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Abstract: In traditional PE, we often assess students with very subjective 
assessments and miss all the nuances and intricacies of motor skills that are 
complex. This study introduces a deep learning-based framework using CNNs 
and LSTMs with wearable tech that increases evaluation accuracy and feedback 
– a multimodal dataset comprising the data from several devices like 
accelerometers and heart rate monitors. Teacher-based assessments (72% 
agreement) were surpassed by 89% accuracy of the proposed SkillNet model. It 
reduced inter-rater variability by 35% and the evaluation time by 40%. Student 
engagement rose from 60% to 85%, with improved motivation. This system 
provides accurate, scalable objective assessment, real-time feedback, and 
enriched learning in PE. 
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1 Introduction 

Physical education is essential to holistic education, physical fitness, motor skill 
development, and overall well-being (Syaukani et al., 2023; Adambaevna, 2023; Etkin, 
2024). Yet, in practice, students’ performance in PE has been chiefly traditionally 
assessed by manual, observational methods subject to variability, inconsistency, and time 
cost (Carling et al., 2008b; Knudson, 2013; Carling et al., 2008a). Teachers usually grade 
running, jumping, and throwing skills using rubrics, checklists, or standardised fitness 
tests (Lund and Kirk, 2019; Lund and Veal, 2013; SHAPE America, 2018). However, 
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these methods cannot learn complex movements to a high degree and do not afford 
immediate feedback and improvement. Given the increased use of technology within 
education to boost learning outcomes, there is a growing need for viable solutions to the 
limitations of conventional PE evaluation strategies. 

1.1 Challenges in traditional PE assessments 

Subjective evaluation in PE is based on personal opinion, which challenges confirming 
fair and accurate performance evaluations (Hartmann and Slapničar, 2012; Morrow et al., 
2015). Inter-rater variability is a problem of observational methods: teachers tend to give 
weights to different things. Structured, standardised tests primarily measure speed, 
strength, and endurance but often overlook dynamic movement aspects such as 
coordination, rhythm, and error patterns (Engelmann, 2014; Wulfsohn, 2018; 
Todorovich, 2024). However, they may neglect the dynamic of movements, such as 
coordination, sense of rhythm, or error patterns. Notably, the limitations are particularly 
relevant in diverse classrooms, where students often come from very diverse skill levels 
and physical abilities of themselves. 

Furthermore, traditional methods are not scalable and are inefficient in assessing large 
numbers of students (Pangrazi and Beighle, 2019; Vanhees et al., 2005). As the class size 
increases, this becomes an increasingly burdensome exercise for teachers, who must 
manually observe, record, and analyse performance. In addition, without real-time 
feedback, students cannot make immediate changes to their movements to improve 
quickly. 

1.2 Advancements in technology for PE assessment 

Recent technological progress, especially in deep learning (DL) and wearables, makes PE 
assessments an excellent opportunity for a technological revolution (Miller et al., 2025; 
Zhou et al., 2024). Video-based systems have successfully analysed human motion in 
DL, a subset of artificial intelligence (Kumar and Kumar, 2023). CNNs can identify 
important skeletal points and examine body posture (Roggio et al., 2024). Temporal 
dynamics are modelled using long short-term memory (LSTM) networks, which capture 
the rhythm and consistency of the movements over time (Pham, 2021). These capabilities 
facilitate objective, detailed, and objective evaluations of motor skills that are out of the 
hamstring and are subjective and variable based on traditional methods. Wearable 
technology furthers this, allowing real-time physiological and biomechanical measures in 
the field (Alzahrani and Ullah, 2024; Edwards et al., 2023; Lu, 2023). Metrics are 
measured by devices like accelerometers, gyroscopes, heart rate monitors, acceleration, 
volume of angular velocity, and energy expenditure, which give us information about 
what students are doing physically and coordinating. Combining video-based motion 
analysis with wearable data generated a multimodal framework that captures a 
performance’s qualitative and quantitative narratives. 

1.3 Motivation for the proposed framework 

Deep learning and wearable technology advances in sports science and rehabilitation 
have been used. However, their adoption in educational settings remains inhibited. 
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Currently, most systems are designed to serve the needs of elite athletes and clinical 
environments, but they are not intended to meet the varied needs of school classrooms. 
Furthermore, many systems analyse only one metric of a student’s performance, like the 
physical one or movement pattern, without considering him as a whole (Zhang, 2021; 
Chidambaram et al., 2022; Seçkin et al., 2023; Wei and Wu, 2023). We propose a 
framework that integrates DL models, multimodal data, and real-time feedback into a 
unified PE assessment system to address this gap. The framework utilises CNNs for 
spatial analysis, LSTMs for temporal modelling of data, and wearable devices for  
real-time data collection, and therefore, it dedicates us to a generalised method for the 
study of motor skills. Exploiting the system’s ability to provide immediate, action 
feedback allows teachers to focus on teaching and students to engage in their learning 
process actively. 

1.4 Significance of the study 

The explicit contribution of this study is that it experimentally demonstrates how deep 
learning and wearable technology can be combined to address critical challenges in PE 
assessment. Also, the proposed framework promises objective, consistent, and scalable 
evaluations, which considerably minimise the subjectivity and variability introduced by 
traditional evaluation methods. It allows for automatic assessment and real-time feedback 
so that the skill can be improved immediately, and a more interactive learning 
environment can be offered to students. Most importantly, the framework lends itself to 
adaptation in any educational or training context, including the school context, sports 
training, and rehabilitation settings. It advances educational fairness by furnishing a 
personalised view and recommendations, allowing students of all abilities and skill levels 
to get tailored feedback and support. This work also relates to larger goals of educational 
innovation by showing how advanced technologies can effectively contribute to 
improved outcomes in teaching and learning. 

1.5 Objectives of the study 

This work focuses on developing and validating a DL-based approach to PE assessment 
optimisation. The specific goals include: 

 the primary objective is to develop a hybrid deep learning model that combines 
CNNs for pose estimation and LSTMs for analysing the temporal dynamics of motor 
skills 

 accurately and deeply evaluates by integrating wearable devices to collect real-time 
physiological and biomechanical data 

 a real-time feedback mechanism that provides personalised insight and 
recommendations for students and teachers 

 comparing the framework to the traditional assessment process regarding accuracy, 
efficiency, scalability and student engagement. 

The study is organised into several sections in this paper. Section 2 includes a complete 
literature review covering the limitations of traditional PE assessments, DL 
advancements, wearable technology research, and gaps the proposed framework 
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addresses. Section 3 describes the proposed architecture of the framework, along with the 
data collection technique DL model design. The experimental setup and implementation 
are described in Section 4, including data collection, training, evaluation metrics, and 
tools. The results and analysis in Section 5 focus on system performance, actual time 
feedback capabilities, and comparative advantages of the system over the traditional 
methods. Section 6 discusses the findings’ implications, challenges, and future research 
directions. In Section 7, the paper concludes by summarising the contributions and 
potential impact of the proposed system towards PE assessments and educational 
practice. 

2 Literature review 

To create an automated, accurate, scalable physical education (PE) assessment 
framework, we must constrain ourselves with what is already out there in PE 
methodology and technology. For human motion analysis, this literature review assesses 
traditional assessment methods in PE, DL advancements, the role of wearable technology 
in data integration, and the challenges these methods present in educational contexts. It 
defines some gaps in the state of the art and suggests improvements. 

2.1 Traditional methods of physical education assessment 

Traditional physical education assessment has primarily relied upon observational 
observations and standardised tests to measure the students’ physical skills, physical 
fitness, and overall performance (Lund and Kirk, 2019; López-Pastor et al., 2013; Horvat 
et al., 2019). Teachers commonly use rubrics and checklists to rate performance in 
running, jumping, and throwing activities. These methods are simple and cheap but 
susceptible to subjectiveness variability of results. Evaluations can differ even if the 
teacher is an expert, as we lack interrater reliability. FitnessGram and the President’s 
Fitness Challenge are standardised fitness tests to measure student performance without 
making judgements (Kimball, 2007; The Cooper Institute, 2017; Meredith and Welk, 
2010). However, these tests are very narrow in scope – they tend to cover metrics like 
speed, strength, and endurance but not metrics related to dynamic movement, such as 
coordination, rhythm, and balance. Additionally, these traditional assessments do not 
provide immediate feedback, which can delay skill correction and subsequent 
improvement opportunities. 

2.2 Advancements in deep learning for human motion analysis 

Human motion analysis can now be explored with deep learning at a significant level and 
with great advancement in sports science, rehabilitation, and healthcare (Roggio et al., 
2024; Chen, 2024; Prakash et al., 2018). We use convolutional neural networks (CNNs) 
to estimate the pose of a human body accurately, i.e., to locate key characteristic points 
like joints, from which we can study human movement patterns. OpenPose and PoseNet 
are models that have yielded high accuracy for tracking skeletal movements, offering 
profound, detailed assessments of physical activities (Clark et al., 2019; Colucci, 2023). 
Recurrent neural networks (RNNs), in particular, and long short-term memory (LSTM), 
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have been successfully used to model temporal dependencies in sequential data 
(Sherstinsky, 2020). Specifically, LSTMs, such as rhythm, consistency, or error trends, 
have been applied to analyse motor skill progression over time. It is beneficial to 
techniques for activities that involve continuous movement, such as running or dancing. 
While these models have been previously demonstrated to operate successfully in 
specific highly specialised contexts, the use of these models in educational environments 
remains limited. However, few studies have involved school environments and their 
diverse needs proportionally. Most work on elite sports and clinical rehabilitation. 
Additionally, these models generally require large amounts of data, and such data are 
often not immediately available in the PE context, making a need for frameworks that can 
work with relatively modest but structured data precise. 

2.3 Role of wearable technology in data integration 

The measurement and analysis of physical activity are revolutionised by wearable 
technology. Fundamental time movement dynamics, energy expending, and physiological 
responses are continuously and in real-time measured by such devices as accelerometers, 
gyroscopes, and heart rate monitors. Fitness tracking and sports performance have been 
universally adopted for wearables based on speed, acceleration, angular velocity, and 
heart rate variability metrics. Wearable data and video recordings are integrated to create 
a multimodal approach that complicates the depth and accuracy of motion analysis 
(Edriss et al., 2024; Chen, 2024; Kazanskiy et al., 2024; Olsen et al., 2024). By 
combining wearable and visual data, studies have demonstrated that complex movements 
are better classified and that noise in data is reduced. It includes integrating inertial 
sensor data with video-based pose estimation to precisely identify errors in activities such 
as throwing or jumping. 

Nevertheless, wearable technology is scarcely adopted in educational setups. Due to 
cost barriers and a requirement for technical expertise to process and interpret data, these 
two methods present significant challenges. What is needed is simple wearables that do 
not cost a lot while maintaining the quality of insights they deliver. 

2.4 Challenges in educational contexts 

Multiple challenges apply to using current advanced technologies in PE assessments in an 
educational environment. Data privacy and security are essential first. The General Data 
Protection Regulation (GDPR) and the Family Educational Rights and Privacy Act 
(FERPA) can be met by video recordings and wearable data to ensure student privacy 
(Galatanu, 2024; Bhargava and Rehman, 2025). Secondly, the scalability of the existing 
solutions is limited. Advances in motion analysis have been incorporated into many 
advanced motion analysis systems. However, most have been designed for individuals or 
small groups and are not practical for large classrooms (Gavrila, 1999; Delp et al., 2007). 
Further, there is a lack of honest-time feedback, which limits their effectiveness, as 
results come out too slowly, giving little time to correct skills and learning immediately. 
The technical barriers to these school systems must finally be addressed. The hardware 
and software for complex systems can also be costly for schools with smaller budgets, 
and teachers may not have the training to operate said systems. 
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2.5 Research gaps and opportunities 

Despite hardware and DL advances, there is still a large gap between applying these 
systems and PE assessments. Many current systems, however, fail to integrate motion 
analysis, temporal modelling, and real-time feedback reduction into a single framework. 
Also, systems lacking appropriate educational setting designs are not usable or scalable 
(Akker et al., 2014; Barris and Button, 2008; Khusainov et al., 2013). This study 
identifies the opportunity to create a cost-effective, scaleable, user-friendly framework 
that blends the strength of CNNs, LSTMs, and wearable technology. To build such a 
system, privacy, scalability, and usability challenges must be addressed while giving 
teachers and students immediate, actionable, real-time feedback. 

2.6 Relevance to the proposed framework 

This literature review discusses the advances in the relevant fields to devise the proposed 
framework, filling the identified gaps and challenges. This integration presents a PE 
assessment system leveraging spatial analysis with video-based CNNs, temporal 
modelling with LSTMs, and wearable data for multimodal insights. Real-time feedback 
mechanisms enhance its utility, promoting skill improvement and student engagement. 
This framework allows scalable and easy-to-use design for different educational contexts 
and overcomes the limitations of traditional methods and existing technology. 

The foundation for the proposed framework is established in this literature review, in 
which there is a need for an innovative approach to PE assessments utilising  
state-of-the-art technology to improve accuracy, efficiency, and engagement. 

3 Proposed method 

Further development of PE assessment depends upon a sound system that can objectively 
and efficiently rate a wide range of motor skills and skill performance. Despite the 
limitations of traditional assessment methods, the proposed method utilises DL models 
and data integration. The modelled framework incorporates advanced modelling 
methods, broad data collection, and interactive feedback mechanisms to be automated, 
accurate, and scalable to different PE activities, as shown in Figure 1. 

3.1 Framework overview 

The proposed method involves three interconnected stages: deep learning modelling, data 
collection, and feedback delivery. Each stage ensures the system’s precision, adaptability, 
and scalability, making possible accurate, personalised assessments of a wide range of PE 
activities. 

3.1.1 Data collection 

This project is grounded in collecting high-quality multimodal data. Complex systems of 
high-resolution video capture from multiple angles continuously observe students’ 
posture, joint alignment, and movement trajectories. At the same time, such devices as 
accelerometers, gyroscopes, and heart rate monitors are used to continuously collect 
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physiological and biomechanical measures (acceleration, angular velocity, and heart rate 
variability). Through this multimodal approach, student performance integrates 
qualitative and quantitative aspects of student performance. 

Figure 1 Key components and workflow of the proposed method for PE assessment (see online 
version for colours) 

 

Note: It includes three interconnected stages: data collection, deep learning modelling, 
and feedback delivery. Multimodal data are collected through video capture and 
wearable devices for processing using a hybrid CNN-LSTM architecture to extract 
spatial and temporal features. Interactive feedback system based on the outputs 
(skill classification and performance trends): teacher and student feedback can 
receive real-time views and personalised recommendations. 

Collect and synchronise data as a matrix X  RN×T×F, on the person, time, and feature 
(e.g., joint positions) coordinates. The dataset is annotated with categories including skill 
level (beginner, intermediate, advanced) errors in performance, which sets the basis for a 
supervised training of DL models. 

3.1.2 Deep learning modelling 

The data was analysed using advanced DL models. CNNs are well suited to use video 
data to extract spatial features, which are key to evaluating motor skills by identifying 
key skeletal positions and motion patterns. It can be represented as: 

 spatial videoZ CNN X  (1) 

LSTM networks model temporal dependencies of movement sequences, including 
dynamic attributes like rhythm, balance, and consistency, and Zspatial refer to extracted 
spatial features. The LSTM processes sequential spatial features, updating hidden states 
ht at each time step t: 

 1t h t x th f W h W x b    (2) 

where Wh, Wx and b are weights and biases, and f is the activation function. The model 
merges CNN and LST outputs to generate discussions of spatial and temporal student 
performance aspects. 
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3.1.3 Feedback delivery 

Insights from the DL models are integrated into an interactive feedback system. A  
user-friendly dashboard provides teachers with visualised data like heat maps of activity 
levels, skill progression graphs, and error analysis. At the same time, students get  
real-time feedback, including personalised recommendations and skill-specific corrective 
actions for immediate adjustments and continuous improvement. 

3.2 Proposed SkillNet model 

The centrepiece of the proposed framework is the SkillNet model, which analyses spatial 
and temporal aspects of physical activity. The proposed architecture combines CNNs for 
extracting spatial features from video data with LSTMs for modelling the temporal 
dynamics, resulting in a hybrid architecture suited for PE tests. 

3.2.1 Input layer 

The model accepts synchronised multimodal data from video recordings and wearable 
devices. Video frames are preprocessed into normalised inputs for the CNN, while 
wearable data is temporally aligned with the video data to ensure consistency. 

3.2.2 Spatial feature extraction layer 

The CNN processes video frames, applying convolutional kernels to identify motion 
patterns such as joint positions, skeletal alignments, and movement trajectories: 

( )( )
,

ij kl i k j l
k l

Z K X     (3) 

The features captured by this layer are static and critical for estimating the skill at (i, j), 
where Zij, denotes the activation at the feature map position (i, j). 

3.2.3 Temporal modelling layer 

The extracted spatial features Zspatial are passed to an LSTM network, which models 
temporal dependencies to capture sequential dynamics in movement execution. The 
LSTM output, represented by the final hidden state, aggregates information across time 
steps to produce a holistic picture of student performance. 

3.2.4 Output layer 

The model has two branches to facilitate multi-task learning. The first branch classifies 
skill levels (e.g., beginner, intermediate, advanced), minimising cross-entropy loss: 


, ,

1 1

1
log

N C
class i c i c

i c
L y y

N  
     (4) 

where C is the number of classes yi,c, is the actual label, and ,i cy  is the predicted 

probability. The second branch predicts performance trends, minimising mean squared 
error (MSE): 
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1

1 N
trend i i

i
L y y

N 
   (5) 

where yi and iy  are the actual and predicted trends. The total loss is a weighted sum: 

total class trendL L L    (6) 

3.2.5 Training process 

SkillNet is trained on the labelled dataset using the Adam optimiser with a learning rate 
of 10–4. Early stopping prevents overfitting, and grid search is used to tune 
hyperparameters such as batch size and number of CNN and LSTM layers. 

3.3 System architecture 

The system architecture combines multiple components to enable seamless operation: 

 input layer: multimodal data from video and wearable devices 

 feature extraction layer: pre-trained CNN for extracting spatial features 

 temporal modelling layer: an LSTM network that tracks skill progression over time 

 output layer: dual branch structure for skill classification and trend prediction 

 feedback system: interactive dashboard for teachers and real-time feedback for 
students. 

PE assessments are revolutionised through a proposed framework integrating advanced 
DL models, multimodal data collection, and real-time feedback. The system improves 
teaching effectiveness and learning outcomes by automating evaluations and delivering 
actionable insights that mitigate the shortcomings of traditional approaches. 

4 Experimental Setup 

A PE evaluation using the proposed framework was designed experimentally. It includes 
details of the data collection process, model training and evaluation, and the tools and 
infrastructure used for implementation. 

4.1 Data collection 

A comprehensive dataset of motor skills and physical activities was built with the data 
taken. In the study, 100 students, aged between 10 and 15 years, completed several PE 
tasks such as running, jumping, throwing, balancing, and agility drills. These activities 
were selected based on a range of gross motor skills critical for PE assessments’ broad 
spectrum. 

 Video data: each activity was captured through strategically positioned  
high-resolution cameras from multiple angles. The recordings used visual data to 
analyse the student’s body posture, joint articulation, and movement trajectory. 
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 Wearable data: wearable devices such as accelerometers, gyroscopes, and real-time 
biomechanical and physiological data were collected using such devices as 
acceleration, angular velocity, and heart rate variability to gain a quantitative 
perception of student performance. 

 Data synchronisation and labelling: temporal synchronising of video and wearable 
data was performed to achieve temporal alignment. The dataset was annotated by 
expert instructors with labels for skill level (beginner, intermediate, advanced) and 
common performance errors. A final dataset of 10,000 video clips with its associated 
sensor was created and served as a high-quality training and validation set for the 
proposed model. 

4.2 Model training and evaluation 

To evaluate how well we could classify skill levels and predict performance trends, a 
model, SkillNet, was trained and tested on the collected dataset. 

 Training data split: the dataset was split into training and a validation subset, with 
80% going into training and 20% going to validation. This split ensured that the 
model could learn effectively while retaining a portion of the data for unbiased 
evaluation. 

 Model training: it used the SkillNet model to train itself, feeding in synchronised 
multimodal data. The CNN processed preprocessed and normalised video frames, 
and the LSTM processed time series wearables. The Adam optimiser is used with a 
learning rate of 10–4, and early stopping is applied to avoid overshooting. 

 Loss function and metrics: the model minimised a multi-task loss function 
combining cross-entropy loss for skill classification and MSE for trend prediction: 

total class trendL L L    (7) 

The two tasks were balanced by choosing  = 0.7 and  = 0.3. 

 Validation and testing: the model’s generalisation on unseen data was validated after 
training. A confusion matrix was used to analyse classification accuracy by skill 
level, where the model was accurate, and where it could be improved. 

4.3 Implementation tools 

Computer programs and physical devices are needed to evaluate and learn from the 
SkillNet model. 

 TensorFlow and PyTorch: these frameworks were used to build and train our DL 
platforms. TensorFlow’s simple API tools make model building quick, and PyTorch 
lets users try different experimental methods through its dynamic graph system. 

 OpenCV: processed video data with OpenCV, which involved removing broken 
frames and adjusting their differences across the footage. 

 NumPy and Pandas: it enables the essential calculation of numbers and data 
management. 
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 Matplotlib: this program helped us represent our model performance outcomes 
through loss curves and metrics. 

 GPUs: The CNN and LSTM processing speed in our training increased significantly 
due to NVIDIA Tesla V100 GPUs. The GPUs sped up the processing of big video 
data when training models through their complex structure. 

 RAM and storage: the server features 256 GB of RAM plus 10 TB of storage to 
process big data while keeping processing times fast. 

5 Results and analysis 

The test results show that the proposed method successfully automates PE evaluation 
while offering precise results that work well on large scales and keep students actively 
involved. This section reviews how well the SkillNet model works, plus the system’s 
strength from real-time feedback while showing its difference from conventional 
approaches. 

5.1 Model performance 

With an overall classification accuracy of 89%, the SkillNet model outperformed 
traditional teacher-based assessments by 17 percentage points, with an average of 72% 
agreement with expert evaluations, as shown in Table 1 and Figure 2. Finally, the 
precision and recall metrics for the model were further validated to be reliable for 
classifying skill levels across different motor skills. Specifically, its intermediate category 
showed the highest precision of 91%, though recall remained relatively high throughout 
all levels, minimising the false negatives. It consistently demonstrates the model’s ability 
to have robust and objective evaluations. It found that the confusion matrix had minor 
misclassification between adjacent skill levels, i.e., beginner and intermediate. In these 
results, we also show the effectiveness of using a combined CNN-LSTM architecture to 
extract the spatiotemporal features relevant to physical activities, joint alignment, and 
movement rhythm. 

Table 1 Model performance metrics by skill level 

Skill level Accuracy (%) Precision (%) Recall (%) 

Beginner 89 87 88 

Intermediate 91 91 90 

Advanced 87 89 86 

Overall 89 89 88 

5.2 Real-time feedback 

Combining wearable devices with real-time data analysis made feedback faster for 
students. Students could get prompt feedback because the suggested system scanned 
activity results in seconds rather than waiting for the 24-hour teachers required for 
standard evaluations, as shown in Table 2 and Figure 3. Through this update, students 
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could fix their performance right after their training runs, which helped them learn better 
skills faster. 

Figure 2 Model performed against skilled users in three categories: beginners, intermediates, and 
advanced users (see online version for colours) 

 

Note: The visual shows how the model reliably rates motor skills from beginners to 
advanced levels. 

Figure 3 Comparison of how much time students need to complete their work and stay active 
during tests under classic evaluation systems and our new framework (see online 
version for colours) 

 

Note: According to the chart, students show enhanced interest in assignments using live 
feedback tools, indicating faster evaluation times. 

Figure 3 displays the system’s capacity to shorten the evaluation period and reduce 
feedback delays. The interactive dashboard transformed how students and teachers 
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worked together in class by showing skills progress over time and suggesting 
personalised tasks. The feature saved teachers time because it works better than manual 
evaluation methods for rooms with many students. 

Table 2 Impact of real-time feedback on key metrics 

Feedback metric Traditional assessment Proposed framework 

Time for evaluation (min) 15 9 

Average feedback latency 24 hours Real-time 

Student engagement (%) 60 85 

Figure 4 Illustration of the reduction in time for evaluations and feedback latency when 
comparing traditional assessments with the proposed framework (see online version for 
colours) 

 

Note: The chart highlights the efficiency improvements achieved through real-time 
feedback. 

The prompt delivery of feedback raised student motivation from 60% to 85% more than 
traditional teaching approaches. Students appreciated real-time feedback, which helped 
them set more effective learning goals and stay motivated, as shown in Figure 4. 

Table 3 Comparative metrics between traditional and dl-based assessments. 

Metric Traditional assessment Proposed framework 

Accuracy (%) 72 89 

Inter-rater variability High Reduced by 35% 

Time efficiency Low Increased by 40% 

Scalability Limited High 

Student engagement (%) 60 85 

 



   

 

   

   
 

   

   

 

   

    Integrating deep learning and wearable technology 55    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Comparison of key measurement areas, such as accuracy, processing time, and student 
participation, between typical evaluation tools and our proposed deep learning system 
to demonstrate exceptional results (see online version for colours) 

 

5.3 Comparative analysis 

The contrast analysis shows the proposed system produces better results than 
conventional assessment methods because it gives more precise outcomes and maintains 
uniformity across tests. It also expands testing capabilities and increases student 
participation. 

 Consistency: by implementing this system, evaluation reliability improved by 35% 
while ensuring that results remained free from personal bias. Multiple educator 
opinions may affect assessment results because traditional marking processes depend 
on human judgement. The SkillNet model solved this problem through predictable 
evaluation criteria and evaluation decisions based on objective data. 

 Scalability: our framework’s automated system worked well for all activities and 
large groups of students. Large classrooms pose a challenge for human observation, 
but our system shows its worth by handling data for multiple students at once while 
keeping results exact and dependable. 

 Accuracy and efficiency: the system demonstrated 89% precision compared to usual 
methods, while regular observation technique results remained 72%. With the new 
system, teachers could spend 40% less time assessing and putting more energy into 
meeting each student’s learning needs. 

 Student engagement: the system framework made students more interested in their 
work by raising engagement from 60% to 85%, according to Table 3 and Figure 5. 
Students enjoyed monitoring their successes visually and receiving feedback 
immediately, making them more involved in their learning results. 
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6 Discussion 

The research shows that combining deep learning and wearable devices can powerfully 
impact PE evaluation methods. The proposed method overcomes existing PE evaluation 
challenges such as human bias and resource usage plus enables precise live feedback and 
improved student participation. This section details the effects of our findings alongside 
obstacles we faced and showcases practical settings for our framework. 

6.1 Enhanced accuracy and objectivity 

The SkillNet system demonstrated 89% precision in measurement, outperforming 
teacher-based assessment in achieving 72% agreement with professional evaluations. It 
shows that the framework gives trustworthy outcomes without personal judgement 
because observation results are automated. Traditional grading by teachers contains 
inconsistent results because they each perceive student performance differently. The new 
evaluation system used standard metrics and data results to resolve this challenge. 
Combining CNNs for spatial analysis and LSTMs for temporal modelling enabled us to 
reach this superior accuracy result. CNNs recognised static postures and joint positioning, 
while LSTMs tracked the dynamic movements, including beat and balance patterns, 
throughout their duration. Due to its specialised detection features, the model could detect 
motor skill performance quality in both simple and advanced activities. The model’s 
strong ability to recognise advanced students proved true with its high recall rate. The 
data matches other studies that show DL technology helps make gymnastics evaluation 
more exact and unbiased. 

6.2 Real-time feedback and classroom dynamics 

The proposed framework sped up evaluation results by 40% thanks to its live feedback 
capacity. To analyse student work, teachers must handle data manually, pushing feedback 
delivery to hours or days after the assessment. Training effectiveness is impacted because 
students cannot respond to problems right away. The system combined wearables with 
real-time data analysis to show teachers’ and students’ results as they occurred. The 
system immediately provided students instant feedback about their movements to 
improve their actions during class. Teachers received precise performance results through 
heatmaps and trend bars to help them find student errors and adjust their teaching 
effectively. Most students reacted positively to receiving instant feedback because it 
increased their interest in studying. With this approach, 85% of students became more 
involved, but this happened for only 60% of students who used traditional teaching. 
Students experienced better learning results because they understood what they achieved 
and what they needed to practice next through their visual performance data. 

6.3 Scalability and practical applications 

Tests showed that our approach managed different student abilities well alongside 
various exercises in sizable groups. The system worked better than personal observation 
because it processed multiple students at once through their data sources. The system’s 
flexible performance properties work well for students in significant school classrooms 
and athletic and rehab areas. The framework can detect performance in different sports 
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actions, which shows that it works well anywhere. Teachers found this system produced 
consistent results during all physical education assessments, so it worked well across 
different activities. The framework’s synchronisation capabilities with video and 
wearable data show promise for using the system across all these areas, including sports, 
fitness training, and medical rehabilitation. 

6.4 Challenges and limitations 

While the proposed framework demonstrated significant benefits, specific challenges and 
limitations must be acknowledged: 

 Data privacy and security: the technical recording of student activities creates doubts 
about student privacy protection and personal data security requirements. Schools 
must follow European GDPR and US FERPA rules to prevent unauthorised access to 
sensitive information. Future installations must put strong systems that hide personal 
information and secure underlying data. 

 Hardware and cost barriers: schools with minimal resources find it hard to set up the 
system because high-resolution cameras cost more, plus wearable devices and 
computers. The creation of low-priced wearable technology and edge-computing 
tools helps make our solution more accessible for widespread use. 

 Generalisation across contexts: the system success tests happened inside controlled 
settings with set data information. Our research must confirm its usefulness for 
different kinds of students, settings, and learning environments. Our model can better 
handle real-world scenarios by adding diverse people and various activities to our 
dataset. 

 Teacher training: the system’s successful use relies on teachers understanding how to 
use and decode the framework. Successfully using this system in classrooms will 
require teacher training plus easy-to-follow interfaces. 

6.5 Implications for education 

The model creates critical new ways to improve education now. Our system automates 
PE evaluation while giving students immediate feedback, enabling teachers to devote 
more time to instruction and student learning. Through this system, teachers can 
customise their teaching methods. Students receive instant feedback to improve their 
knowledge. All students receive fair assessment results through standardised testing 
regardless of their strengths or weaknesses. This system works well in many educational 
spaces, including significant classrooms and specific training courses. 

7 Conclusions 

This research launched a fresh technique using deep learning methods and wearable 
instruments to overcome problems linked to regular physical education evaluations. This 
framework showed strong signs of transforming PE evaluation standards through spatial 
analysis with CNNs, temporal modelling through LSTMs, and data from wearable tech 
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plus video recordings. Our research showed that this system delivers precise and uniform 
test results across many students. The SkillNet system delivered better performance at 
89% compared to classroom teacher methods, which only matched expert evaluations 
72% of the time. The system produces better results by lowering the measurement 
differences between evaluators by 35%. Students received instant feedback and became 
more engaged under this program because 85% felt motivated compared to 60% in 
traditional courses. Our framework works well in many different setups for teaching and 
training. Our system performed well during activity tests and retained accuracy 
throughout different skill levels. Through its performance metrics and student-teacher 
interactivity, this system helps teachers teach better, and students engage more fully with 
their studies. Even though the system shows strong performance, it needs to address data 
privacy concerns and the price of physical hardware devices, and testing must be done 
against many more students. The system’s success depends heavily on solving these 
limitations to work well in different learning environments. Research must grow the 
dataset base, improve model effectiveness, and examine low-cost ethical use approaches. 
The proposed PE evaluation method enhances students’ and teachers’ experiences, saving 
effort and increasing test precision. Our automated evaluation system helps improve PE 
delivery while building new uses for technology in education systems. 
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