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Abstract: This paper presents a novel multi-objective optimisation algorithm
for predicting the optimal control parameters of a radial abrasive water jet
turning (AWJT) method. The objective is to maximise the material removal
rate (MRR) and minimise the surface roughness (R.) of the turned surface. The
control parameters include water pressure, jet feed speed, abrasive flow rate,
surface speed, and nozzle tilted angle. The proposed algorithm, called
multi-objective amended differential evolution algorithm (MADEA), is a
rank-based differential evolution (DE) algorithm that uses non-dominated
sorting and crowding distance to select and update the solutions. The
performance of MADEA is compared with six state-of-the-art multi-objective
evolutionary algorithms on a set of benchmark test problems and the AWIT
problem. The results show that MADEA can find better Pareto optimal
solutions than the other algorithms.
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Introduction

Abrasive water jet machining (AWJM) is a hybrid process that combines abrasive jet
machining (AJM) and water jet machining (WJM). In this process, a high-speed water jet
containing abrasives erodes the material through impact and abrasion. AWJM can
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perform various operations, such as cutting, drilling and turning, on different materials,
such as metals, alloys, glass, composites and acrylics (Arun et al, 2023;
Balasubramaniyan et al., 2023). The benefits of AWJIM include omnidirectional cutting
capability, minimal thermal effects, burr-free edges and high efficiency. Figure 1
illustrates the working principle of AWJM. A high-velocity water jet adhering abrasive
particle is targeted towards the workpiece. The high momentum of the water jet gets
transferred to the abrasives and as a result, a large quantity of abrasive particles
accelerates. The accelerated abrasives impinge on the workpiece and erode it.

Figure 1 Abrasive water jet machining
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The abrasive water jet turning (AWJT) is based on abrasive water jet cutting. Similar to
conventional turning, the workpiece is rotated at cutting axis, and the jet is traversed to
remove material and obtain an axisymmetric shape. Figure 2 shows the turning modes of
the AWIJT. Figure 2(a) shows the offset mode, and Figure 2(b) shows the radial mode of
AWIJT. In radial mode, the position of the nozzle is directly above the axis of the
workpiece, whereas in offset turning, the nozzle is situated at the periphery of the
workpiece. The AWIJT shows consistent advantages when handling various types of
materials. Flogel and Faltin (2013) turned titanium alloy, Ti6A14V, with AWIJT. The
effects on tool life in terms of volume, material removal rate (MRR) and surface
roughness (R,) caused due to five parameters of AWIT, adjusted depth of cut (d), feed
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(F), speed (n), particle size (d,), and abrasive flow rate (m,), were studied. The authors
suggested that AWIT can be used as an economical alternative manufacturing process for
rough turning of titanium alloys. Yue et al. (2013) conducted an experimental study of
the radial-mode AWIT of 96% alumina ceramics. The process parameters n, F, m,, water
pressure (Py), and nozzle tilted angle (f) were explored to study the effects on depth of
turning, i.e., d and MRR. The parameters’ effectiveness was studied using range analysis
and variance analysis, in which authors found that the feed speed affects the depth of
turning the most. Yue et al. (2014a) extended their study by using response surface
methodology (RSM) and sequential approximation optimisation (SAO), to explore the
effects of AWJT parameters on MRR. Yue et al. (2014a) also gave mathematical models
for MRR and R,. In the current study, the same models were optimised and compared
with other multi-objective algorithms. Yue et al. (2014a) concluded that water pressure
and abrasive mass flow rate has a high effect on MRR. Liu et al. (2013) studied the effect
of standoff distance (SOD) on depth of penetration or d, R,, and actual impact angle or .
The study was carried out on both modes of AWIJT of alumina (Al,O3) ceramics, where
authors found that SOD plays a significant role in radial-mode AWIJT and has almost no
effect in offset-mode AWIT. Zohourkari et al. (2015) carried out AWJT operation on
AA2011-T4 alloy. A design model of five AWIJT parameters was created using a
five-level central composite rotatable experimental design. Using the analysis of variance
(ANOVA) approach, a polynomial model for MRR was created, and the significance of
each parameter was tested. Uhlmann et al. (2014) used AWIJT for the rough turning of
G-AlSi;7CusMg alloy. The final pass was done using a conventional turning process. By
combining both turning processes, a high product yield can be obtained, as the tool life of
AWIJT was at least ten hours at MRR of 13 cm?/min. Also, negligible thermal stresses
were exerted during rough passes. As a result, a high surface finish was achieved by the
combination of AWJT roughing and conventional finishing. Two ceramics, 96% alumina
and 95% zirconia, were turned in radial mode using AWIJT and studied by Yue et al.
(2014b). The material removal mechanism of both ceramics was studied on microscopic
level. It was seen that 96% alumina showed brittle fracture caused by intergranular cracks
and fragmentations, whereas 95% zirconia showed plastic deformation with some pits.
AWIT process can also be used for non-metals. Kartal et al. (2014) investigated the
average surface roughness and MRR obtained for AWIT of low density polyethylene
(LDPE). The process parameters of AWIJT were manipulated in order to get optimum
surface quality and MRR. The experiments were conducted according to the Taguchi L.27
orthogonal full factorial design and optimisation box and ANOVA were used for analysis
of the results. Kartal and Gokkaya (2015) observed the most significant parameter in
AWIJT of AISI 1050 steel material. Kartal and Gokkaya (2015) considered sets of five
parameters, F, my, lathe spin rate (n), nozzle distance or SOD, and nozzle diameter (dy);
they observed that F had the highest impact on R,, and m4 had a significant effect on
MRR. Kartal and Yerlikaya (2016) extended their research on AWIJT of non-metals, from
LDPE to polytetrafluoroethylene (PTFE), castamide, and polyamide (PA). This time,
three process parameters, F, my, and n, were considered for optimisation. The three
process parameters were changed according to predefined sets of values to obtain
optimum average R, and MRR. It was observed that the objectives, average R, and MRR,
were highly affected by the F. Kartal et al. (2017) also optimised the AWIJT of Al-6082
T6 alloy by manipulating four process parameters, F, m., n and SOD. They found that the
best surface finish was obtained at higher n and my, and lower F and SOD. Ibrahim et al.
(2020) conducted AWIJT process on a submerged castamide workpiece. Three input
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variables or process parameters were considered for getting minimum R, and maximum
MRR. The input variables were nozzle traverse speed or F, mA and n. It was found that by
submerging the workpiece, the surface roughness increased and MRR decreased. The
effect of parameters was studied using ANOVA, and the optimisation was carried out
using TOPSIS and VIKOR methods. Kartal and Kaptan (2023) investigated the AWJT of
acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). The parameters
considered were nozzle feed, abrasive flow rate, chuck turning speed and nozzle distance.
They concluded that by increasing the rotational speed, the surface roughness decreased.
Stefek et al. (2021) investigated the effect of AWJT parameters in tangential or offset-
mode turning. The three parameters considered were, traverse speed, i.e., F, rotational
speed, i.e., n, and relative position of the jet, i.e., SOD. The authors stated that the SOD
was the key parameter to achieve highest efficiency. Kasim et al. (2022) studied the
effects of parameters in AWIJT of Inconel 718 for obtaining minimum surface roughness.
The experiments were carried out according to the two-level full factorial design for three
process parameters, d, F, and n. The values of input and output, R,, were correlated using
design of experiments (DOFE) method and the significance of the parameters was
calculated using ANOVA method. The key parameter for good surface finish was d.

Figure2 AWIT modes
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In the current study, the AWIT of alumina ceramic (Yue et al., 2014a) is optimised using
evolutionary algorithms. As per the authors’ observation, the AWIJT process has never
been optimised using evolutionary algorithms. Most optimisations were carried out using
statistical methods like the DOE or the TOPSIS method. However, the aim of the current
study is to introduce the capability of multi-objective amended differential evolution
algorithm (MADEA) in solving real-life problems. It will be interesting to compare the
optimum values of parameters obtained using conventional methods and multi-objective
evolutionary algorithms.

The rest of the paper is organised as follows. Section 2 introduces multi-objective
optimisation problem (MOP) and the AWIJT problem. Also, the variant of the differential
evolution (DE) algorithm is explained using pseudo code in the same section. In
Section 3, the multi-objective amended differential evolution algorithm (MADEA) is
described. The results are shown in Section 4 and the paper is concluded in Section 5.
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2 Preliminary information

2.1 Multi-objective optimisation problem

The general form of MOOP is given in equation (1).
Maximise/minimise  f,,(x) m=12,..,.M
Subject to g;,(X)=20 j=12,...J

h(X)=0 k=12,..,K
XP<x, <xVi=1,2,..,n

Q)

where M is the number of objectives, J is the number of inequality constraints, and X is

the number of equality constraints. X and X“ are the variable bounds which

together form a decision variable space or decision space. The individual in the
population is also called a vector, and the individual on which the operations are
conducted is known as a current or target individual/vector.

The problem considered in this paper is adopted from Yue et al. (2014a), and it has
two objectives and no constraints. The adopted model of the AWIT method is given in
equations (2) and (3).

Maximise, MRR

Y] =3814.35+943.50.X, —530.29X, +745.01.X; +154.82X4 —193.65X;
+551.62X1 X; +284.87 X, X5 —147.61X, X5 —225.72 X3 X4 +345.29 X}
—483.49X7 —430.00.X?

Minimise, R,
Y, =3.78+0.31.X; +0.04.X, —0.38X5 +0.087.X, +0.046 X5 —0.24 X, X, 3)
—0.067X4X5—0.17X3 +0.17X2 +0.14X2

where X, is water pressure (P,,, MPa), X, is jet feed speed (F, mm/s), X; is abrasive mass
flow rate (m.4, g/s), X is surface speed (n, m/s), and Xs is the nozzle tilted angle (5°). The
parameter bounds are as follows. 190 < X; <310, 0.05 X, <0.25,3.5<X3<11.5,1.55 X,
< 9.5, 45 < X5 < 105. Both objectives conflict with each other. With higher MRR, the
surface roughness, R,, increases. Therefore, a set of trade-off solutions or a Pareto
solution set can help the decision maker to choose a set of parameters according to their
needs.

2.2 Amended differential evolution algorithm

The DE algorithm is applicable to unconstrained optimisation problems. Rana and
Lalwani (2017) introduced a few amendments to DE algorithm to solve constrained
single-objective optimisation problems. The modified DE algorithm is called an amended
differential evolution algorithm (ADEA). In addition to convert DE into a constrained
optimisation algorithm, a few amendments were added to increase DE’s performance.
The ADEA have shown competitive results, and some reported solutions were even
better than the benchmark problems from CEC 2006 (Runarsson et al., 2006). The first
amendment is to utilise a random population produced using the design of experiment
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approach (RPDoE). The pseudocode of RPDoE is given in Algorithm 1. The use of
RPDOE results in better coverage of the search space, which results in better exploration
and hence, better results.

Algorithm 1 RPDoE

Input: LB, UB, n
Output: Initial population of size [(2P + 2xD + 1) x n]-by-—D
1 Create x =[]

) _ x @) ) _ x b
XX) and s = X0 2[XX] divide the
3

2 Using Xum = X7 +[
3

variable bounds into levels —1, 0 and 1.

Use divided bounds to create (2P + 2xD + 1) subspaces.

3
4 Generate n number of random individuals in each subspace.
5 Merge x and random individuals created in subspaces

6

return x

The DE is sensitive to the parameters and often a better individual may get thrown off to
a worse place in the mutation process. Takahama and Sakai (2009) came up with the idea
of having a range of parameters and ranking. In the second amendment, the individuals
are ranked according to the objective value and each individual is assigned the scaling
factor and crossover probability value according to their respective rank. Individuals with
higher rankings will be given a lower scaling factor and a higher crossover probability,
ensuring that the respective individuals are perturbed less, and the elements in that
individual are always chosen in the crossover process. Better exploration of search space
results in a better optimum solution. In DE, the exploration is brought by the mutation
process. In ADEA, two mutant individuals are created instead of one. Among the 2NP
mutant individuals, top NP individuals are selected and proceed towards the crossover
process. The complete procedure of ADEA is given in Algorithm 2.

Algorithm 2 ADEA

Values of Fmin, Fmax and Crmin, Crmax are assumed.

2 The initial population, v, is generated using RPDoE and the objective function (f) is
calculated for each individual, f{X;)

Sort f{X:) and choose top NP individuals
4 Rank individuals, R;

Calculate the values of F and Cr for each member according to the equation

R; -1 R; -1
E. :Fmin+ Fmax_Fmin - and Crl :CRma.x_ CRmax_CRmin —
| e )

NP -1

while Stopping criteria is False do
fori=1:NP do

Choose random individuals x,1, x,2 and x:3, s.t., rl Z12 #13 #1

O 0 9 N

Create two mutant individuals, m1 and )2, using the equation m1i =
X, +F(X,-X,) andm2i= X, -F(X, - X.)
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10 Select top NP individuals from 2NP mutant individuals and form mutant individual
mi

11 forj=1:D do
12 Choose jrand, a random integer between 1 to D
13 Choose 1, a random number between 0 to 1.
14 Calculate trial vector,

i = X..

Jii

15 end for
16 Compute combined function for trial vector, flU;)
17 if (V) is nearer to optimum point than f{X;)) do
18 Xi= Ui
19 end if
20 end for

21 end while
22 Solution: X;

3 Methodology

3.1 Multi-objective amended differential evolution algorithm

This section of the paper explains the formulation of MADEA. The ADEA algorithms is
incorporated with an archive approach, an efficient non-dominated sorting (ENS) method
(Zhang et al., 2015) and a crowding distance (CD) process (Deb et al., 2002) to solve
MOPs. The ENS method bifurcates the given population into number of fronts, and the
CD process is used to sort and rank the individuals. The CD process also retains the
diversity in the solution, as it scores an individual based on its distance from the
neighbouring individuals. Equation (3) is used to calculate the CD.

o) _ flir-)

_ m m
CDIT - DI;” + max __ £ min (3)
m m

where £, and f,™" are the maximum and minimum values of m™ objective function.

I; is the solution index of /" member in descending list of mt" objective function.
Figure 3 shows the flowchart of MADEA. The complete procedure to apply MADEA
on a MOP is given in Algorithm 4.

3.2 ENS algorithm

In the ENS approach, the duplicate comparisons are eliminated, which makes the
algorithm very efficient and faster. The detailed working of ENS is given in Algorithm 3.
There are two conditions which Fr[k] has to satisfy to get solution s, assigned to it:

1 At least one solution from front Fr[;] that has been assigned should dominate
solution s,, where 1 <j<k—1.
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2 No solutions from front Fr[/] should dominate solution s,, where [ > k.

Figure 3 MADEA flowchart (see online version for colours)
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Figure 4 illustrates how the ENS conditions need to be satisfied to assign solution s, to a
particular front. In the proposed algorithm, a sequential search (SS) strategy is adopted.

Algorithm 3 ENS

Input: Solution set
OQutput: The set of fronts
1 Set of fronts, Fr =]

2 Sort solution set, S, by the first objective’s value

3 fors=sorted S do

4 NF =sizeof(Fr), i.e., number of fronts discovered

5 k=1

6  while true do

7 compare solutions in Fr[k] from last to first with si where, i = 1:sizeof(S)
8 if solutions in Fr[k] do not dominate si

9 add si to Frlk]

10 return &

11 break

12 else

13 k=k+1

14 ifk>s

15 create new front and add si to it

16 return NF + 1
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break
end if
end if
end while
end for

return Fr

Figure 4 Assignment process of solutions s, to a front, using ENS method (see online version

for colours)

At least one
r solution from each
of these fronts

|
|
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|

|
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Algorithm 4 MADEA

W

O© 0 9

10
11

13

15

Values of Fumin, Fmax and Crmin, Crmax are initialised.
The Archive is set to null

The initial population, X, is generated using OBL and combined functions are calculated
for each individual, f{X;)

Determine the fronts in the initial population using ENS

Add non-dominated solutions in the archive and eliminate dominated solutions from the
archive

Sort f{X:) using crowding distance and choose the top NP individuals
while Stopping criteria is False do
Rank individuals

Calculate the values of F and Cr for each member according to the equation

E,g = Fmin +(Fmax _Fmin)( Ri _1 ) and Cri,g = CRmax _(CRmax _CRmin)[ Ri _1 J
NP -1 NP -1

fori=1:NP do
Choose random individuals x,1, x,2 and x,3, s.t., r1 #12 #13 #1
Create two mutant individuals, m1i = X, + F;(X,, — X,,) and m2; =
X, -Fi(X,-X,)

end for

Merge mutant population, m1 and n)2, to form 3 of size 2NP

For each mutant individual, find the front and sort f{3:) according to crowding distance.
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Add non-dominated solutions in the archive and eliminate dominated solutions from the
archive

Select top NP individuals from 2NP mutant individuals
fori=1:NP do
forj=1:D do
Choose jrand, a random integer between 1 to D
Choose 1, a random number between 0 to 1.

Calculate trial vector,
U, = {m,-,.- if (n< ;r o7 j = Jrana)
.
end for
end for
Compute objective functions for trial vector, f{U;)
Merge U: and X; to form F
Sort f{F) using ENS and CD process to choose top NP individual from F

Add non-dominated solutions in the archive and eliminate dominated solutions from the
archive

end while

Solution: The archive

4 Results and discussion

The MADEA algorithm is validated by comparing the inverted generational distance
(IGD) values of 15 benchmark functions from CEC 2017 with five different
multi-objective optimisation evolutionary algorithms (MOEAs), namely MWDEO,
MaOEA CS, NSGA III, A-NSGA III and GrEA (Ewees et al., 2021). The MADEA
algorithm parameters are set as follows:

Minimum scaling factor, Fimin 0.5
Maximum scaling factor, Fmax 0.8
Minimum crossover probability, Crmin 0.8
Maximum crossover probability, Crmax 0.9
Population size, NP 200
Archive size, 2NP 400
Number of generations, maxgen 2,000
Number of trials 30

The f is the best mean IGD value, std is standard deviation and rank is position of

algorithm.

Table 1 reveals that MADEA obtained better answers for 9 out of 15 benchmark

problems. This supports the use of MADEA for the optimisation of parameters of AWIT.
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Table 1 IGD values of benchmark functions from CEC 2017 obtained using MADEA

MWDEO  MaOEA CS  NSGAII  A-NSGA Il GrEA MADEA

1 ¥ 0.0312 0.0425 0.0611 0.0459 0.0411 0.0345
std 0.0015 0.0025 0.0014 0.0008 0.001 0.0016
Rank 1 4 6 5 3 2
2 f 0.0157 0.0349 0.0368 0.0326 0.0318 0.0283
std 0.0005 0.0035 0.0005 0.001 0.0007 0.0011
Rank 1 5 6 4 3 2
3 f 191.09 119.94 253.88 323.22 152.64 110.1743
std 200.41 206 213 273 173 172.7205
Rank 4 2 5 6 3 1
4 f 23.857 24.735 34.986 35.905 27378  69.4877
std 2.533 14.9 18.9 15.9 9.82 62.8969
Rank 1 2 4 5 3 6
5 Vi 0.35 0.3668 0.5033 0.5402 0.6006 0.1870
std 0.3147 0.388 0.56 0.59 0.565 0.0062
Rank 2 3 4 5 6 1
6 Vi 0.0194 0.0179 0.0132 0.0109 0.0167 0.0014
std 0.0021 0.0077 0.0019 0.001 0.001  4.91E-05
Rank 6 5 3 2 4 1
7 ¥ 0.1196 0.1271 0.0998 0.1002 0.0796 0.1367
std 0.0779 0.0355 0.0112 0.0113 0.0035 0.0227
Rank 4 5 2 3 1 6
8 f 0.164 0.1773 0.7907 0.4557 0.3502 0.0391
std 0.0923 0.0378 0.537 0.372 0.261 0.0006
Rank 2 3 6 5 4 1
9 f 0.3392 0.2398 0.4092 0.3156 0.473 0.0547
std 0.5782 0.045 0.524 0.232 0.23 0.0359
Rank 4 2 5 3 6 1
10 f 1.1487 1.6706 1.1362 1.1112 0.8975 1.1485
std 0.4878 0.138 0.0966 0.0867 0.0721 0.1709
Rank 5 6 3 2 1 4
11 Vi 0.2224 0.2797 0.196 0.2358 0.2474 0.1071
std 0.0144 0.0477 0.0242 0.0439 0.0344 0.0024

Rank 3 6 2 4 5 1
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Table 1 IGD values of benchmark functions from CEC 2017 obtained using MADEA
(continued)

MWDEO  MaOEA CS NSGAIII  A-NSGA Il GrEA MADEA

12 f 0.1628 0.3347 0.2457 0.2582 0.2396 0.1551
std 0.0117 0.078 0.023 0.0103 0.0065 0.0024

Rank 2 6 4 5 3 1
13 f 0.132 0.124 0.1021 0.1048 0.1642 0.0691
std 0.0274 0.0193 0.0125 0.0142 0.0249 0.0160

Rank 5 4 2 3 6 1
14 Vi 3.9052 3.921 4.0185 3.9163 3.9344  10.8126
std 0.7527 1.49 0.896 0.778 0.967 1.7793

Rank 1 3 5 2 4 6
15 ¥ 0.5842 0.6494 1.7378 1.6416 0.8314 0.2536
std 0.284 0.235 0.318 0.277 0.133 0.0294

Rank 2 3 6 5 4 1

The parameters for the AWJT problem are set as follows:

Minimum scaling factor, Fmin 0.5
Maximum scaling factor, Fimax 0.8
Minimum crossover probability, Crmin 0.8
Maximum crossover probability, Crmax 0.9
Population size, NP 100
Archive size, 2NP 200
Number of generations, maxgen 1,000
Number of trials 30

Figure 5 shows the Pareto fronts calculated by all seven algorithms and the true Pareto
front. The enlarged image of Pareto fronts shown in Figure 6 represents that the MADEA
was able to surpass the true Pareto front. The Pareto front obtained by MADEA performs
better than the true Pareto front in 149 instances. This means that the 149 solutions found
by MADEA dominate the solutions in the true Pareto front. All 149 solutions are
provided in Appendix of the paper. Also, the true Pareto front is a set of non-dominated
solutions calculated using six competing algorithms. The star marker in Figure 5
represents the solution reported by Yue et al. (2014a). It can be seen that the solutions
found using evolutionary algorithms have dominated the solution obtained using
statistical methods.

The performance metrics are calculated for all the competing algorithms, NSGA 1I,
NSGA III, MOEA/D, MOPSO, PESA2 and SPEA2, and for the archive of the best trial
of MADEA. The comparison of the results is shown in Table 2. The performance metrics
used for comparison are the IGD (Coello and Cortés, 2005), spacing (Schott, 1995),
coverage (Zitzler and Thiele, 1999), coverage over Pareto front (CPF) (Tian et al., 2019),
average Hausdorff distance or AP (Schutze et al., 2012), metric for diversity (DM) (Deb
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and Jain, 2002) and pure diversity (PD) (Wang et al.,, 2017). The best values are
represented in bold letters in Table 2.

The performance metrics analyse the convergence, diversity and uniformity of the
Pareto front. The IGD metric and AP can be held accountable for convergence and
diversity (Wang et al., 2017). It can also be seen from Table 2 that the values of IGD and
AP are identical. However, the AP calculates the average distance between the image of
the obtained Pareto set and the considered true Pareto front. The solution with lower
value IGD, and commutatively AP, is considered as a good-quality solution. The
comparison shows NSGA II has performed well in terms of IGD and AP metrics. But, as
seen in Figure 5, the Pareto front of MADEA surpasses the considered true Pareto front.
For distance-based metrics, the value is based on the distance between the solutions; it
does not matter if the solution dominates the considered true Pareto solution. Hence, the
value of IGD and AP metrics should not be considered for determining the performance
of MADEA.

Figure 5 Pareto fronts of AWIM (see online version for colours)
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Diversity with evenly spread individuals over the true Pareto curve is always desired. The
spacing value is equal to zero when all the solutions are equally spaced from each other.
One can see from Figure 5 that the solutions in the Pareto front of MADEA are not
uniformly spaced. Therefore, in terms of spacing the MADEA ranks fourth among the
competition. The PD metric gives a high value to evenly spread solution over the true
Pareto front. PD values show the number of non-matching solutions spread across the
true Pareto front or curve. As MADEA has solutions better than the true Pareto front, the
PD value for MADEA is not the highest. The metric for diversity (DM), encourages the
algorithm to diversify the solutions. Hence, a higher value of DM represents a more
diverse solution. MADEA achieved the highest value of DM, which shows that it
managed to obtain a very diverse solution, but lower values of spacing and PD represent
its inability to obtain a uniformly spread Pareto front.

The value of coverage ranges from [0, 1]. It is an indicator of a number of solutions in
the true Pareto sets dominated by the obtained Pareto solutions. Coverage equals 1
represents that all the solutions are dominated by the true Pareto front. In contrast , if
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coverage is equal to zero, then the considered true Pareto front is dominated by the
obtained solutions. Here, the considered true Pareto front is made up of all
non-dominated solutions from six algorithms. Hence, their Pareto front is dominated by
the considered true Pareto front, whereas the value 0.395 for MADEA shows that the
Pareto front of MADEA has dominated the considered true Pareto front. The CPF or the
coverage over Pareto front is an indicator which tells the volume of obtained front covers
the volume of true Pareto front. Therefore, the higher value of CPF represents that the
obtained solutions are lying over the true Pareto front. Here, the MADEA has a better
Pareto front than the considered true Pareto front. Hence, the algorithm with maximum
number of solutions in the considered true Pareto front would have a high CPF value. As
NSGA-II contributes maximum non-dominated solutions in the considered true Pareto
front, its CPF is the highest.

Figure 6 Enlarged image of Pareto fronts (see online version for colours)
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Table 2 Comparison of MADEA using performance metrics
1GD Spacing  Coverage CPF AP DM PD

NSGA Il  5.379706 7.852304 1 0.812254 5.379706  0.82571  411,872.7

NSGAIII 17.56771 12.48609 1 0.515169 17.56771 0.667419 218,277.1

MOEA/D  936.0047 0.979951 1 0.000746  936.0047 0.031228 26,259.86

MOPSO 7.450604 10.39444 1 0.68572  7.450604 0.762383 321,881.7

PESA2 8.575072  10.95839 1 0.583758 8.575072  0.696595 231,266.8

SPEA2 6.775378  8.04123 1 0.770266  6.775378 0.742949 284,719.6
3

MADEA  6.267091  10.0254 0.395 0.656261 6.267091  0.82853  271,305.7
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5 Conclusions

In this paper, the AWIT process of alumina ceramics is optimised for maximum MRR
and minimum surface roughness. The MADEA, a variant of the DE algorithm, is used for
optimisation. The MADEA algorithm is justified using 15 benchmark MOPs, from which
the MADEA showed better performance in nine MOPs. The AWIJT problem is also
solved using six well-known MOEAs, NSGA-II, NSGA-III, MOEA/D, MOPSO, PESA2
and SPEA2. All the Pareto solutions obtained using evolutionary algorithms dominated
the solution reported by the previous authors. One hundred forty-nine non-dominated
solutions are calculated by MADEA, which is the maximum from any competing
algorithm. The Pareto solutions of the algorithms are compared using seven performance
metrics: IGD, spacing, coverage, CPF, AP, DM and PD. The performance metrics
showed that MADEA was able to achieve better Pareto solutions than the considered true
Pareto front. Also, MADEA produced the most diverse solutions, but the solutions were
not uniformly spread.

Appendix
Table 3 Optimum solution provided by the comparison
Water Jet feed Abrasive Surface Ngzzle
Sy pressure P speed u mr(zzstiﬁz (;W speed Vs tzltled MRR,
o, [MPa]  [mm/s] i [mls] " B sy Ralom)
x1 x2 x3 x4 x5
1 310 0.25 11.5 6 71 5,441.96 3.41
Source: Yue et al. (2014a)
Table 4 Non-dominated solutions calculated using MADEA
Water Jet feed Abrasive Surface Ngzzle
Sy pressure, speed u ’ZZ‘:‘;]}Z; aw speed, Vs a:lid B MRR,
no.  P[MPa]  [mm/s] Igh] [m/s] ?o ; sy Relvml]
x1 x2 x3 x4 x5
1 190.307 0.050053  11.46976  4.981751  61.36492  4,038.805 2.806248
2 2749199  0.050045  11.47695  5.990328  72.54915  6,083.87 3.597306
3 207.3339  0.050049  11.47394  5.702316  63.45485 4,482.622 297817
4 190.307 0.050053  11.46976  4.152742 6136492 3,918.726 2.781906
5 303.6198  0.050032  11.48401  6.442994  79.10852  6,859.884 3.879002
6 205.3717  0.050048  11.47127 5.89032 61.10166  4,472.266 2.971728
7 309.5464  0.050031 11.48614  6.862138  95.60694  7,155.891 4.017634
8 303.6198  0.050032  11.48401  6.442994  80.05331  6,866.45 3.8813
9 280.7369  0.050038  11.48423  6.298434  79.07412  6,268.549  3.666391
10 209.6907  0.050048  11.46938  5.792861  62.55826  4,550.951 3.004478
11 212.4211 0.05005 11.4766 5.444959  60.83303  4,596.299 3.023897
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Table 4 Non-dominated solutions calculated using MADEA (continued)
Water Jet feed Abrasive Surface Ngzzle
Sy pressure, speed u maisf low speed, Vs tzltled MRR,
wo.  PIMPal  [mws] TSNy e B sy Ralim]
x1 x2 x3 x4 x5

12 190.3069 0.050053 11.46839  4.065391 58.41859  3,936.243  2.786325
13 309.6896  0.050031 11.48006  6.460328  82.27998  7,039.383  3.943793
14 285.2248  0.050038  11.47859  6.072283  74.52687 6,350.066 3.695111
15 217.5603 0.050049 11.47436 5.746367 59.09326  4,750.947 3.085664
16 298.648 0.050036  11.48049  6.318988 79.0445  6,725.514 3.830914
17 221.0945  0.050042 11.4819 5.958702  66.13138  4,804.031 3.106309
18 302.8818 0.050031 11.48532 6.315844 82.12263  6,856.004 3.878264
19 298.648 0.050036  11.48049  6.318988 79.0445  6,725.514 3.830914
20 282.4839  0.050038  11.47962  6.246964  74.24314  6,291.734 3.673562
21 2447876 0.050035 11.48203 5.888953 70.70921  5,344.458 3.318219
22 222.2271  0.050044  11.47429 5891861  66.37125 4,823.386 3.114655
23 287.9966  0.050036  11.47401  6.396773 774114  6,448.373 3.731552
24 247.7548 0.050043 11.47597 5.766845 69.70624  5,407.501  3.342668
25 237.4123  0.050046 11.4753 5.977289  67.75514  5,181.498 3.254433
26 2155711  0.050044  11.47622  5.898181  62.92813 4,691.742 3.060376
27 280.7369 0.050038 11.48423 6.298434 79.07412  6,268.549  3.666391
28 247.3033  0.050046  11.47467  5.792676  67.12557 5,403.506 3.340946
29 196.6751  0.050049  11.47436  5.886367  59.09326 4,295.211 2.898546
30 282.8091 0.050036 11.48476 6.235605 73.9248 6,299.409  3.675968
31 238.8204  0.050046  11.47467  5.792676  67.12557  5,203.187 3.263201
32 216.2376  0.050038 11.4742 5.977056  64.98409 4,698.357 3.064261
33 196.6751 0.050049 11.47436 5.886367 59.09326  4,295.211 2.898546
34 309.4075  0.050029  11.48598  7.041009  89.56743  7,107.473 3.981083
35 297.4909  0.050032  11.48312 5940923  77.40225 6,663.947 3.809145
36 282.8428 0.050035 11.48497 6.255619 74.06802  6,301.934 3.676833
37 228.9837  0.050047  11.47465  5.855661  62.60012 4,997.775 3.182932
38 219.6907 0.05005 11.47026  5.798186  59.67633 4,798.5  3.104789
39 221.0945 0.050042 11.4819 5.958702 66.13138  4,804.031 3.106309
40 238.3032  0.050047  11.47877 5968343  70.75873  5,192.391 3.260789
41 216.2698  0.050048 11.4707 5.833398  59.86521  4,723.29  3.073852
42 192.7156 0.050052 11.47443 5.771665 59.39783  4,194.643  2.857691
43 225.5083  0.050046  11.47127 5.871632  65.43629 4,903.593  3.14564
44 285.7295  0.050034  11.48136  6.248985  76.93319 6,383.787 3.706819
45 248.5522 0.050044 11.48265 6.229898 67.69568  5,462.984 3.363028
46 241.7645  0.050035  11.48416  5.834948  69.65716  5,270.582 3.289346
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Table 4 Non-dominated solutions calculated using MADEA (continued)
Water Jet feed Abrasive Surface Ngzzle
Sy pressure, speed u maisf low speed, Vs tzltled MRR,
wo.  PIMPal  [mws] TSNy e B sy Ralim]
x1 x2 x3 x4 x5

47 196.6751 0.050049 11.47436 5.886367 59.09326  4,295.211 2.898546
48 291.9517  0.050033  11.48517  6.446139  78.32943  6,558.467 3.770426
49 246.8403  0.050041  11.47781 5914057  68.57177 5,399.472 3.338486
50 309.8833 0.050129 11.49994 7.405179 104.6279  7,244.379 4.101012
51 190.0921 0.05003 11.49812  1.521212  63.25962  3,267.114 2.701869
52 190.0921 0.05003 11.49812  1.521212  63.25962 3,267.114 2.701869
53 309.8833 0.050129 11.49994 7.405179 104.6279  7,244.379 4.101012
54 245.3073 0.05007 11.49857  5.927892  70.25006 5,363.507 3.323944
55 212.2328  0.050088  11.49555 6.11712 60.76529  4,647.729 3.042335
56 261.5868 0.050023 11.49935 5.943992 74.44607  5,760.007  3.475289
57 227.446 0.05004 11.48644  5.954744  67.05044 4,948.818 3.163128
58 266.8946  0.050034  11.48983  6.052928  71.74418 5,893.821 3.524765
59 199.2377 0.050019 11.49247 5.684882 57.77453  4,350.729  2.920411
60 295.8972  0.050035 11.4941 6.139153  76.95964  6,637.483 3.797656
61 190.2116  0.050124  11.49317  4.632606  60.53881  3,999.692 2.797265
62 217.5531 0.050033 11.49389 6.09481 60.85268 4,766.726  3.089874
63 289.3623  0.050025  11.49748  6.187148  75.18729 6,468.318 3.736068
64 259.7679  0.050086  11.49971 6.24128 73.93239  5,732.968  3.46494
65 207.008 0.050036 11.48263 5.640204 58.50698 4,511.998  2.98765
66 264.582 0.050069  11.48812  5.880756  71.38739  5,824.323  3.499551
67 292.5259  0.050001  11.49574  6.114243 7545759  6,544.036 3.763803
68 283.1517 0.050035 11.49998 6.233663 76.81388  6,322.659 3.682485
69 266.0818  0.050034  11.49692 5884089  71.61136  5,863.712 3.513225
70 274.2432  0.050011  11.49684 5.97747 70.7177  6,067.558  3.590105
71 215.7256 0.05004 11.47971 5.84241 62.73373  4,692.896 3.060624
72 284.5466 0.05005 11.49522  6.157358  75.41042 6,346.403 3.691648
73 249.7838  0.050026  11.49029  5.787333  68.14936  5,463.255 3.36236
74 275.2379 0.050047 11.49612 6.132742 74.93345 6,111.54  3.605203
75 233.7303 0.05008 11.49093 5997114  65.74667 5,105.836 3.223821
76 298.5245  0.050019  11.49549  6.185464  80.36141 6,728.006 3.830438
77 303.7112 0.050062 11.49696 6.447805 79.5881 6,869.584  3.880981
78 224.3836  0.050047  11.48634  5.599073  63.16401 4,869.612 3.132
79 229.8349  0.050048  11.49149  6.074549  64.55993  5,025.752 3.192252
80 243.3655 0.050013 11.4942 6.287056 69.13369  5,341.793  3.315349
81 293.1626  0.050005  11.49249  6.044791  77.35123  6,564.53  3.771342
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Table 4 Non-dominated solutions calculated using MADEA (continued)
Water Jet feed Abrasive Surface Ngzzle
Sy pressure, speed u maisf low speed, Vs tzltled MRR,
wo.  PIMPal  [mws] TSNy e B sy Ralim]
x1 x2 x3 x4 x5

82 309.6733 0.05009 11.49832 6.33686 83.28289  7,046.514 3.944854
83 299.6485  0.050052  11.49862  6.376955 78.0901  6,753.328 3.839004
84 250.3091  0.050022  11.49909  6.199799  71.66508 5,500.563 3.376065
85 297.9166 0.050008 11.49643 6.231435 79.17244  6,708.196  3.822598
86 309.9541  0.050063 11.4919 6.92484 95.58111  7,169.974 4.021815
87 273.9887  0.050018  11.49944  6.377668  72.56603  6,089.628 3.597425
88 272.3914 0.050037 11.49886 6.267957 72.77042  6,044.898 3.580386
89 275.6194  0.050033  11.49077  6.323087  76.15188  6,133.559 3.614374
90 229.6528  0.050023  11.49162  6.168011  69.76277 5,002.845 3.186393
91 281.2197 0.05006 11.49937 6.131497 75.46257  6,262.912  3.660655
92 262.6645  0.050087 11.4945 6.17302 74.69252  5,799.93  3.49073
93 252.5344  0.050052  11.49046  6.245636  71.60921 5555362 3.39774
94 305.949 0.050044 11.49514  6.123828 79.22118  6,906.766  3.894326
95 308.8774  0.050116  11.49899  6.230635  81.85896  7,008.83  3.930816
96 285.2635 0.05002 11.49487  6.265149  74.52142  6,367.104  3.699497
97 190.0538 0.050011 11.49572 6.090926 59.11125 4,162.743  2.843605
98 262.8476  0.050013  11.49323  5.882871  70.90163 5,783.861 3.483413
99 280.1241  0.050048  11.49403 6.21788 75.35794  6,239.01  3.652362
100  216.2609 0.050025 11.48828 6.071404 63.9599 4,714.022  3.068952
101 302.9951  0.050055  11.48721  6.335481  80.14911 6,846.733  3.873799
102 290.2486  0.050085 11.4908 6.131157  76.66161  6,491.555 3.745344
103 282.7894 0.050048 11.48972 6.162869 74.76801  6,299.037 3.674949
104 288.5258  0.050037  11.49701 6.1359 7521817  6,444.265 3.727363
105 196.733 0.050043  11.48508  5.645261  58.03411 4,288.425 2.895425
106 286.5652 0.05006 11.49793 6.204575 77.00765 6,406.99  3.713582
107 190.0538  0.050011 11.49572  3.550177  59.11125 3,828.387 2.765804
108  253.4203  0.050007  11.48345  6.218192  69.19072 5,576.927  3.40584
109  286.2494 0.050049 11.49915 6.099704 7591343  6,388.613  3.706677
110 269.4622  0.050021 11.49126 5917241  73.24238 5,949.876 3.545826
111 216.677 0.050033  11.48853  5.853325  60.41964 4,732.394 3.076101
112 190.0921 0.05003 11.49667 3.176132 62.51974  3,712.961 2.749419
113 265.1408 0.050076  11.49673  6.011606  70.56218  5,848.379 3.507719
114 271.6266  0.050065  11.49705  6.248452  74.18301  6,026.92  3.573937
115 267.1697 0.050025 11.49578 6.222756 73.11469  5,913.966 3.531653
116  282.5372  0.050027  11.49629 5.9391 75.04555  6,281.153  3.667972




Optimising the parameters in AWJT process 37
Table 4 Non-dominated solutions calculated using MADEA (continued)
Water Jet feed Abrasive Surface Ngzzle
Sy pressure, speed u maisf low speed, Vs tzltled MRR,
wo.  PIMPal  [mws] TSNy e B sy Ralim]
x1 x2 x3 x4 x5

117 225.0095 0.050047 11.48716 5.911251 66.87758  4,889.083  3.139895
118 287.5981  0.050054  11.49446  6.191611  76.21573  6,427.907 3.721496
119 191.3225  0.050058  11.49795  3.327509  63.51081 3,762.846 2.764229
120 249.9034 0.050056 11.4951 6.056634 69.43286  5,484.159 3.3695
121  268.7549  0.050089  11.49592  5.898827  72.81505 5,930.779 3.538785
122 2349769  0.050056  11.49977 6.03766 64.88835  5,142.828 3.237665
123 305.1295 0.050063 11.49949 6.324998 78.63405  6,894.066 3.889355
124 271.485 0.050047  11.49196  5.935417  72.84335 6,000.104 3.564575
125 200.4334  0.050013  11.49041  5.714879  57.20214 4,385.062 2.934602
126 199.2442 0.050014 11.49413 6.028463 58.32964 4,371.811 2.928962
127 256.7463  0.050068  11.49523  6.059624  71.18692 5,647.824 3.431908
128  225.0742  0.050066  11.49417  6.195082  67.89233  4,904.311 3.146725
129 209.5008 0.050061 11.47912 5.845912 60.37195 4,568.903 3.010504
130 217.4884  0.050041  11.49459  5.866029  60.55641 4,751.388 3.083458
131 2419879  0.050085  11.49801  6.085964  69.97606 5,294.511 3.297538
132 243.4917 0.050088 11.49953 5.874958 67.91273  5,321.692 3.307289
133 2774017 0.050126  11.47944  6.312292  73.31805 6,165.691 3.628024
134 233.5604  0.050034  11.48975  5.585928  64.97571 5,072.789 3.212168
135 290.6983 0.050013 11.4999 6.113591 79.18499  6,517.681  3.75415
136  221.9504 0.05002 11.48029  5.838908  65.09552  4,821.563 3.112498
137  276.6843  0.050059  11.49778  6.315222  73.08139 6,153.121 3.621024
138 190.0921 0.05003 11.49944  2.658637 62.51974  3,591.939  2.73453
139 2029576  0.050018  11.47624  5.770798  59.54199 4,423.141  2.95082
140  210.8163  0.050043  11.48863  6.138085  62.88901  4,600.284 3.023601
141 228.7662 0.050042 11.48052 5.869402 64.77558  4,984.074 3.176476
142 190.5815  0.050064  11.49176  2.658847  61.57929 3,613.042 2.740164
143 209.8032  0.050062  11.49307 5.75784 5822907 4,587.073 3.017991
144 308.749 0.050096 11.49707 7.138973 91.19325 7,106.061  3.98515
145 192.8689 0.05006 11.48735  6.059526  60.03794 4,212.876 2.865518
146 279.0401  0.050036  11.49667  6.254072  76.27984 6,217.627 3.644409
147 190.1277 0.05005 11.49144 5.201404 59.20922  4,085.091 2.817016
148  260.6473  0.050006  11.48648  5.629919 66.734 5,707.962  3.459138
149 190.4575  0.050009  11.49626  2.869859  61.22968  3,665.823 2.745239
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