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Abstract: The paper compares two approximations of the solution of the initial 
boundary value problem of thermal conductivity with boundary conditions of 
the third kind for the case of a temperature shock of a homogeneous thin plate. 
A second-order approximation with respect to the plate thickness is obtained. 
The results of the numerical simulation are compared with the known  
first-order approximation with respect to the plate thickness. The results 
obtained demonstrate good convergence. They can be used in controlling the 
motion of a small spacecraft with elastic structural elements. It is necessary to 
level out the effect of temperature shock disturbances on the angular motion of 
a small spacecraft. 
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1 Introduction 

From a theoretical point of view, the one-dimensional problem of thermal conductivity is 
well studied. So, back in 1905, work Einstein (1905) on the thermal motion of suspended 
particles was published. However, interest in this task has not waned so far. In Muftu 
(2022), a finite element form was developed for solving one-dimensional equations of 
thermal conductivity in a steady state with simple boundary conditions. Paper Biswas  
et al. (2023) is devoted to the search for a new nonlinear shape between two nodal points 
of a finite element model of one-dimensional thermal conductivity. In Sedelnikov and 
Orlov (2020), the law of control of a small spacecraft was developed taking into account 
the temperature effects on it from the Sun in the framework of a one-dimensional thermal 
conductivity problem. Niu et al. (2021) consider traditional tools for analysing thermal 
conductivity in reactor systems to be ineffective. In their opinion, these approaches face 
serious difficulties in developing models, have low accuracy and poor convergence. In 
Niu et al. (2021), an automatic differentiation method is presented, which allows for 
automatic numerical calculation of derived functions when solving a one-dimensional 
thermal conductivity problem. It was about classical problems in the correct formulation 
according to Hadamard and Morse (1953). 

Incorrect tasks according to Hadamard and Morse (1953), first of all, inverse tasks are 
unlikely to ever lose relevance. It is no coincidence that many works today are devoted to 
solving incorrect problems. In Jahangiri et al. (2019), a numerical method was used to 
solve the one-dimensional inverse problem of thermal conductivity, which is a 
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combination of the Haar wavelet collocation (Mehandiratta et al., 2020) and the 
Tikhonov regularisation approach (Calvetti and Reichel, 2003). In Molhem and Pourgholi 
(2008), a numerical algorithm is presented for solving the one-dimensional inverse 
problem of thermal conductivity in a dimensionless form. The algorithm combines the 
use of the finite difference method with the solution of an ordinary differential equation. 
In Pourgholi et al. (2013), a numerical method for solving the inverse problem of thermal 
conductivity based on the Sinc-Galerkin method is proposed. A stable numerical solution 
to this problem is obtained. It is noted in Wang et al. (2024) that inverse problems of 
thermal conductivity play an important role in the engineering field. A method of fast 
Bayesian parallel sampling is proposed for large-scale estimation of the parameters of the 
reference three-dimensional inverse problem of thermal conductivity. This method allows 
you to quickly calculate the parameters on a scale of 105 by reducing the dimension of 
the problem domain, depending on space and time. 

Boundary conditions of the third kind should be mentioned separately (Eremin and 
Gubareva, 2019). They are essentially nonlinear (Sidorov, 1969). This makes it more 
difficult to obtain an approximate analytical solution to the problem (Sedelnikov et al., 
2021). 

Even more difficult is the formulation of the thermal conductivity problem for rapidly 
alternating processes (Choi et al., 2022). One of these processes is temperature shock 
(Kartashov, 2012). In practice, a temperature shock occurs when a spacecraft with large 
solar panels is immersed in the shadow and comes out of the shadow (Sedelnikov et al., 
2023). In this case, thermal vibrations are excited (Johnston and Thornton, 2000), which 
can lead to a deterioration in the quality of the spacecraft’s solution to its target tasks 
(Serdakova, 2023). First of all, this applies to Earth remote sensing spacecraft 
(Khnyryova, 2023). However, when using thin ROSA solar panels (Lee et al., 2013), 
thermal fluctuations can significantly affect the dynamics of the spacecraft (Shen et al., 
2017). During the tests of these panels on the International space Station, thermal 
fluctuations didn’t allow them to collapse (Chamberlain et al., 2021). This shows that a 
temperature shock can affect the controllability of a spacecraft (Liu et al., 2022). 
Especially when it comes to small spacecraft (Liu et al., 2019). In Sedelnikov et al. 
(2024b), new technologies for controlling a small spacecraft are considered, taking into 
account disturbances from a temperature shock. It is noted that in order to construct an 
effective control law for a small spacecraft, it is necessary to have approximate analytical 
dependences of perturbations on a temperature shock. The high load of the on-board 
computer with the target tasks (Prokopyev et al., 2020) does not allow the installation of 
resource-intensive applications for the numerical evaluation of these disturbances (Joseph 
et al., 2018). Therefore, the derivation of approximate analytical dependencies is an 
important practical task for effective motion control of a small spacecraft. 

The purpose of this work is to study the accuracy of the first approximation of solving 
a one-dimensional thermal conductivity problem with boundary conditions of the third 
kind for a thin plate under the action of a temperature shock. The first approximation is 
described in Sedelnikov et al. (2024a) and demonstrates good convergence with the 
numerical solution in the Ansys package. 
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2 Setting the task 

Let consider the initial boundary value problem of one-dimensional thermal conductivity 
in the form (Sedelnikov et al., 2021, 2024a, 2024b): 

( )

( )

2

2

4 4

4 4

0

( , ) ( , ) , 0 , 0;

( , ) Θ ( , ) , , 0;

(0, ) Θ (0, ) , 0, 0;

( , 0) , 0 , 0,

C

C

T z t T z ta z h t
t z
T h tλ Q e T h t T z h t
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T tλ e T t T z t

z
T z T const z h t

∂ ∂= ≤ ≤ > ∂ ∂
 ∂  = − − = > ∂ 
 ∂  = − − = > ∂ 
 = = ≤ ≤ =

 

where  
a thermal conductivity coefficient of the material 
h plate thickness 
λ coefficient of thermal conductivity 
e the degree of blackness of the plate material 
Θ the Stefan-Boltzmann constant 
Tc ambient temperature of the plate 
Q eat flow incident on the surface of the plate. 

Neglecting the ambient temperature (approximately 3 К (Guo et al., 2024)) in comparison 
with the temperature of the plate, we rewrite the system of equations as: 
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4

4
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( , ) ( , ) , 0 , 0;

( , ) Θ ( , ), , 0;

(0, ) Θ (0, ), 0, 0;

( , 0) , 0 , 0.

T z t T z ta z h t
t z
T h tλ Q e T h t z h t

z
T tλ e T t z t

z
T z T const z h t

∂ ∂= ≤ ≤ > ∂ ∂
 ∂  = − = > ∂ 
 ∂  = − = > ∂ 
 = = ≤ ≤ =

 (1) 

A homogeneous thin rectangular plate with constant thermophysical properties over the 
entire temperature range is considered as an object of research. The plate is rigidly fixed 
with one edge. The other three edges of the plate are free (Figure 1). Heat losses through 
the side surface of the plate are considered negligible. At the initial moment of time, the 
temperature field of the plate was homogeneous. At the moment of the thermal shock, the 
plate had a flat shape. The Q flow is perpendicular to the plate plane at all times. 

Such a setting in Sedelnikov and Orlov (2020) and Sedelnikov et al. (2021) is defined 
as the most dangerous in terms of the effect of temperature shock on the dynamics of a 
small spacecraft. The flow perpendicular to the plate ensures maximum heating of its 
surface layer. In this case, the disturbances from the temperature shock will be maximal 
(Sedelnikov et al., 2024b). 
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Тhus, the problem statement under consideration is relevant from the point of view of 
estimating the maximum effect of a temperature shock. Based on it, it is possible to make 
a decision on taking into account the temperature shock when modelling the motion of a 
small spacecraft. Therefore, the studies conducted in this paper on the accuracy of the 
approximate solution of the initial boundary value problem (1), presented in Sedelnikov 
et al. (2024a), are relevant and important. 

Figure 1 The appearance of the plate being modelled in operation 

  

3 Output of an approximate solution 

For the output, we use the expansion (Sedelnikov et al., 2024a; Korneyev et al., 2019): 

0

( , ) ( )
n

i
n i

i

T z t ξ t z
=

=  (2) 

It is a well-known Fourier decomposition of a function of two variables (Watts, 2012). 
There are studies on the incorrectness of using such decomposition to describe complex 
processes (Arinchev, 2022). However, in this paper it is considered suitable for obtaining 
an approximate analytical dependence for the temperature field of the plate in the 
framework of the one-dimensional problem of thermal conductivity. This can be a 
problem for solving two-dimensional (Sedelnikov et al., 2021b) or three-dimensional 
thermal conductivity problems (Cheng and Ge, 2010). 

As in Sedelnikov et al. (2024a), we take into account the first four terms in expansion 
(2): 

2 3
3 0 1 2 3( , ) ( ) ( ) ( ) ( )T z t ξ t ξ t z ξ t z ξ t z= + + +  (3) 

Taking into account the derivatives, substituting (3) into the first equation (1) gives the 
following equation Sedelnikov et al. (2025):  

[ ]2 30 31 2
2 3

( ) ( )( ) ( ) 2 ( ) 3 ( )dξ t dξ tdξ t dξ tz z z a ξ t ξ t z
dt dt dt dt

+ + + = +  (4) 

However, in Sedelnikov et al. (2024a), equation (5) was linearised with respect to the 
variable z. The plate in question is thin. The variable z varies from 0 tо h. Therefore, such 
linearisation is fully justified. In this paper, it is proposed to take into account the terms 
of the second order relative to z in equation (4). After that, compare the results obtained 
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with the linearised equation (4) and draw conclusions about the correctness and adequacy 
of the linearised equation (4). 

Let’s group the terms in (4), neglecting the terms above the second order with respect 
to z: 

2 02 1
3 2

( )( ) ( ) 6 ( ) 2 ( ) 0dξ tdξ t dξ tz aξ t z aξ t
dt dt dt

    + − + − =         
 (5) 

The functions in square brackets of equation (5) are generally independent. Therefore, in 
order to satisfy equation (5), we require that all of them be equal to zero at the same time: 

2

1
3

0
2

( ) 0;

( ) 6 ( ) 0;

( ) 2 ( ) 0

dξ t
dt

dξ t aξ t
dt

dξ t aξ t
dt

 =

 − =



− =

 (6) 

Conditions (6) are in some sense similar to the conditions in the Rayleigh-Ritz method, 
where each term of the expansion must separately satisfy the boundary conditions 
(Abdallah and Madjid, 2024). Let’s arrange the equations in system (6) by terms of 
expansion and take the obvious integrals. Then (6) transforms to the form: 

2
0 1 2

1
3

2 1

( ) ;
( ) 6 ( );

( ) ,

ξ t a t
dξ t aξ t

dt
ξ t t

 = +

 =


=

β β

β

 (7) 

where β1 и β2 – integration constants. 
Оne of the integration constants can be found from the initial conditions. The fourth 

equation of the system of equations (1) for z = 0 will take the form: T(0, 0) = T0. 
According to decomposition (3), for z = 0 we have:  

3 0(0, ) ( ).T t ξ t=  (8) 

At t = 0 get:  

3 0 0(0,0) (0) .T ξ T= =  (9) 

Substitute t = 0 into the first equation of the system of equations (7) and obtain:  

2 0 0(0) .β ξ T= =  (10) 

Then the system of equations (7) will take the final form: 
2

0 1 0

1
3

2 1

( ) ;
( ) 6 ( );

( ) .

ξ t a t T
dξ t aξ t

dt
ξ t t

 = +
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 =

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β
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 (11) 
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If the decomposition functions (3) satisfy the conditions (11), then the decomposition (3) 
itself will satisfy the equation of thermal conductivity. In the system of equations (11), 
only the second equation is differential. Next, let us consider the boundary conditions that 
the functions from expansion (3) must satisfy. 

For z = 0, the temperature and its derivative with respect to z, based on expansion (3), 
will have the form: 

0

1
0

(0, ) ( );
( , ) ( )

z

T t ξ t
T z t ξ t

z =

=


∂  =  ∂ 

 (12) 

Therefore, the third equation of the system of equations (1), taking into account (12), is 
transformed to the form: 

4
1 0( ) Θ ( )λξ t e ξ t= −  (13) 

This form completely coincides with equation (9) of Sedelnikov et al. (2024a). 
For z = h, the temperature and its derivative with respect to z, based on decomposition 

(3), will have the form: 
2 3

0 1 2 3

2
1 2 3

( , ) ( ) ( ) ( ) ( ) ;
( , ) ( ) 2 ( ) 3 ( ) .

z h

T h t ξ t ξ t h ξ t h ξ t h
T z t ξ t ξ t h ξ t h

z =

 = + + +

 ∂  = + +  ∂ 

 (14) 

Substituting (14) into the second equation of the system of equations (1) gives a result 
that coincides with equation (11) of Sedelnikov et al. (2024a) before linearisation: 

( ) 2
1 2 3

42 3
0 1 2 3

2 ( ) 3 ( )

Θ ( ) ( ) ( ) ( ) .

λ ξ t ξ t h ξ t h

Q e ξ t ξ t h ξ t h ξ t h

 + + = 

 = − + + + 
 (15) 

Further in Sedelnikov et al. (2025), a linearisation with respect to h. was performed. In 
this paper, the second-order terms with respect to h will be retained. After this 
simplification, (15) is transformed to the form: 

2
1 2 3

2 2 2 2 2
0 0 0 1 0 2 1

( ) 2 ( ) 3 ( )

Θ ( ) ( ) 4 ( ) ( ) 4 ( ) ( ) ( ) .

λ ξ t ξ t h ξ t h Q

e ξ t ξ t ξ t ξ t h ξ t ξ t h ξ t h

 + + = − 
 − + + + 

 (16) 

Equation (16) differs significantly from the linearised equation (12) in Sedelnikov et al. 
(2024a) and is a more accurate approximation of equation (15). We substitute conditions 
(11) in (16) and perform elementary transformations: 

( ) ( )

( )

2 32 2 21
1 0 1 1 0 1

32 2
1 1 0 12

( ) 12 Θ 8 Θ( ) ( )

2 2 4 Θ .
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β β

β β
 (17) 

Then finally, the functions in decomposition (3), taking into account the second 
approximation with respect to h, will take the form: 
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


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 (18) 

The resulting system of functions (18) is a solution to the initial boundary value problem 
(1). The second equation (18) is solved only approximately. 

4 Numerical modelling and comparison of results with a linearised model 

Let’s perform numerical modelling in the Mathcad mathematical package. The values of 
the main characteristics of the plate and the temperature impact completely coincide with 
the work Sedelnikov et al. (2024a). The same values were used in Sedelnikov et al. 
(2021) for numerical simulation of temperature shock in the ANSYS package. This is 
done in order to make it possible to correctly compare the obtained simulation results. 
The main characteristics are shown in Table 1 (Sedelnikov et al., 2024a). 
Table 1 The main parameters of the simulated plate 

Parameter Designation Value Dimension 
Solar panel frame material – МА2 – 
Coefficient of thermal conductivity λ 96,3 1400 
Stefan-Boltzmann constant Θ  W/(m2.K4) 
External heat flux Q 1,400 W/m2 
Initial temperature of the solar panel frame T0 = T(z, 0) 200 K 
Degree of blackness e 0, 2 - 
Specific heat c 1,130.4 J/(kg,K) 
Density ρ 1,780 g/m3 
Young’s Module E 4⋅1010 Pa 
Shift modulus μ  Pa 
Poisson ‘s Ratio ν 0, 3 - 
Solar panel length l 1 m 
Solar panel width b 0, 5 m 
Solar panel frame thickness h 1 mm 

Source: Sedelnikov et al. (2024a) 

The following results were obtained in numerical simulation. They are shown in Figure 2. 
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Figure 2 Dynamics of surface layer temperature (z = h) (see online version for colours) 

 

Notes: 1 – simulation results in ansys (Sedelnikov et al., 2021); 2 – simulation results 
based on the linearised model (Sedelnikov et al., 2024a); 3 – simulation results 
based on the proposed model, taking into account the terms of the second order 
relative to z. 

It can be seen from Figure 2 that there are no significant differences from the linearised 
model (Sedelnikov et al., 2024a) taking into account the terms of the second order 
relative to z didn’t give. Therefore, the use of a linearised model is fully justified for an 
approximate assessment of the effect of a thermal shock. 

For the surface layer with the coordinate z = 0, the linearisation of equation (4) has no 
effect on the temperature distribution in the layer. This is a disadvantage not so much of 
the decomposition (2) as of the Fourier method (Watts, 2012). It is precisely such 
shortcomings that the authors of Arinchev (2022), as well as a number of other works, for 
example, Li et al. (2022) and Shenoy et al. (2010) point out.  

5 Conclusions 

The paper considers an approximate solution to the one-dimensional problem of thermal 
conductivity using expansion (3), taking into account the terms of the second order 
relative to z. The results obtained allow us to conclude that the considered approach did 
not bring a significant increase in accuracy compared to the linearised model in 
Sedelnikov et al. (2024a). Moreover, accounting for members of a higher order seems 
irrational. And this isn’t due to the fact that the linearised model (Sedelnikov et al., 
2024a) is accurate, but due to the disadvantages of the Fourier method itself in the 
context of the problem being solved. Apparently, the significant nonlinearity of the 
boundary conditions of the third kind makes the idea of using the decomposition of a 
function of two variables as a product of two independent functions of one variable less 
applicable. A similar position can be found in the works Belousova and Serdakova (2020) 
and Sedelnikov et al. (2023). 

Тhus, an important result of the work is to verify the reliability of the linearised 
model (Sedelnikov et al., 2024a). This model, in fact, has exhausted all the possibilities 
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of the Fourier decomposition method (Watts, 2012) and cannot be improved by taking 
into account a larger number of higher-order terms relative to z. 
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