has 
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accelerated and escalated, thus having spatial spillover effects on digital financial risks in 
neighbouring regions. The contagion and spread of digital financial risks among regions 
are more likely to have a serious impact on systemic financial risks. Therefore, it is 
necessary to further explore the spatial spillover effects of digital financial risks, which is 
crucial for the effective prevention of digital financial risks. 

The mechanism of the influencing factors of digital financial risk spatial spillover is 
shown in Figure 3. The influencing factors of digital financial risk spatial spillover may 
also include population agglomeration, regional innovation capabilities, government 
scientific and technological support, economic growth rate, industrial structure 
optimisation and opening up to the outside world. 

Figure 3 Mechanism of influencing factors of digital financial risk spatial spillover (see online 
version for colours) 

 

3.3 Intelligent computer analysis model 

The data formats of simulation systems in the time dimension and space dimension are 
very different. Taking regional economic simulation as an example, the time series data is 
in the form of a one-dimensional array, such as GDP, population, etc., while the spatial 
data is raster data or vector data. Therefore, it is necessary to define the data conversion 
method between the two. In GIS, this is achieved through ‘attributes’, dividing the overall 
space into different blocks (such as administrative divisions in regional economy), and 
each block can define its attributes. The time series data is assigned to the attributes of 
the block according to the time node, as shown in Figure 4, so that the time series data of 
the system dynamics is linked to the spatial data of the spatial module. 
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Figure 4 Schematic diagram of conversion between temporal data and spatial data 

 

Figure 5 Schematic diagram of spatial economic simulation framework 

 

The basic data processing module integrates data processing functions and is mainly 
responsible for processing simulation data, including data cleaning, data regression 
analysis, spatial data processing, etc. The processed initial simulation data will be 
imported into the system dynamics module, which mainly provides functions related to 
system dynamics. After receiving the initial data, the system dynamics module will 
perform a single simulation, save the simulation data and pass it to the spatial relationship 
processing module. After processing the simulation data, the spatial relationship 
processing module obtains spatial parameters, and then returns to the system dynamics 
module to participate in the next simulation, so that multiple cycles of simulation are 
carried out between the system dynamics module and the spatial relationship processing 
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module until the time boundary is reached. During the simulation process, the economic 
simulation decision evaluation module can obtain simulation data in real time for  
real-time visualisation, as shown in Figure 5. 

The main functions of the basic simulation data processing module are: processing 
simulation data, analysing and calculating simulation variable parameters and processing 
spatial data, as shown in Figure 6. 

1 Processing simulation data: system dynamics modelling requires the collection of 
historical data of the study area, which needs to be collected from yearbooks, 
statistical bulletins, official websites, etc. However, due to changes in format and 
statistical calibre, the data may have obvious anomalies, which may cause large 
errors in the model. Therefore, it is necessary to clean the data before simulation to 
remove anomalies. In addition, some data may not be available, and reasonable 
estimation and extrapolation are also required. 

2 Analysing and calculating simulation variable parameters: in system dynamics, the 
relationship between variables can be logical or quantitative description. At this time, 
it is necessary to carry out correlation analysis and regression analysis on variables to 
determine the quantitative relationship between variables. 

3 Processing spatial data: when spatially analysing the research area, it is necessary to 
read the raster data of the research area, it is necessary to import the simulation data 
of each simulation cycle into the spatial module. This part of the function is provided 
by the data processing module (Han et al., 2022). 

Figure 6 Functional diagram of simulation basic data processing module 
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4 Test 

4.1 Test methods 

In this paper, the Windows version of VensimPLE5.11 is used as the initial model 
construction tool of system dynamics, the toolkit provided by ArcGIS is used as the 
spatial analysis tool, and the social network analysis function of Ucinet is coupled. The 
above software and functions are all coupled by Python3.6 as the development tool. In 
the choice of simulation tools, this paper chooses python as the development language, 
python has extremely low development cost because of its easy-to-understand syntax, and 
its rich third-party toolkit makes python have powerful functions. 

The model proposed in this paper is named Dagum-coupling. During the simulation 
process, the framework can automatically save the simulation results of each system 
dynamics, as well as the calculation results of the spatial module. These results will be 
imported into the economic simulation decision evaluation module. The decision 
evaluation module includes spatial analysis function, social network analysis function 
and simulation data visualisation function, which cannot only display the attribute data of 
the system along the time axis, but also display and process the spatial analysis results in 
the form of a specified time interface, as shown in Figure 7. 

Figure 7 Schematic diagram of spatio-temporal analysis of frame 
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Figure 8 Implementation block diagram of standardised coding framework based on GIS 

 

Spatiotemporal research requires high-resolution data. However, digital economic 
indicators (such as ICT infrastructure) and environmental data are often different in 
spatial and temporal granularity. To solve this problem, this paper establishes a  
GIS-based standardised coding framework to solve this problem. Figure 8 is the 
implementation block diagram of the GIS-based standardised coding framework A 
standardised coding framework based on geographic information system (GIS) is 
established, which maps digital economic indicators (such as regional 5G coverage) and 
environmental data (such as carbon emission grid data) to the same spatial coordinate 
system, and supports cross-scale data overlay analysis. The ‘grid + administrative 
division’ dual track data integration mode is adopted, which is compatible with different 
granularity data sources. 

Spatial data is mainly raster data and vector data. The spatial relationship processing 
module needs to study regional spatial data to establish economic network. The economic 
simulation decision evaluation module also needs spatial data for visualisation and spatial 
analysis. It mainly uses the python library provided by ArcGIS: arcpy, to realise it. arcpy 
integrates most functions of ArcGIS, including reading and operating spatial data, 
providing spatial analysis functions, etc. In order to facilitate the later comparative 
analysis of the DE and GD levels in different regions, this paper refers to China’s 
economic regional division standards and divides China into four major regions: eastern, 
central, western and northeast. The indicator data are mainly taken from China’s  
High-tech Industry Statistical Yearbook, China’s Internet Development Statistical Report, 
Ecological Environment Statistical Annual Report, China’s Labor Statistical Yearbook 
and China’s Regional Economic Statistical Yearbook, as well as national data, Qianzhan 
Industry Research Institute, EPS database, China Macroeconomic Database, Qichacha 
and other websites. In the DE indicator system, data on the number of companies in the 
fields of blockchain and artificial intelligence, the number of companies in big data 
technology and analysis, the number of companies in the field of intelligent 
manufacturing, the number of companies providing digital financial services, the number 
of companies in the field of smart agriculture, the number of companies in the smart 
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education industry, and the number of companies providing digital medical services are 
derived from the official website of Qichacha. The data are retrieved by searching 
keywords to retrieve the number of corresponding industries in each province over the 
years and the data are added up. 

When analysing the spatial effect of the development of digital economy, the spatial 
economic geography nested matrix is used to discuss the spatial Dobbin model. However, 
considering that different weight matrices may have different effects on the regression 
results, in order to analyse this problem more comprehensively, this paper replaces the 
original spatial economic geography nested matrix with spatial adjacency matrix to 
further explore the spatial effect of digital economy development on industrial green 
development. Such adjustment aims to ensure the preciseness of the research and the 
accuracy of the results. The open source tool TensorFlow is used to accelerate the model 
optimisation, which is convenient to analyse the influence of regional specific factors on 
the analysis results of the team model. 

4.2 Results 

In order to deeply analyse the dynamic evolution trend of China’s green economic 
efficiency, this paper uses MATLAB software to draw the kernel density map of China’s 
green economic efficiency in each period, and shows its distribution dynamics, as shown 
in Figure 9. 

Figure 9 Distribution dynamics of green economic efficiency 

 

To further explore the distribution pattern, polarisation phenomenon and dynamic 
development trend of each region, deeply analyses the dynamic evolution characteristics 
of green economic efficiency in eastern, central, western and northeast China. 
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Based on the DE and GD index calculated above, the coupling degree between the 
two is calculated, and then equal weights are assigned to calculate the corresponding 
coordination degree. The results are shown in Table 1. Overall, the level of CAD between 
DE and GD in various regions has gradually improved, and the coordination situation has 
become increasingly good. 

Table 1 CAD degree of DE and GD in various regions from 2018 to 2024 

 2018 2019 2020 2021 2022 2023 2024 Level of coordination 

East 0.5396 0.5767 0.6023 0.6313 0.6593 0.6888 0.7109 Intermediate coordination 

Middle part 0.4347 0.4792 0.5067 0.5419 0.5750 0.6083 0.6294 Primary coordination 

Western 0.3966 0.4368 0.4639 0.5001 0.5387 0.5716 0.5990 Primary coordination 

Northeast 0.4081 0.4401 0.4589 0.4820 0.5165 0.5505 0.5764 Reluctant coordination 

All-region 0.4492 0.4883 0.5143 0.5461 0.5801 0.6120 0.6368 Primary coordination 

In Table 1, the development trend chart of the CAD degree of DE and GD in the four 
major regions of the country is drawn (Figure 10). 

Figure 10 Trend chart of CAD degree between regional DE and GD (see online version  
for colours) 

 

To further verify the role of the mode in the CAD of DE and GD, the geographically 
weighted regression (GWR) model and the spatiotemporal geographically weighted 
regression (GTWR) model are used to fit the data, Through CPPGD, intelligent carbon, 
wind database is used as experimental data to verify the effectiveness and generalisation 
ability of this model, and compared with the model in this paper to obtain the following 
comparison results shown in Table 2. 

This paper selects education level, scientific and technological innovation level, 
economic development level, government investment intensity, and economic structure 
differences as the main research factors, and makes descriptive statistics on the regression 
coefficients of each explanatory variable. As shown in Table 3. 
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Table 2 Comparison of model fitting effects 

Dataset Model R2 Adjusted R2 AIC Sigma 

GWR 0.8061 0.8051 –707.6140 0.0189 

GTWR 0.9389 0.9377 –824.1621 0.0220 

CPPGD 

Dagum-coupling 0.9752 0.9749 –991.5345 0.0119 

GWR 0.8091 0.7904 –715.6963 0.0190 

GTWR 0.9260 0.9472 –832.6240 0.0218 

Intelligent 
carbon 

Dagum-coupling 0.9759 0.9917 –984.5297 0.0120 

GWR 0.7935 0.8032 –702.9168 0.0188 

GTWR 0.9390 0.9339 –816.5942 0.0222 

wind 

Dagum-coupling 0.9632 0.9940 –971.3196 0.0118 

Table 3 Descriptive statistical results of regression coefficients of Dagum-coupling model 

Variable Mean 
value 

Minimum Lower 
quartile 

Median 
number 

Upper 
quartile 

Maximum Extremely 
poor 

Ln_eco 0.0790 –0.1285 0.0091 0.0776 0.1372 0.3044 0.4329 

Ln_str –0.0217 –0.3648 –0.0556 –0.0152 0.0027 0.2260 0.5908 

tec 0.1804 –1.0189 0.0095 0.1720 0.3233 1.7737 2.7926 

Ln_gov 0.0420 –0.1393 0.0130 0.0469 0.0744 0.1478 0.2871 

edu 0.2069 –1.1953 0.0181 0.2221 0.4118 1.2054 2.4008 

Table 4 Spatial econometric optimal model test 

 Inspection method Statistic P 

LM-spatial error 158.20 0.003 

Robust LM-spatial error 9.36 0.002 

LM-spatial lag 207.00 0.002 

LM-test 

Robust LM-spatial lag 58.15 0.002 

Wald-lag 67.92 0.000 Wald-test 

Wald-error 55.18 0.000 

LR-lag 58.96 0.002 LR-test 

LR-error 50.26 0.000 

When building spatial econometric models, three commonly used models are usually 
used: spatial error model (SEM), spatial lag model (SAR) and spatial Durbin model 
(SDM). In order to ensure the accuracy of the selected model, LM Test and robust LM 
test are carried out first. The test results show that all statistics can effectively reject the 
original hypothesis, which indicates that there is a significant spatial correlation between 
variables, so the spatial econometric model is appropriate. In addition, the test results of 
LM lag and RobustLM lag rejected the original hypothesis, and the tests of LM error and 
RobustLM error also showed significance, indicating that the constructed model has the 
dual spatial correlation of spatial error model and spatial lag model. Because the spatial 
Dobbin model can have both the above two spatial effects, this paper chose to use the 
spatial Dobbin model. In order to further enhance the robustness of the model, we also 
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conducted Wald and LR tests to ensure that the spatial Dobbin model will not degenerate 
into a spatial error model or a spatial lag model. As shown in Table 4, all statistics reject 
the original hypothesis at the significance level of 1%, which further verifies the stability 
of the spatial Dobbin model. 

4.3 Analysis and discussion 

Coupling coordinated development path of digital economy and green development 
The collaborative evolution of digital economy and green development is the core 

engine to promote high-quality economic growth. It is necessary to build a systematic 
framework from the four dimensions of technological innovation, resource allocation, 
demand traction and industrial transformation. 

1 Deep integration of AI technology and green low carbon industry 

The iteration of artificial intelligence technology injects new momentum into the 
intelligent upgrading of manufacturing industry. Through the construction of 
intelligent factory and industrial internet platform, AI can monitor the running status 
of equipment in real time, dynamically optimise the production process, and achieve 
accurate control of energy consumption and carbon emissions. For example, 
technology integration not only promotes the greening of manufacturing, but also 
extends the life cycle of equipment through intelligent operation and maintenance, 
forming a low-carbon closed loop of the whole industrial chain. 

2 Reconstruction of resource allocation system by digital technology 

The supply and demand matching platform based on big data and cloud computing 
can effectively solve the stubborn problem of resource mismatch. By integrating idle 
capacity resources, the sharing economy model has increased the utilisation rate of 
manufacturing equipment from 55% to more than 80%, reducing the waste of 
resources caused by repeated investment. On the consumer side, the carbon footprint 
tracking system guides consumers to choose low-carbon products. 

3 Green demand drives digital technology innovation 

The rigid constraint of carbon neutralisation goal leads to new digital solutions. The 
carbon asset trading platform enabled by blockchain technology has realised the 
digitalisation of the whole process of carbon emission rights confirmation, trading 
and write off. In the field of environmental monitoring, the sky ground integrated 
monitoring network composed of 5g + UAVs can improve the positioning accuracy 
of pollution sources to meter level and shorten the response speed to minute level. 
These innovative achievements are not only the product of green governance 
demand, but also feed back the development of digital economy through technology 
spillover effect, forming a positive cycle of ‘demand innovation application’. 

4 Digital low carbon transformation of traditional industries 

The transformation of high energy consuming industries relies on digital twins and 
technological breakthroughs in process simulation. Iron and steel enterprises 
establish a digital image system of smelting process. Such transformation not only 
reduces the intensity of carbon emissions in the production process, but also realises 
the cascade utilisation of energy through the equipment IOT, and builds a cross 
process energy optimisation network. 
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To realise the deep coupling of digital economy and green development, it is necessary to 
establish a collaborative system of technology research and development, policy 
incentives and market mechanisms. By building a national green digital innovation centre 
to overcome key common technologies, improve the linkage mechanism between carbon 
tax and digital infrastructure investment, and cultivate an ecosystem covering 
technological innovation, industrial transformation and consumption upgrading. This 
multi-dimensional collaborative model will accelerate the formation of a two-way driving 
pattern of ‘digital enabling green transformation, green demand driving digital 
innovation’, and provide lasting impetus for sustainable economic development. 

In Figure 9, the green economic efficiency generally shows a trend of shifting to the 
right. It shows that the efficiency of the GE is gradually increasing and showing a good 
momentum overall. The economy is actively taking the path of GD, and the ‘green 
content’ of economic development has been significantly improved. From the distribution 
pattern, the right tail is getting shorter year by year, and the width of the main peak is 
gradually decreasing while the height is constantly increasing, indicating that the gap in 
green economic efficiency among regions is gradually narrowing. From the peak number, 
it can be seen that the kernel density map presents a bimodal state, indicating that the 
green economic efficiency is polarised. The reason is that the geographical location, 
resource environment and economic development of each region are different, which 
makes the green economic efficiency have certain differences. In general, the green 
economic efficiency shows an upward trend as a whole, and there is a certain volatility 
and instability in some aspects. 

As shown in Figure 10, the coupling coordination between the DE and GD in various 
regions of China has shown a steady growth trend. Among them, the coupling 
coordination level of the central region has always been close to the national average, and 
the eastern region is far ahead of the other three regions and has entered the coordinated 
improvement type in 2020. In 2019, the two were almost the same. In recent years, the 
western region has shown a rising trend in many aspects, and the coordination degree 
between the DE and GD has also achieved latecomer catch-up. Since surpassing the 
northeastern region in 2020, the coupling coordination situation has become increasingly 
good. By 2024, only the northeastern region is still in the barely coordinated stage, and 
the rest of the regions have entered the coordinated improvement stage, the eastern region 
is in the intermediate coordination. 

In Table 2, the test was conducted through the CPPGD dataset, the fitting effect of the 
GTWR model as an advanced version of the GWR model is significantly better than that 
of GWR. The goodness of fit of GTWR model and Dagum-coupling model is 0.9389 and 
0.9752, respectively, and the AIC of Dagum-coupling model is smaller than that of 
GTWR model, so it can be seen that the effect of Dagum-coupling model is better. 
Because Dagum-coupling model considers both temporal and spatial effects, it can not 
only reflect the spatial differences of explanatory variables, but also reflect the 
characteristics of estimated parameters changing with time, and has stronger explanatory 
ability. In view of this, this paper uses the Dagum-coupling model to analyse the CAD 
level of DE and GD, which has good practical effect. From the test results of intelligent 
carbon and wind, the performance of this model is basically consistent with the test 
results in CPPGD dataset, which verifies the generalisation ability of this model. 

From the absolute value of the mean value of the regression coefficient in Table 3, the 
influence intensity of each factor on the coupling coordination level as a whole is ranked 
as follows: education level > scientific and technological innovation level > economic 
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development level > government investment intensity > economic structure difference, 
among which the influence intensity of education level and scientific and technological 
innovation level is much greater than other factors. In addition, the impact of economic 
structure differences on the level of CAD is negative, the lower the degree of CAD 
between the DE and GD. It shows that on the whole, the more reasonable the industrial 
structure is, that is, the coordinated development of the three industries can improve the 
coordination level between the DE and GD. The range of the regression coefficient 
reflects the stability of the impact intensity of each variable. The regression coefficients 
of scientific and technological innovation level and education level vary greatly, 
indicating that the impact of scientific and technological innovation level and education 
level on the coupling coordination degree of DE and GD varies greatly in time and space. 

From the statistical data in Table 4, all statistics rejected the original hypothesis at the 
significance level of 1%, which further verified the stability of the spatial Dobbin model. 

The synergy lag between digital economy and green development is essentially the 
systematic mismatch of technology iteration, policy framework and energy structure. 
Through standardised data governance, cross departmental policy linkage and green 
technology integration, the operation bottleneck of the real-time monitoring system can 
be gradually eliminated, providing accurate support for high-quality development. 

5 Conclusions 

Based on the overall and regional perspective, this paper comprehensively considers the 
spatial and temporal elements, studies the differences of development levels and changes 
of development trends in different regions horizontally and vertically, and grasps the 
temporal and spatial evolution characteristics of their development. By measuring the 
CAD degree of DE and GD in various regions in recent years, and by comparing the 
goodness of fit of different models, it is once again confirmed that the Dagum-coupling 
model has a better effect on analysing the influencing factors of panel data. The  
Dagum-coupling model is used to analyse the influencing factors of the CAD level 
between DE and GD, and the robustness of the model is tested. It is verified that this 
paper uses Dagum-coupling model to analyse the CAD level of DE and GD has good 
practical effect. 

By quantifying the relationship between carbon emissions and economic growth, the 
model helps the government identify bottlenecks in high-carbon industries, optimise the 
combination of policy tools (such as carbon tax and green subsidies), and improve the 
efficiency of policy implementation. The model can simulate the substitution effect of 
low-carbon technologies (such as clean hydrogen energy and synthetic fuels) on 
traditional industries, reveal the critical point and cost threshold of the transformation of 
high energy consuming industries such as steel and chemical industry, and guide capital 
to the fields of renewable energy and smart grid. 

In this paper, the selection of influencing factors is not comprehensive enough, and it 
is only analysed from five aspects. However, in practice, the factors affecting the DE and 
GD are complex and diverse. In addition to economic factors and social factors, they also 
include value orientation and policy measures that are difficult to measure and quantify. 
Therefore, the future research can be analysed from a deeper and broader perspective. 
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The interaction between digital economy and green development has significant 
nonlinearity and lag. It is necessary to break through the short-term perspective of 
traditional policy evaluation and turn to the governance mode of ‘prediction adaptation 
iteration’. Through long-term data accumulation, interdisciplinary method integration and 
flexible policy design, we can more accurately capture the deep value of the two 
synergies and avoid systemic risks caused by short-term miscalculation. In the future, we 
can further study this lag and improve the prediction ability of the model through a lot of 
learning to improve the practicability of the model. 
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