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Abstract: This paper presents a novel multi-objective optimisation algorithm 
for predicting the optimal control parameters of a radial abrasive water jet 
turning (AWJT) method. The objective is to maximise the material removal 
rate (MRR) and minimise the surface roughness (Ra) of the turned surface. The 
control parameters include water pressure, jet feed speed, abrasive flow rate, 
surface speed, and nozzle tilted angle. The proposed algorithm, called  
multi-objective amended differential evolution algorithm (MADEA), is a  
rank-based differential evolution (DE) algorithm that uses non-dominated 
sorting and crowding distance to select and update the solutions. The 
performance of MADEA is compared with six state-of-the-art multi-objective 
evolutionary algorithms on a set of benchmark test problems and the AWJT 
problem. The results show that MADEA can find better Pareto optimal 
solutions than the other algorithms. 
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1 Introduction 

Abrasive water jet machining (AWJM) is a hybrid process that combines abrasive jet 
machining (AJM) and water jet machining (WJM). In this process, a high-speed water jet 
containing abrasives erodes the material through impact and abrasion. AWJM can 
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perform various operations, such as cutting, drilling and turning, on different materials, 
such as metals, alloys, glass, composites and acrylics (Arun et al., 2023; 
Balasubramaniyan et al., 2023). The benefits of AWJM include omnidirectional cutting 
capability, minimal thermal effects, burr-free edges and high efficiency. Figure 1 
illustrates the working principle of AWJM. A high-velocity water jet adhering abrasive 
particle is targeted towards the workpiece. The high momentum of the water jet gets 
transferred to the abrasives and as a result, a large quantity of abrasive particles 
accelerates. The accelerated abrasives impinge on the workpiece and erode it. 

Figure 1 Abrasive water jet machining 

 

Source: Jain et al. (2001) 

The abrasive water jet turning (AWJT) is based on abrasive water jet cutting. Similar to 
conventional turning, the workpiece is rotated at cutting axis, and the jet is traversed to 
remove material and obtain an axisymmetric shape. Figure 2 shows the turning modes of 
the AWJT. Figure 2(a) shows the offset mode, and Figure 2(b) shows the radial mode of 
AWJT. In radial mode, the position of the nozzle is directly above the axis of the 
workpiece, whereas in offset turning, the nozzle is situated at the periphery of the 
workpiece. The AWJT shows consistent advantages when handling various types of 
materials. Flögel and Faltin (2013) turned titanium alloy, Ti6A14V, with AWJT. The 
effects on tool life in terms of volume, material removal rate (MRR) and surface 
roughness (Ra) caused due to five parameters of AWJT, adjusted depth of cut (d), feed 
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(F), speed (n), particle size (dp), and abrasive flow rate (mA), were studied. The authors 
suggested that AWJT can be used as an economical alternative manufacturing process for 
rough turning of titanium alloys. Yue et al. (2013) conducted an experimental study of 
the radial-mode AWJT of 96% alumina ceramics. The process parameters n, F, mA, water 
pressure (PW), and nozzle tilted angle () were explored to study the effects on depth of 
turning, i.e., d and MRR. The parameters’ effectiveness was studied using range analysis 
and variance analysis, in which authors found that the feed speed affects the depth of 
turning the most. Yue et al. (2014a) extended their study by using response surface 
methodology (RSM) and sequential approximation optimisation (SAO), to explore the 
effects of AWJT parameters on MRR. Yue et al. (2014a) also gave mathematical models 
for MRR and Ra. In the current study, the same models were optimised and compared 
with other multi-objective algorithms. Yue et al. (2014a) concluded that water pressure 
and abrasive mass flow rate has a high effect on MRR. Liu et al. (2013) studied the effect 
of standoff distance (SOD) on depth of penetration or d, Ra, and actual impact angle or . 
The study was carried out on both modes of AWJT of alumina (Al2O3) ceramics, where 
authors found that SOD plays a significant role in radial-mode AWJT and has almost no 
effect in offset-mode AWJT. Zohourkari et al. (2015) carried out AWJT operation on 
AA2011-T4 alloy. A design model of five AWJT parameters was created using a  
five-level central composite rotatable experimental design. Using the analysis of variance 
(ANOVA) approach, a polynomial model for MRR was created, and the significance of 
each parameter was tested. Uhlmann et al. (2014) used AWJT for the rough turning of  
G-AlSi17Cu4Mg alloy. The final pass was done using a conventional turning process. By 
combining both turning processes, a high product yield can be obtained, as the tool life of 
AWJT was at least ten hours at MRR of 13 cm3/min. Also, negligible thermal stresses 
were exerted during rough passes. As a result, a high surface finish was achieved by the 
combination of AWJT roughing and conventional finishing. Two ceramics, 96% alumina 
and 95% zirconia, were turned in radial mode using AWJT and studied by Yue et al. 
(2014b). The material removal mechanism of both ceramics was studied on microscopic 
level. It was seen that 96% alumina showed brittle fracture caused by intergranular cracks 
and fragmentations, whereas 95% zirconia showed plastic deformation with some pits. 
AWJT process can also be used for non-metals. Kartal et al. (2014) investigated the 
average surface roughness and MRR obtained for AWJT of low density polyethylene 
(LDPE). The process parameters of AWJT were manipulated in order to get optimum 
surface quality and MRR. The experiments were conducted according to the Taguchi L27 
orthogonal full factorial design and optimisation box and ANOVA were used for analysis 
of the results. Kartal and Gökkaya (2015) observed the most significant parameter in 
AWJT of AISI 1050 steel material. Kartal and Gökkaya (2015) considered sets of five 
parameters, F, mA, lathe spin rate (n), nozzle distance or SOD, and nozzle diameter (dN); 
they observed that F had the highest impact on Ra, and mA had a significant effect on 
MRR. Kartal and Yerlikaya (2016) extended their research on AWJT of non-metals, from 
LDPE to polytetrafluoroethylene (PTFE), castamide, and polyamide (PA). This time, 
three process parameters, F, mA, and n, were considered for optimisation. The three 
process parameters were changed according to predefined sets of values to obtain 
optimum average Ra and MRR. It was observed that the objectives, average Ra and MRR, 
were highly affected by the F. Kartal et al. (2017) also optimised the AWJT of Al-6082 
T6 alloy by manipulating four process parameters, F, mA, n and SOD. They found that the 
best surface finish was obtained at higher n and mA, and lower F and SOD. Ibrahim et al. 
(2020) conducted AWJT process on a submerged castamide workpiece. Three input 
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variables or process parameters were considered for getting minimum Ra and maximum 
MRR. The input variables were nozzle traverse speed or F, mA and n. It was found that by 
submerging the workpiece, the surface roughness increased and MRR decreased. The 
effect of parameters was studied using ANOVA, and the optimisation was carried out 
using TOPSIS and VIKOR methods. Kartal and Kaptan (2023) investigated the AWJT of 
acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). The parameters 
considered were nozzle feed, abrasive flow rate, chuck turning speed and nozzle distance. 
They concluded that by increasing the rotational speed, the surface roughness decreased. 
Štefek et al. (2021) investigated the effect of AWJT parameters in tangential or offset-
mode turning. The three parameters considered were, traverse speed, i.e., F, rotational 
speed, i.e., n, and relative position of the jet, i.e., SOD. The authors stated that the SOD 
was the key parameter to achieve highest efficiency. Kasim et al. (2022) studied the 
effects of parameters in AWJT of Inconel 718 for obtaining minimum surface roughness. 
The experiments were carried out according to the two-level full factorial design for three 
process parameters, d, F, and n. The values of input and output, Ra, were correlated using 
design of experiments (DOE) method and the significance of the parameters was 
calculated using ANOVA method. The key parameter for good surface finish was d. 

Figure 2 AWJT modes 

 

(a)     (b) 

Source: Yue et al. (2014a) 

In the current study, the AWJT of alumina ceramic (Yue et al., 2014a) is optimised using 
evolutionary algorithms. As per the authors’ observation, the AWJT process has never 
been optimised using evolutionary algorithms. Most optimisations were carried out using 
statistical methods like the DOE or the TOPSIS method. However, the aim of the current 
study is to introduce the capability of multi-objective amended differential evolution 
algorithm (MADEA) in solving real-life problems. It will be interesting to compare the 
optimum values of parameters obtained using conventional methods and multi-objective 
evolutionary algorithms. 

The rest of the paper is organised as follows. Section 2 introduces multi-objective 
optimisation problem (MOP) and the AWJT problem. Also, the variant of the differential 
evolution (DE) algorithm is explained using pseudo code in the same section. In  
Section 3, the multi-objective amended differential evolution algorithm (MADEA) is 
described. The results are shown in Section 4 and the paper is concluded in Section 5. 
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2 Preliminary information 

2.1 Multi-objective optimisation problem 

The general form of MOOP is given in equation (1). 

( ) ( )

Maximise/minimise ( ) 1, 2, ...,

Subject to ( ) 0 1, 2, ...,

( ) 0 1, 2, ...,

1, 2, ...,

m

j

k

L U
ii i

f x m M

g X j J

h X k K

X X X i n


 

 

  

 (1) 

where M is the number of objectives, J is the number of inequality constraints, and K is 

the number of equality constraints. ( )U
iX  and ( )L

iX  are the variable bounds which 

together form a decision variable space or decision space. The individual in the 
population is also called a vector, and the individual on which the operations are 
conducted is known as a current or target individual/vector. 

The problem considered in this paper is adopted from Yue et al. (2014a), and it has 
two objectives and no constraints. The adopted model of the AWJT method is given in 
equations (2) and (3). 

1 1 2 3 4 5

2
1 3 1 5 2 5 3 4 2

2 2
3 4

,

3814.35 943.50 530.29 745.01 154.82 193.65

551.62 284.87 147.61 225.72 345.29

483.49 430.00

Maximise MRR

Y X X X X X

X X X X X X X X X

X X

     

    

 

 (2) 

2 1 2 3 4 5 1 2

2 2 2
4 5 52 3

,

3.78 0.31 0.04 0.38 0.087 0.046 0.24

0.067 0.17 0.17 0.14

aMinimise R

Y X X X X X X X

X X X X X

      

   

 (3) 

where X1 is water pressure (Pw, MPa), X2 is jet feed speed (F, mm/s), X3 is abrasive mass 
flow rate (mA, g/s), X4 is surface speed (n, m/s), and X5 is the nozzle tilted angle (°). The 
parameter bounds are as follows. 190 ≤ X1 ≤ 310, 0.05 X2 ≤ 0.25, 3.5 ≤ X3 ≤ 11.5, 1.5 ≤ X4 
≤ 9.5, 45 ≤ X5 ≤ 105. Both objectives conflict with each other. With higher MRR, the 
surface roughness, Ra, increases. Therefore, a set of trade-off solutions or a Pareto 
solution set can help the decision maker to choose a set of parameters according to their 
needs. 

2.2 Amended differential evolution algorithm 

The DE algorithm is applicable to unconstrained optimisation problems. Rana and 
Lalwani (2017) introduced a few amendments to DE algorithm to solve constrained 
single-objective optimisation problems. The modified DE algorithm is called an amended 
differential evolution algorithm (ADEA). In addition to convert DE into a constrained 
optimisation algorithm, a few amendments were added to increase DE’s performance. 
The ADEA have shown competitive results, and some reported solutions were even 
better than the benchmark problems from CEC 2006 (Runarsson et al., 2006). The first 
amendment is to utilise a random population produced using the design of experiment 
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approach (RPDoE). The pseudocode of RPDoE is given in Algorithm 1. The use of 
RPDoE results in better coverage of the search space, which results in better exploration 
and hence, better results. 

Algorithm 1 RPDoE 

Input: LB, UB, n 

Output: Initial population of size [(2D + 2xD + 1) x n]-by-¬D 

1 Create x = [] 

2 Using 
( ) ( )

( ) , ,
,

3

    
 

1

U L
L j i j i

mb j i
X X

x X  and 
( ) ( )

( ) , ,
, 2 ,

3

    
 

2

U L
L j i j i

mb j i
X X

x X  divide the  

 variable bounds into levels –1, 0 and 1. 

3 Use divided bounds to create (2D + 2xD + 1) subspaces. 

4 Generate n number of random individuals in each subspace.  

5 Merge x and random individuals created in subspaces 

6 return x 

The DE is sensitive to the parameters and often a better individual may get thrown off to 
a worse place in the mutation process. Takahama and Sakai (2009) came up with the idea 
of having a range of parameters and ranking. In the second amendment, the individuals 
are ranked according to the objective value and each individual is assigned the scaling 
factor and crossover probability value according to their respective rank. Individuals with 
higher rankings will be given a lower scaling factor and a higher crossover probability, 
ensuring that the respective individuals are perturbed less, and the elements in that 
individual are always chosen in the crossover process. Better exploration of search space 
results in a better optimum solution. In DE, the exploration is brought by the mutation 
process. In ADEA, two mutant individuals are created instead of one. Among the 2NP 
mutant individuals, top NP individuals are selected and proceed towards the crossover 
process. The complete procedure of ADEA is given in Algorithm 2. 

Algorithm 2 ADEA 

1 Values of Fmin, Fmax and Crmin, Crmax are assumed. 

2 The initial population, Xi, is generated using RPDoE and the objective function (f) is 
calculated for each individual, f(Xi) 

3 Sort f(Xi) and choose top NP individuals 

4 Rank individuals, Ri 

5 Calculate the values of F and Cr for each member according to the equation 

 ,
1

1

     
 

i
i g min max min

R
F F F F

NP
 and  ,

1

1

     
 

i
i g max max min

R
Cr CR CR CR

NP
 

6 while Stopping criteria is False do 

7 for i = 1:NP do 

8  Choose random individuals xr1, xr2 and xr3, s.t., r1 ≠ r2 ≠ r3 ≠ i 

9   Create two mutant individuals, ɱ1 and ɱ2, using the equation ɱ1i = 

 1 2 3
 r i r rX F X X  and ɱ2i =  1 2 3

 r i r rX F X X  
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10   Select top NP individuals from 2NP mutant individuals and form mutant individual 
ɱi 

11   for j = 1:D do 

12   Choose jrand, a random integer between 1 to D 

13   Choose µ, a random number between 0 to 1. 

14   Calculate trial vector, 

 
15  end for 

16  Compute combined function for trial vector, f(Ui) 

17   if (f(Ui) is nearer to optimum point than f(Xi)) do 

18    Xi = Ui 

19   end if 

20  end for 

21 end while 

22 Solution: Xi 

3 Methodology 

3.1 Multi-objective amended differential evolution algorithm 

This section of the paper explains the formulation of MADEA. The ADEA algorithms is 
incorporated with an archive approach, an efficient non-dominated sorting (ENS) method 
(Zhang et al., 2015) and a crowding distance (CD) process (Deb et al., 2002) to solve 
MOPs. The ENS method bifurcates the given population into number of fronts, and the 
CD process is used to sort and rank the individuals. The CD process also retains the 
diversity in the solution, as it scores an individual based on its distance from the 
neighbouring individuals. Equation (3) is used to calculate the CD. 

   1 1

max min

m m
j j

m m
j j

I I
m m

I I
m m

f f
CD CD

f f

 


 


 (3) 

where max
mf  and min

mf  are the maximum and minimum values of mth objective function. 

Ij is the solution index of jth member in descending list of mth objective function. 
Figure 3 shows the flowchart of MADEA. The complete procedure to apply MADEA 

on a MOP is given in Algorithm 4. 

3.2 ENS algorithm 

In the ENS approach, the duplicate comparisons are eliminated, which makes the 
algorithm very efficient and faster. The detailed working of ENS is given in Algorithm 3. 
There are two conditions which Fr[k] has to satisfy to get solution sn assigned to it: 

1 At least one solution from front Fr[j] that has been assigned should dominate 
solution sn, where 1 ≤ j ≤ k – 1. 



   

 

   

   
 

   

   

 

   

   26 I.R. Gawai and D.I. Lalwani    
 

    
 
 

   

   
 

   

   

 

   

       
 

2 No solutions from front Fr[l] should dominate solution sn, where l ≥ k. 

Figure 3 MADEA flowchart (see online version for colours) 
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Figure 4 illustrates how the ENS conditions need to be satisfied to assign solution sn to a 
particular front. In the proposed algorithm, a sequential search (SS) strategy is adopted. 

Algorithm 3 ENS 

Input: Solution set 

Output: The set of fronts 

1 Set of fronts, Fr = [] 

2 Sort solution set, S, by the first objective’s value  

3 for s = sorted S do 

4 NF = sizeof(Fr), i.e., number of fronts discovered  

5 k = 1 

6 while true do 

7  compare solutions in Fr[k] from last to first with si where, i = 1:sizeof(S) 

8  if solutions in Fr[k] do not dominate si  

9   add si to Fr[k] 

10   return k 

11   break 

12  else 

13   k = k + 1 

14   if k > s 

15    create new front and add si to it 

16    return NF + 1 
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17    break 

18   end if 

19  end if 

20 end while 

21 end for 

22 return Fr 

Figure 4 Assignment process of solutions sn to a front, using ENS method (see online version  
for colours) 

Fr[k-1] 

Fr[k] 

Fr[k+1] 

sn 
Assigned to 

Fr[1] 

At least one 
solution from each 
of these fronts 
dominates solution 

None of the 
solutions from 
these fronts 
dominate solution 

 

Algorithm 4 MADEA 

1 Values of Fmin, Fmax and Crmin, Crmax are initialised. 

2 The Archive is set to null 

3 The initial population, Xi, is generated using OBL and combined functions are calculated 
for each individual, f(Xi) 

4 Determine the fronts in the initial population using ENS 

5 Add non-dominated solutions in the archive and eliminate dominated solutions from the 
archive 

6 Sort f(Xi) using crowding distance and choose the top NP individuals 

7 while Stopping criteria is False do 

8  Rank individuals 

9  Calculate the values of F and Cr for each member according to the equation 

 ,
1

1

     
 

i
i g min max min

R
F F F F

NP
 and  ,

1

1

     
 

i
i g max max min

R
Cr CR CR CR

NP
 

10  for i = 1:NP do 

11   Choose random individuals xr1, xr2 and xr3, s.t., r1 ≠ r2 ≠ r3 ≠ i 

12   Create two mutant individuals, ɱ1i =  1 2 3
 r i r rX F X X  and ɱ2i = 

 1 2 3
 r i r rX F X X  

13  end for 

14  Merge mutant population, ɱ1 and ɱ2, to form ʓ of size 2NP 

15  For each mutant individual, find the front and sort f(ʓi) according to crowding distance. 



   

 

   

   
 

   

   

 

   

   28 I.R. Gawai and D.I. Lalwani    
 

    
 
 

   

   
 

   

   

 

   

       
 

16  Add non-dominated solutions in the archive and eliminate dominated solutions from the 
archive 

17  Select top NP individuals from 2NP mutant individuals 

18  for i = 1:NP do 

19   for j = 1:D do 

20    Choose jrand, a random integer between 1 to D 

21    Choose µ, a random number between 0 to 1. 

22    Calculate trial vector, 

 
23   end for 

24  end for 

25  Compute objective functions for trial vector, f(Ui) 

26  Merge Ui and Xi to form Ƒ 

27  Sort f(Ƒ) using ENS and CD process to choose top NP individual from Ƒ 

28  Add non-dominated solutions in the archive and eliminate dominated solutions from the 
archive 

29 end while 

30 Solution: The archive 

4 Results and discussion 

The MADEA algorithm is validated by comparing the inverted generational distance 
(IGD) values of 15 benchmark functions from CEC 2017 with five different  
multi-objective optimisation evolutionary algorithms (MOEAs), namely MWDEO, 
MaOEA CS, NSGA III, A-NSGA III and GrEA (Ewees et al., 2021). The MADEA 
algorithm parameters are set as follows: 

Minimum scaling factor, Fmin 0.5 

Maximum scaling factor, Fmax 0.8 

Minimum crossover probability, Crmin 0.8 

Maximum crossover probability, Crmax 0.9 

Population size, NP 200 

Archive size, 2NP 400 

Number of generations, maxgen 2,000 

Number of trials 30 

The f  is the best mean IGD value, std is standard deviation and rank is position of 

algorithm. 
Table 1 reveals that MADEA obtained better answers for 9 out of 15 benchmark 

problems. This supports the use of MADEA for the optimisation of parameters of AWJT. 
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Table 1 IGD values of benchmark functions from CEC 2017 obtained using MADEA  

  MWDEO MaOEA CS NSGA III A-NSGA III GrEA MADEA 

1 f  0.0312 0.0425 0.0611 0.0459 0.0411 0.0345 

 std 0.0015 0.0025 0.0014 0.0008 0.001 0.0016 

 Rank 1 4 6 5 3 2 

2 f  0.0157 0.0349 0.0368 0.0326 0.0318 0.0283 

 std 0.0005 0.0035 0.0005 0.001 0.0007 0.0011 

 Rank 1 5 6 4 3 2 

3 f  191.09 119.94 253.88 323.22 152.64 110.1743 

 std 200.41 206 213 273 173 172.7205 

 Rank 4 2 5 6 3 1 

4 f  23.857 24.735 34.986 35.905 27.378 69.4877 

 std 2.533 14.9 18.9 15.9 9.82 62.8969 

 Rank 1 2 4 5 3 6 

5 f  0.35 0.3668 0.5033 0.5402 0.6006 0.1870 

 std 0.3147 0.388 0.56 0.59 0.565 0.0062 

 Rank 2 3 4 5 6 1 

6 f  0.0194 0.0179 0.0132 0.0109 0.0167 0.0014 

 std 0.0021 0.0077 0.0019 0.001 0.001 4.91E-05 

 Rank 6 5 3 2 4 1 

7 f  0.1196 0.1271 0.0998 0.1002 0.0796 0.1367 

 std 0.0779 0.0355 0.0112 0.0113 0.0035 0.0227 

 Rank 4 5 2 3 1 6 

8 f  0.164 0.1773 0.7907 0.4557 0.3502 0.0391 

 std 0.0923 0.0378 0.537 0.372 0.261 0.0006 

 Rank 2 3 6 5 4 1 

9 f  0.3392 0.2398 0.4092 0.3156 0.473 0.0547 

 std 0.5782 0.045 0.524 0.232 0.23 0.0359 

 Rank 4 2 5 3 6 1 

10 f  1.1487 1.6706 1.1362 1.1112 0.8975 1.1485 

 std 0.4878 0.138 0.0966 0.0867 0.0721 0.1709 

 Rank 5 6 3 2 1 4 

11 f  0.2224 0.2797 0.196 0.2358 0.2474 0.1071 

 std 0.0144 0.0477 0.0242 0.0439 0.0344 0.0024 

 Rank 3 6 2 4 5 1 
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Table 1 IGD values of benchmark functions from CEC 2017 obtained using MADEA 
(continued) 

  MWDEO MaOEA CS NSGA III A-NSGA III GrEA MADEA 

12 f  0.1628 0.3347 0.2457 0.2582 0.2396 0.1551 

 std 0.0117 0.078 0.023 0.0103 0.0065 0.0024 

 Rank 2 6 4 5 3 1 

13 f  0.132 0.124 0.1021 0.1048 0.1642 0.0691 

 std 0.0274 0.0193 0.0125 0.0142 0.0249 0.0160 

 Rank 5 4 2 3 6 1 

14 f  3.9052 3.921 4.0185 3.9163 3.9344 10.8126 

 std 0.7527 1.49 0.896 0.778 0.967 1.7793 

 Rank 1 3 5 2 4 6 

15 f  0.5842 0.6494 1.7378 1.6416 0.8314 0.2536 

 std 0.284 0.235 0.318 0.277 0.133 0.0294 

 Rank 2 3 6 5 4 1 

The parameters for the AWJT problem are set as follows: 

Minimum scaling factor, Fmin 0.5 

Maximum scaling factor, Fmax 0.8 

Minimum crossover probability, Crmin 0.8 

Maximum crossover probability, Crmax 0.9 

Population size, NP 100 

Archive size, 2NP 200 

Number of generations, maxgen 1,000 

Number of trials 30 

Figure 5 shows the Pareto fronts calculated by all seven algorithms and the true Pareto 
front. The enlarged image of Pareto fronts shown in Figure 6 represents that the MADEA 
was able to surpass the true Pareto front. The Pareto front obtained by MADEA performs 
better than the true Pareto front in 149 instances. This means that the 149 solutions found 
by MADEA dominate the solutions in the true Pareto front. All 149 solutions are 
provided in Appendix of the paper. Also, the true Pareto front is a set of non-dominated 
solutions calculated using six competing algorithms. The star marker in Figure 5 
represents the solution reported by Yue et al. (2014a). It can be seen that the solutions 
found using evolutionary algorithms have dominated the solution obtained using 
statistical methods. 

The performance metrics are calculated for all the competing algorithms, NSGA II, 
NSGA III, MOEA/D, MOPSO, PESA2 and SPEA2, and for the archive of the best trial 
of MADEA. The comparison of the results is shown in Table 2. The performance metrics 
used for comparison are the IGD (Coello and Cortés, 2005), spacing (Schott, 1995), 
coverage (Zitzler and Thiele, 1999), coverage over Pareto front (CPF) (Tian et al., 2019), 
average Hausdorff distance or ∆P (Schutze et al., 2012), metric for diversity (DM) (Deb 



   

 

   

   
 

   

   

 

   

    Optimising the parameters in AWJT process 31    
 

    
 
 

   

   
 

   

   

 

   

       
 

and Jain, 2002) and pure diversity (PD) (Wang et al., 2017). The best values are 
represented in bold letters in Table 2. 

The performance metrics analyse the convergence, diversity and uniformity of the 
Pareto front. The IGD metric and ∆P can be held accountable for convergence and 
diversity (Wang et al., 2017). It can also be seen from Table 2 that the values of IGD and 
∆P are identical. However, the ∆P calculates the average distance between the image of 
the obtained Pareto set and the considered true Pareto front. The solution with lower 
value IGD, and commutatively ∆P, is considered as a good-quality solution. The 
comparison shows NSGA II has performed well in terms of IGD and ∆P metrics. But, as 
seen in Figure 5, the Pareto front of MADEA surpasses the considered true Pareto front. 
For distance-based metrics, the value is based on the distance between the solutions; it 
does not matter if the solution dominates the considered true Pareto solution. Hence, the 
value of IGD and ∆P metrics should not be considered for determining the performance 
of MADEA. 

Figure 5 Pareto fronts of AWJM (see online version for colours) 

 
Diversity with evenly spread individuals over the true Pareto curve is always desired. The 
spacing value is equal to zero when all the solutions are equally spaced from each other. 
One can see from Figure 5 that the solutions in the Pareto front of MADEA are not 
uniformly spaced. Therefore, in terms of spacing the MADEA ranks fourth among the 
competition. The PD metric gives a high value to evenly spread solution over the true 
Pareto front. PD values show the number of non-matching solutions spread across the 
true Pareto front or curve. As MADEA has solutions better than the true Pareto front, the 
PD value for MADEA is not the highest. The metric for diversity (DM), encourages the 
algorithm to diversify the solutions. Hence, a higher value of DM represents a more 
diverse solution. MADEA achieved the highest value of DM, which shows that it 
managed to obtain a very diverse solution, but lower values of spacing and PD represent 
its inability to obtain a uniformly spread Pareto front. 

The value of coverage ranges from [0, 1]. It is an indicator of a number of solutions in 
the true Pareto sets dominated by the obtained Pareto solutions. Coverage equals 1 
represents that all the solutions are dominated by the true Pareto front. In contrast , if 
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coverage is equal to zero, then the considered true Pareto front is dominated by the 
obtained solutions. Here, the considered true Pareto front is made up of all  
non-dominated solutions from six algorithms. Hence, their Pareto front is dominated by 
the considered true Pareto front, whereas the value 0.395 for MADEA shows that the 
Pareto front of MADEA has dominated the considered true Pareto front. The CPF or the 
coverage over Pareto front is an indicator which tells the volume of obtained front covers 
the volume of true Pareto front. Therefore, the higher value of CPF represents that the 
obtained solutions are lying over the true Pareto front. Here, the MADEA has a better 
Pareto front than the considered true Pareto front. Hence, the algorithm with maximum 
number of solutions in the considered true Pareto front would have a high CPF value. As 
NSGA-II contributes maximum non-dominated solutions in the considered true Pareto 
front, its CPF is the highest. 

Figure 6 Enlarged image of Pareto fronts (see online version for colours) 

 

Table 2 Comparison of MADEA using performance metrics 

 IGD Spacing Coverage CPF ∆P DM PD 

NSGA II 5.379706 7.852304 1 0.812254 5.379706 0.82571 411,872.7 

NSGA III 17.56771 12.48609 1 0.515169 17.56771 0.667419 218,277.1 

MOEA/D 936.0047 0.979951 1 0.000746 936.0047 0.031228 26,259.86 

MOPSO 7.450604 10.39444 1 0.68572 7.450604 0.762383 321,881.7 

PESA2 8.575072 10.95839 1 0.583758 8.575072 0.696595 231,266.8 

SPEA2 6.775378 8.04123 1 0.770266 6.775378 0.742949 284,719.6 

MADEA 6.267091 10.0254 0.395 0.656261 6.267091 0.82853 271,305.7 
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5 Conclusions 

In this paper, the AWJT process of alumina ceramics is optimised for maximum MRR 
and minimum surface roughness. The MADEA, a variant of the DE algorithm, is used for 
optimisation. The MADEA algorithm is justified using 15 benchmark MOPs, from which 
the MADEA showed better performance in nine MOPs. The AWJT problem is also 
solved using six well-known MOEAs, NSGA-II, NSGA-III, MOEA/D, MOPSO, PESA2 
and SPEA2. All the Pareto solutions obtained using evolutionary algorithms dominated 
the solution reported by the previous authors. One hundred forty-nine non-dominated 
solutions are calculated by MADEA, which is the maximum from any competing 
algorithm. The Pareto solutions of the algorithms are compared using seven performance 
metrics: IGD, spacing, coverage, CPF, ∆P, DM and PD. The performance metrics 
showed that MADEA was able to achieve better Pareto solutions than the considered true 
Pareto front. Also, MADEA produced the most diverse solutions, but the solutions were 
not uniformly spread. 

Appendix 

Table 3 Optimum solution provided by the comparison 

Sr. 
no. 

Water 
pressure P 

[MPa] 

Jet feed 
speed u 
[mm/s] 

Abrasive 
mass flow 
rate ma 

[g/s] 

Surface 
speed Vs 

[m/s] 

Nozzle 
tilted 

angle  
[°] 

MRR, 
[μm3/μs] 

Ra [μm] 

x1 x2 x3 x4 x5 

1 310 0.25 11.5 6 71 5,441.96 3.41 

Source: Yue et al. (2014a) 

Table 4 Non-dominated solutions calculated using MADEA 

Sr. 
no. 

Water 
pressure, 
P [MPa] 

Jet feed 
speed u 
[mm/s] 

Abrasive 
mass flow 
rate, ma 

[g/s] 

Surface 
speed, Vs 

[m/s] 

Nozzle 
tilted 

angle,  
[°] 

MRR, 
[μm3/μs] Ra [μm] 

x1 x2 x3 x4 x5 

1 190.307 0.050053 11.46976 4.981751 61.36492 4,038.805 2.806248 

2 274.9199 0.050045 11.47695 5.990328 72.54915 6,083.87 3.597306 

3 207.3339 0.050049 11.47394 5.702316 63.45485 4,482.622 2.97817 

4 190.307 0.050053 11.46976 4.152742 61.36492 3,918.726 2.781906 

5 303.6198 0.050032 11.48401 6.442994 79.10852 6,859.884 3.879002 

6 205.3717 0.050048 11.47127 5.89032 61.10166 4,472.266 2.971728 

7 309.5464 0.050031 11.48614 6.862138 95.60694 7,155.891 4.017634 

8 303.6198 0.050032 11.48401 6.442994 80.05331 6,866.45 3.8813 

9 280.7369 0.050038 11.48423 6.298434 79.07412 6,268.549 3.666391 

10 209.6907 0.050048 11.46938 5.792861 62.55826 4,550.951 3.004478 

11 212.4211 0.05005 11.4766 5.444959 60.83303 4,596.299 3.023897 
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Table 4 Non-dominated solutions calculated using MADEA (continued) 

Sr. 
no. 

Water 
pressure, 
P [MPa] 

Jet feed 
speed u 
[mm/s] 

Abrasive 
mass flow 
rate, ma 

[g/s] 

Surface 
speed, Vs 

[m/s] 

Nozzle 
tilted 

angle,  
[°] 

MRR, 
[μm3/μs] Ra [μm] 

x1 x2 x3 x4 x5 

12 190.3069 0.050053 11.46839 4.065391 58.41859 3,936.243 2.786325 

13 309.6896 0.050031 11.48006 6.460328 82.27998 7,039.383 3.943793 

14 285.2248 0.050038 11.47859 6.072283 74.52687 6,350.066 3.695111 

15 217.5603 0.050049 11.47436 5.746367 59.09326 4,750.947 3.085664 

16 298.648 0.050036 11.48049 6.318988 79.0445 6,725.514 3.830914 

17 221.0945 0.050042 11.4819 5.958702 66.13138 4,804.031 3.106309 

18 302.8818 0.050031 11.48532 6.315844 82.12263 6,856.004 3.878264 

19 298.648 0.050036 11.48049 6.318988 79.0445 6,725.514 3.830914 

20 282.4839 0.050038 11.47962 6.246964 74.24314 6,291.734 3.673562 

21 244.7876 0.050035 11.48203 5.888953 70.70921 5,344.458 3.318219 

22 222.2271 0.050044 11.47429 5.891861 66.37125 4,823.386 3.114655 

23 287.9966 0.050036 11.47401 6.396773 77.4114 6,448.373 3.731552 

24 247.7548 0.050043 11.47597 5.766845 69.70624 5,407.501 3.342668 

25 237.4123 0.050046 11.4753 5.977289 67.75514 5,181.498 3.254433 

26 215.5711 0.050044 11.47622 5.898181 62.92813 4,691.742 3.060376 

27 280.7369 0.050038 11.48423 6.298434 79.07412 6,268.549 3.666391 

28 247.3033 0.050046 11.47467 5.792676 67.12557 5,403.506 3.340946 

29 196.6751 0.050049 11.47436 5.886367 59.09326 4,295.211 2.898546 

30 282.8091 0.050036 11.48476 6.235605 73.9248 6,299.409 3.675968 

31 238.8204 0.050046 11.47467 5.792676 67.12557 5,203.187 3.263201 

32 216.2376 0.050038 11.4742 5.977056 64.98409 4,698.357 3.064261 

33 196.6751 0.050049 11.47436 5.886367 59.09326 4,295.211 2.898546 

34 309.4075 0.050029 11.48598 7.041009 89.56743 7,107.473 3.981083 

35 297.4909 0.050032 11.48312 5.940923 77.40225 6,663.947 3.809145 

36 282.8428 0.050035 11.48497 6.255619 74.06802 6,301.934 3.676833 

37 228.9837 0.050047 11.47465 5.855661 62.60012 4,997.775 3.182932 

38 219.6907 0.05005 11.47026 5.798186 59.67633 4,798.5 3.104789 

39 221.0945 0.050042 11.4819 5.958702 66.13138 4,804.031 3.106309 

40 238.3032 0.050047 11.47877 5.968343 70.75873 5,192.391 3.260789 

41 216.2698 0.050048 11.4707 5.833398 59.86521 4,723.29 3.073852 

42 192.7156 0.050052 11.47443 5.771665 59.39783 4,194.643 2.857691 

43 225.5083 0.050046 11.47127 5.871632 65.43629 4,903.593 3.14564 

44 285.7295 0.050034 11.48136 6.248985 76.93319 6,383.787 3.706819 

45 248.5522 0.050044 11.48265 6.229898 67.69568 5,462.984 3.363028 

46 241.7645 0.050035 11.48416 5.834948 69.65716 5,270.582 3.289346 
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Table 4 Non-dominated solutions calculated using MADEA (continued) 

Sr. 
no. 

Water 
pressure, 
P [MPa] 

Jet feed 
speed u 
[mm/s] 

Abrasive 
mass flow 
rate, ma 

[g/s] 

Surface 
speed, Vs 

[m/s] 

Nozzle 
tilted 

angle,  
[°] 

MRR, 
[μm3/μs] Ra [μm] 

x1 x2 x3 x4 x5 

47 196.6751 0.050049 11.47436 5.886367 59.09326 4,295.211 2.898546 

48 291.9517 0.050033 11.48517 6.446139 78.32943 6,558.467 3.770426 

49 246.8403 0.050041 11.47781 5.914057 68.57177 5,399.472 3.338486 

50 309.8833 0.050129 11.49994 7.405179 104.6279 7,244.379 4.101012 

51 190.0921 0.05003 11.49812 1.521212 63.25962 3,267.114 2.701869 

52 190.0921 0.05003 11.49812 1.521212 63.25962 3,267.114 2.701869 

53 309.8833 0.050129 11.49994 7.405179 104.6279 7,244.379 4.101012 

54 245.3073 0.05007 11.49857 5.927892 70.25006 5,363.507 3.323944 

55 212.2328 0.050088 11.49555 6.11712 60.76529 4,647.729 3.042335 

56 261.5868 0.050023 11.49935 5.943992 74.44607 5,760.007 3.475289 

57 227.446 0.05004 11.48644 5.954744 67.05044 4,948.818 3.163128 

58 266.8946 0.050034 11.48983 6.052928 71.74418 5,893.821 3.524765 

59 199.2377 0.050019 11.49247 5.684882 57.77453 4,350.729 2.920411 

60 295.8972 0.050035 11.4941 6.139153 76.95964 6,637.483 3.797656 

61 190.2116 0.050124 11.49317 4.632606 60.53881 3,999.692 2.797265 

62 217.5531 0.050033 11.49389 6.09481 60.85268 4,766.726 3.089874 

63 289.3623 0.050025 11.49748 6.187148 75.18729 6,468.318 3.736068 

64 259.7679 0.050086 11.49971 6.24128 73.93239 5,732.968 3.46494 

65 207.008 0.050036 11.48263 5.640204 58.50698 4,511.998 2.98765 

66 264.582 0.050069 11.48812 5.880756 71.38739 5,824.323 3.499551 

67 292.5259 0.050001 11.49574 6.114243 75.45759 6,544.036 3.763803 

68 283.1517 0.050035 11.49998 6.233663 76.81388 6,322.659 3.682485 

69 266.0818 0.050034 11.49692 5.884089 71.61136 5,863.712 3.513225 

70 274.2432 0.050011 11.49684 5.97747 70.7177 6,067.558 3.590105 

71 215.7256 0.05004 11.47971 5.84241 62.73373 4,692.896 3.060624 

72 284.5466 0.05005 11.49522 6.157358 75.41042 6,346.403 3.691648 

73 249.7838 0.050026 11.49029 5.787333 68.14936 5,463.255 3.36236 

74 275.2379 0.050047 11.49612 6.132742 74.93345 6,111.54 3.605203 

75 233.7303 0.05008 11.49093 5.997114 65.74667 5,105.836 3.223821 

76 298.5245 0.050019 11.49549 6.185464 80.36141 6,728.006 3.830438 

77 303.7112 0.050062 11.49696 6.447805 79.5881 6,869.584 3.880981 

78 224.3836 0.050047 11.48634 5.599073 63.16401 4,869.612 3.132 

79 229.8349 0.050048 11.49149 6.074549 64.55993 5,025.752 3.192252 

80 243.3655 0.050013 11.4942 6.287056 69.13369 5,341.793 3.315349 

81 293.1626 0.050005 11.49249 6.044791 77.35123 6,564.53 3.771342 
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Table 4 Non-dominated solutions calculated using MADEA (continued) 

Sr. 
no. 

Water 
pressure, 
P [MPa] 

Jet feed 
speed u 
[mm/s] 

Abrasive 
mass flow 
rate, ma 

[g/s] 

Surface 
speed, Vs 

[m/s] 

Nozzle 
tilted 

angle,  
[°] 

MRR, 
[μm3/μs] Ra [μm] 

x1 x2 x3 x4 x5 

82 309.6733 0.05009 11.49832 6.33686 83.28289 7,046.514 3.944854 

83 299.6485 0.050052 11.49862 6.376955 78.0901 6,753.328 3.839004 

84 250.3091 0.050022 11.49909 6.199799 71.66508 5,500.563 3.376065 

85 297.9166 0.050008 11.49643 6.231435 79.17244 6,708.196 3.822598 

86 309.9541 0.050063 11.4919 6.92484 95.58111 7,169.974 4.021815 

87 273.9887 0.050018 11.49944 6.377668 72.56603 6,089.628 3.597425 

88 272.3914 0.050037 11.49886 6.267957 72.77042 6,044.898 3.580386 

89 275.6194 0.050033 11.49077 6.323087 76.15188 6,133.559 3.614374 

90 229.6528 0.050023 11.49162 6.168011 69.76277 5,002.845 3.186393 

91 281.2197 0.05006 11.49937 6.131497 75.46257 6,262.912 3.660655 

92 262.6645 0.050087 11.4945 6.17302 74.69252 5,799.93 3.49073 

93 252.5344 0.050052 11.49046 6.245636 71.60921 5,555.362 3.39774 

94 305.949 0.050044 11.49514 6.123828 79.22118 6,906.766 3.894326 

95 308.8774 0.050116 11.49899 6.230635 81.85896 7,008.83 3.930816 

96 285.2635 0.05002 11.49487 6.265149 74.52142 6,367.104 3.699497 

97 190.0538 0.050011 11.49572 6.090926 59.11125 4,162.743 2.843605 

98 262.8476 0.050013 11.49323 5.882871 70.90163 5,783.861 3.483413 

99 280.1241 0.050048 11.49403 6.21788 75.35794 6,239.01 3.652362 

100 216.2609 0.050025 11.48828 6.071404 63.9599 4,714.022 3.068952 

101 302.9951 0.050055 11.48721 6.335481 80.14911 6,846.733 3.873799 

102 290.2486 0.050085 11.4908 6.131157 76.66161 6,491.555 3.745344 

103 282.7894 0.050048 11.48972 6.162869 74.76801 6,299.037 3.674949 

104 288.5258 0.050037 11.49701 6.1359 75.21817 6,444.265 3.727363 

105 196.733 0.050043 11.48508 5.645261 58.03411 4,288.425 2.895425 

106 286.5652 0.05006 11.49793 6.204575 77.00765 6,406.99 3.713582 

107 190.0538 0.050011 11.49572 3.550177 59.11125 3,828.387 2.765804 

108 253.4203 0.050007 11.48345 6.218192 69.19072 5,576.927 3.40584 

109 286.2494 0.050049 11.49915 6.099704 75.91343 6,388.613 3.706677 

110 269.4622 0.050021 11.49126 5.917241 73.24238 5,949.876 3.545826 

111 216.677 0.050033 11.48853 5.853325 60.41964 4,732.394 3.076101 

112 190.0921 0.05003 11.49667 3.176132 62.51974 3,712.961 2.749419 

113 265.1408 0.050076 11.49673 6.011606 70.56218 5,848.379 3.507719 

114 271.6266 0.050065 11.49705 6.248452 74.18301 6,026.92 3.573937 

115 267.1697 0.050025 11.49578 6.222756 73.11469 5,913.966 3.531653 

116 282.5372 0.050027 11.49629 5.9391 75.04555 6,281.153 3.667972 
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Table 4 Non-dominated solutions calculated using MADEA (continued) 

Sr. 
no. 

Water 
pressure, 
P [MPa] 

Jet feed 
speed u 
[mm/s] 

Abrasive 
mass flow 
rate, ma 

[g/s] 

Surface 
speed, Vs 

[m/s] 

Nozzle 
tilted 

angle,  
[°] 

MRR, 
[μm3/μs] Ra [μm] 

x1 x2 x3 x4 x5 

117 225.0095 0.050047 11.48716 5.911251 66.87758 4,889.083 3.139895 

118 287.5981 0.050054 11.49446 6.191611 76.21573 6,427.907 3.721496 

119 191.3225 0.050058 11.49795 3.327509 63.51081 3,762.846 2.764229 

120 249.9034 0.050056 11.4951 6.056634 69.43286 5,484.159 3.3695 

121 268.7549 0.050089 11.49592 5.898827 72.81505 5,930.779 3.538785 

122 234.9769 0.050056 11.49977 6.03766 64.88835 5,142.828 3.237665 

123 305.1295 0.050063 11.49949 6.324998 78.63405 6,894.066 3.889355 

124 271.485 0.050047 11.49196 5.935417 72.84335 6,000.104 3.564575 

125 200.4334 0.050013 11.49041 5.714879 57.20214 4,385.062 2.934602 

126 199.2442 0.050014 11.49413 6.028463 58.32964 4,371.811 2.928962 

127 256.7463 0.050068 11.49523 6.059624 71.18692 5,647.824 3.431908 

128 225.0742 0.050066 11.49417 6.195082 67.89233 4,904.311 3.146725 

129 209.5008 0.050061 11.47912 5.845912 60.37195 4,568.903 3.010504 

130 217.4884 0.050041 11.49459 5.866029 60.55641 4,751.388 3.083458 

131 241.9879 0.050085 11.49801 6.085964 69.97606 5,294.511 3.297538 

132 243.4917 0.050088 11.49953 5.874958 67.91273 5,321.692 3.307289 

133 277.4017 0.050126 11.47944 6.312292 73.31805 6,165.691 3.628024 

134 233.5604 0.050034 11.48975 5.585928 64.97571 5,072.789 3.212168 

135 290.6983 0.050013 11.4999 6.113591 79.18499 6,517.681 3.75415 

136 221.9504 0.05002 11.48029 5.838908 65.09552 4,821.563 3.112498 

137 276.6843 0.050059 11.49778 6.315222 73.08139 6,153.121 3.621024 

138 190.0921 0.05003 11.49944 2.658637 62.51974 3,591.939 2.73453 

139 202.9576 0.050018 11.47624 5.770798 59.54199 4,423.141 2.95082 

140 210.8163 0.050043 11.48863 6.138085 62.88901 4,600.284 3.023601 

141 228.7662 0.050042 11.48052 5.869402 64.77558 4,984.074 3.176476 

142 190.5815 0.050064 11.49176 2.658847 61.57929 3,613.042 2.740164 

143 209.8032 0.050062 11.49307 5.75784 58.22907 4,587.073 3.017991 

144 308.749 0.050096 11.49707 7.138973 91.19325 7,106.061 3.98515 

145 192.8689 0.05006 11.48735 6.059526 60.03794 4,212.876 2.865518 

146 279.0401 0.050036 11.49667 6.254072 76.27984 6,217.627 3.644409 

147 190.1277 0.05005 11.49144 5.201404 59.20922 4,085.091 2.817016 

148 260.6473 0.050006 11.48648 5.629919 66.734 5,707.962 3.459138 

149 190.4575 0.050009 11.49626 2.869859 61.22968 3,665.823 2.745239 
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Nomenclature 

MRR Material removal rate PW Water pressure 

Ra Surface roughness  Nozzle tilted angle 

d Depth of cut SOD Stand-off-distance 

F Feed dN Nozzle diameter 

n speed   

dp particle size   

mA abrasive flow rate   

 


