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Abstract: This study aims to optimise the hard turning of AISI 4340 steel to 
improve productivity using response surface methodology (RSM) and machine 
learning (ML) techniques. The novelty lies in integrating these methods to 
enhance material removal rate (MRR) while maintaining surface roughness 
(Ra) quality. Experiments were conducted with an uncoated carbide tool under 
dry and minimum quantity lubrication (MQL) conditions, varying cutting 
speed, feed, and depth of cut. RSM identified feed as the most significant factor 
affecting Ra, while ML, specifically linear regression (LR), predicted optimal 
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cutting conditions. Key findings include achieving an optimum MRR of  
5.2 cm3/min under dry and 7.2 cm3/min under MQL conditions, with Ra within 
the acceptable range (1.6 µm–3.2 µm). Validation confirmed the model’s 
accuracy, demonstrating high agreement between predicted and experimental 
Ra values. This integrated approach offers a robust solution for optimising 
hard-turning processes in industrial applications. 

Keywords: surface roughness; Ra; material removal rate; MRR; linear 
regression; LR; minimum quantity lubrication; MQL. 
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1 Introduction 

The background of the study reported in this paper is the application of hard machining 
technology in producing post-harvest machinery parts. As one of the world’s major 
agricultural countries, Indonesia needs post-harvest machinery to process harvest 
products. Many players, from small and medium enterprises (SMEs) up to  
high-investment industries, contribute to the various aspects of manufacturing businesses 
to provide the availability of post-harvest machinery in the country. As steel is mainly the 
raw material for machinery parts, the metal-cutting industry is vital in manufacturing 
machinery. In line with the increasing demand for machinery parts in the country, the 
metal-cutting industries must increase their productivity. The strategies for increasing 
productivity in metal cutting technology can be applied by hard machining technology 
(Koenig et al., 1984; Astakhov, 2011) and cooling conditions during machining (Klocke 
and Eisenblaetter, 1997; Weinert et al., 2004; Goindi and Sarkar, 2017). 

As hard machining technology can be used for any machining operation, particularly 
for post-harvest machinery, hard turning is mostly taken operation for production. 
Astakhov (2011) recommended the simple rule for the key success in applying hard 
turning by minimising the overhangs, tool and part extensions, eliminating shims and 
spacers when turning operation. In short, the setup of the turning operation must be kept 
as close as possible to the turret or spindle head of the lathe. For cooling conditions, 
although most hard turning operations are carried out under dry conditions (Sarma and 
Rajbongshi, 2021; Ginting et al., 2020), if a coolant is needed, high pressure is 
recommended. In this case, applying the minimum quantity of lubrication (MQL) cooling 
conditions is recommended, as reported in Weinert et al. (2004) and Goindi and Sarkar 
(2017). The last but prime recommendation is selecting the proper tool material, 
including tool geometry, tool accessories (insert shape, tool holder, etc.), and the 
appropriate or optimal cutting condition when possible. As highlighted in Koenig et al. 
(1984) and König et al. (1990), three tool materials are recommended, i.e., carbide, 
ceramic, and cubic boron nitride (CBN). Carbide can machine ferrous alloys of hardness 
up to 58 HRC, ceramic for up to 63 HRC, and CBN for up to 70 HRC. 

Turning hardened steel at a certain magnitude of cutting parameters (cutting speed, 
feed, and depth of cut) and resulting in an acceptable value of objective (response) 
parameters (i.e., surface roughness, tool life, etc.) are the ways of finding the appropriate 
cutting condition. In this case, the acceptable level can be higher, better, or lower, 
depending on the objective parameter’s nature; for instance, the higher, the better when 
the objective is tool life, but the lower, the better when the objective is surface roughness. 
Based on this understanding, finding the appropriate cutting condition is commonly done 
by utilising optimalisation technique. Therefore, to find the appropriate cutting condition 
with the objective of surface roughness, various statistical approaches, from classical 
regression to today’s machine learning (ML) technique, have been utilised (Dubey et al., 
2022; Motta et al., 2022; Mazid et al., 2023; Ahmad et al., 2015; Chatterjee et al., 2021). 

There is useful fundamental information related to ML applied in manufacturing and 
machining that can be obtained from Kim et al. (2018), Aggogeri et al. (2020), Nasir and 
Sassani (2021) and Arinez et al. (2020). ML is a subset of artificial intelligence that 
empowers systems to learn and improve from experience without explicit programming. 
Standard techniques include supervised learning, semi-supervised, and unsupervised 
learning. Supervised learning is a ML paradigm where a model is trained on labelled 
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data, associating input features with corresponding output labels. It involves algorithms 
that enable computers to recognise patterns, make predictions, and adapt to new data. 
Mostly, the research in machining with the design of experiment (DoE), such as the study 
reported in this paper, adopted supervised learning and algorithms such as linear 
regression (LR), random forest (RF), support vector regression (SVR), and Gaussian 
process regression (GPR) (Motta et al., 2022; Mazid et al., 2023; Ahmad et al., 2015; 
Brillinger et al., 2021). 

The objective of this paper is to find the appropriate and optimum cutting condition 
applied for hard turning of AISI 4340 through response surface methodology (RSM) and 
ML techniques to increase productivity, showcase enhanced material removal rates 
(MRRs), and maintain surface roughness (Ra) within acceptable quality ranges. Unlike 
the selection of the ML algorithm in the other studies, the selection of LR as the ML 
algorithm for model development in this study is based on the result of the RSM analysis. 

2 Materials and method 

Figure 1 is the illustration of a strategy designed for this study. The study started with a 
hard turning activity. In this activity, the AISI 4340 steel with a diameter of 70 mm, 
length of 350 mm, and hardness of 50 HRC is selected as the workpiece material. The 
workpiece is rigidly mounted onto a CNC Turning machine model CKA6136 spindle 
powered by a 4,000 rpm motor. As the turning experiment is carried out under dry and 
minimum quantity lubrication (MQL) conditions, the CNC Turning machine is equipped 
with the MQL systems (see Figure 2 for the setup). The MQL systems work constantly at 
a pressure of 4 bar, with a cutting fluid capacity of 100 mL/h, and the ECOCUT 1012 ID 
is used as the cutting fluid. 

Figure 1 The strategy developed to achieve the objective of the study 

  

The uncoated carbide coded DCMT11T304-F2 HX is selected as the cutting tool and 
attached to the tool holder coded SDJCR1616H11. Since the results of this study will 
benefit our industrial partner, the workpiece material and the cutting tool used in this 
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study are provided and received from them. Even the CBN cutting tool is superior for 
hard turning. However, we support the decision of our industrial partner to select the 
uncoated carbide tool used in this study for 2 (two) reasons. Firstly, the hardness number 
of material to be cut is at the entry-level of hard machining application (50 HRc). Carbide 
showed a good performance for turning hardened ferrous alloys up to 58 HRc (Koenig  
et al., 1984). Secondly, our industrial partner is in the SME industry; the small investment 
and low production cost have to be considered. The CBN insert cutting tool is more 
costly than carbide. 

Figure 2 Setup of the turning experiment under dry and MQL conditions 

 

Table 1 The DoE of Box-Behnken design: factors and values 

Factor Unit Lower value Upper value 

v Cutting speed (m/min) 90 120 

f Feed (mm/rev) 0.10 0.20 

a Depth of cut (mm) 0.25 0.50 

As the method of process optimisation in this study is RSM, the Box-Behnken design is 
then taken as the DoE for hard turning activity. The turning parameter, factors, and 
values used for the DoE are identified and result from the preliminary study (see  
Table 1). The baseline turning parameter used by the industry is cutting speed (v) of 60 
m/min, feed (f) of 0.1 mm/rev, depth of cut (a) of 0.2 mm, and the process is only under 
dry condition. The surface roughness quality ranges from medium finish with a 
roughness grade number of N8 (~3.2 μm) to finish with a roughness grade number of N7 
(~1.6 μm). If the productivity is measured by MRR, which mathematically can be given 
as: 

MRR v f a    (1) 

thus, the MRR of the baseline turning parameter is 1.2 cm3/min. The hard turning activity 
is conducted as per design, with the response variable being surface roughness under the 
Ra (average roughness) parameter. The surface roughness tester Surftest SJ-210 is 
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utilised to measure the response. The measurement of Ra is taken five times/pass until the 
cutting tool reaches the flank wear at VB of about (0.20–0.23) mm, and finally, the Ra 
average is recorded for each cutting condition (run) as per the DoE of Box-Behnken 
design (). 

RSM then analyses the data () from the hard turning activity for process 
optimisation. The quadratic model is developed, and the adequacy is checked. The RSM 
analysis could be continued once the best-fit model is obtained and confirmed. The goal 
of this activity is a set of potential cutting conditions () with high MRR value and good 
Ra value in which quality ranges from medium finish (N8) to finish (N7) (ISO 4288, 
1998). Simultaneously, the data () is also used as a set of data to be trained for creating 
the model using the ML approach. A supervised ML technique is adopted, and the 
computer code is developed using Python. Using supervised learning, input variables in 
the labelled datasets (v, f, a) are trained to learn the relationship between the input and 
output variables. Once the training phase has been completed, the ML model can process 
new input data () and provide the predicted Ra values. The result of the ML activity 
(model and prediction) is a set of potential cutting conditions, including the predicted Ra 
values (). This dataset will be the solution to cutting conditions that can be applied to 
improving the productivity of the hard turning process in producing the post-harvest 
machinery parts for our industrial partner. As for the final adjustment, from the set of 
data in (), the cutting conditions are classified as potential optimum cutting conditions, 
which are characterised by high MRR value with accepted Ra value at roughness grade 
number (N8) and (N7). The potential optimum cutting conditions are then validated by 
re-hard turning testing. 

The application of the LR algorithm in this study is carried out by writing a set of 
Python code and utilising the Scikit-Learn library for ML programming (Müller and 
Guido, 2015; Hastie et al., 2009). The pseudo-code of the LR algorithm can be given as 
follows: 

Step 1 Assume X is the input feature, and y is the target variable. In this study, X is the 
cutting condition (v, f, a), and y is the response (Ra). 

Step 2 Split the data in Table 2 into training and testing sets. 

Step 3 Train the model on the training set. 

Step 4 Predict the test set. Data in Table 2 was used as the testing sets. 

Step 5 Evaluate the model performance using mean squared error (MSE), root mean 
squared error (RMSE), and R2 (coefficient of determination). 

MSE and RMSE are commonly used metrics to evaluate the performance of a regression 
model (step 5). The MSE measures the average squared difference between the 
experiment and predicted values and quantifies how well the model performs regarding 
the average magnitude of the error. A lower MSE indicates better model performance, 
which means the model’s prediction is closer to the experimental values. The RMSE is 
the square root of the MSE and measures the average magnitude of errors in the same 
units as the target variable. It is beneficial for understanding the typical size of errors the 
model makes. As MSE, a lower RMSE indicates better model performance. In addition to 
MSE and RMSE, the R2, also known as the coefficient of determination, is used to 
evaluate the model performance. The coefficient of determination is a measure that 
indicates the percentage of the response parameter variation that a regression model 
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explains. A higher R2 score indicates that the regression model explains more variability 
and the regression model fits the data better. 

3 Result and discussion 

3.1 Hard turning 

The results of hard turning activity as per DoE Box-Behnken design under dry and MQL 
conditions are presented in Table 2. Table 2 shows that all MRR values are more 
significant than the MRR of the baseline turning parameter (1.2 cm3/min). All MRR 
values indicate that the cutting conditions can improve productivity. Besides, the Ra 
values resulting both under dry and MQL conditions seem promising where the surface 
roughness with quality of medium finish (N8~3.2 μm) and finish (N7~1.6 μm) are 
covered. 

As mentioned, Ra was measured per pass (cutting length of 330 mm/pass), five times 
of measurement/pass, until the cutting tool reached flank wear at VB of (0.20–0.23) mm. 
This VB limit was chosen because, above the limit, the cutting tool experienced 
excessive chipping (Figure 3). At the VB limit, the flank wear was generally observed in 
the vicinity of the active cutting tool edge (within the cutting tool nose radius). The flank 
wear condition was believed because the cutting condition variables where f (0.1 to 0.2 
mm/rev) and a (0.25 to 0.5 mm) were about the same dimension as the cutting tool nose 
radius (0.4 mm). After all, the cutting condition variables f and a are both assigned at the 
active cutting tool edge, where chip formation actively occurs during the turning. 

Table 2 The results of the hard turning experiment under dry and MQL conditions 

Run 
v f a MRR Ra dry Ra MQL 

m/min mm/rev mm cm3/min μm μm 

1 90 0.10 0.375 3.4 2.125 1.640 

2 120 0.10 0.375 4.5 2.664 2.166 

3 90 0.20 0.375 6.8 5.802 4.881 

4 120 0.20 0.375 9.0 5.565 6.014 

5 90 0.15 0.250 3.4 3.788 2.854 

6 120 0.15 0.250 4.5 4.514 3.980 

7 90 0.15 0.500 6.8 4.253 3.434 

8 120 0.15 0.500 9.0 4.922 4.049 

9 105 0.10 0.250 2.6 2.461 1.856 

10 105 0.20 0.250 5.3 5.682 4.592 

11 105 0.10 0.500 5.3 3.012 2.125 

12 105 0.20 0.500 10.5 6.403 5.639 

13 105 0.15 0.375 5.9 4.233 3.904 

14 105 0.15 0.375 5.9 3.893 3.806 

15 105 0.15 0.375 5.9 4.384 3.578 
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Figure 3 Excessive chipping (dry, v 120 m/min, f 0.20 mm/rev, a 0.375 mm) 

 

3.2 Process optimisation 

Prior to analysing the data in Table 2 using the RSM technique, the distribution data was 
checked, and the goodness-of-fit was assessed. Understanding data distribution would 
help us choose the appropriate statistical methods and make valid inferences. For this 
purpose, the probability plot with a 95% confidence interval (CI) was studied. The plots 
are shown in Figures 4 and 5 for the data resulting under dry and MQL conditions, 
respectively. 

The probability plots in Figures 4 and 5 show that the resulting Ra data under dry and 
MQL conditions follow the normal distribution. The legends in Figures 4 and 5 show that 
the Anderson-Darling (AD) test gives a low value of 0.227 for dry and 0.255 for MQL. In 
this case, a lower value suggests a better fit. The P-value (closer to 1) is associated with 
the AD test values and indicates a better fit to the normal distribution. In this case, the  
P-values of 0.775 and 0.676 are the results for dry and MQL conditions, respectively. The 
high P-value suggests insufficient evidence to reject the hypothesis that the data comes 
from a normal distribution. The analysis results through the probability plot confirm that 
the Ra data that resulted both under dry and MQL conditions are suitable for further 
statistical testing and model development. 

The results of hard turning activity per DoE Box-Behnken design under dry and MQL 
conditions in Table 2 were then analysed using the RSM technique. As the probability 
plot, this analysis was done using the commercial statistical software Minitab. The first 
step in the analysis under the RSM technique was finding the best-fit model for the data. 
After developing a full quadratic model, calculating all coefficients, and retrieving the 
result of ANOVA of response surface regression (Ra versus v, f, a), the results showed 
that a linear model was the best-fit model to represent the data both for dry and MQL 
conditions with a coefficient of determination (R2) of 96.64% and 97.56%, respectively. 
The square and two-way interaction models were not significant. Figures 6 and 7 show 
the result of ANOVA for the response surface regression linear model in detail. From the 
figures, it can be seen that the contribution (effect) of independent variables (v, f, a) on a 
response variable (Ra) is mainly dominated by f (92.66% under dry and 89.78% under 
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MQL conditions). It is followed by a and v for turning under dry condition and v and a 
for turning under MQL condition. 

Figure 4 The probability plot of Ra (dry) (see online version for colours) 
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Figure 5 The probability plot of Ra (MQL) (see online version for colours) 
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The next step in the analysis under the RSM technique is finding the optimum value of 
the response variable (Ra). In this case, the optimum value of Ra is at the extremum 
minimum. For this purpose, the surface plots of Ra, as shown in Figure 8, were 
examined. The red arrows in Figure 8 show the position of Ra minimum, and based on 
the ANOVA results, that linear model was the best-fit model for the response surface 
regression (Ra versus v, f, a); thus, it can be concluded that the optimum value of Ra 
(minimum) could be found at the lowest value of the cutting condition (v, f, a). 
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Figure 6 The ANOVA for response surface regression linear model (dry) 

 

Figure 7 The ANOVA for response surface regression linear model (MQL) 

 

Figure 8 Surface plot of Ra data, (a) dry (b) MQL conditions (see online version for colours) 

  

(a)     (b) 
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The Minitab menu under DoE RSM was executed to find the optimum value with 
minimum criterion (extremum minimum) and validate the conclusion. The results 
showed that the optimum Ra (minimum) under the dry condition was 2.117 μm, and 
under the MQL condition was 1.297 μm. Both were obtained at v 90 m/min, f 0.10 
mm/rev, and 2.50 mm (the lowest value of the cutting condition). This result confirms the 
conclusion. 

The value of Ra minimum at 2.117 μm for dry and 1.297 μm for MQL are both in the 
range of the expected surface finish (1.6–3.2 μm) and even better (1.297 μm). When this 
result is related to the MRR value as the indicator of productivity in this study, the Ra 
minimum for hard turning under dry and MQL conditions is obtained at an MRR value of 
2.25 cm3/min. This result is promising since the MRR of 2.25 cm3/min is higher than the 
origin turning parameter practiced by the industrial partner (1.2 cm3/min). Even when the 
range of surface roughness quality from medium finish (N8~3.2 μm) to finish (N7~1.6 
μm) is concerned, it is possible to raise productivity higher than MRR of 2.25 cm3/min. 
To address this possibility, the menu for the resulting predicted value in the Minitab 
application was utilised, and the results are presented in Table 3. 

Table 3 Predicted cutting condition and MRR at expected Ra value 

Condition 
Ra* v^ f^ a^ MRR^ 

μm m/min mm/rev mm cm3/min 

Dry 1.6 90 0.100 0.250 2.25 

3.2 105 0.125 0.250 3.28 

MQL 1.6 90 0.100 0.400 3.60 

3.2 105 0.145 0.250 3.81 

Notes: *expected; ^predicted. 

Figure 9 Overlaid contour plot for Ra (1.6–3.2) μm (dry) (see online version for colours) 

  

Further analysis with Minitab for finding the predicted cutting condition and MRR with 
Ra is in the range of the expected values of (1.6–3.2 μm). The overlaid contour plot can 
be extended, as shown in Figures 9 and 10. The overlaid contour plots in Figures 9 and 
10 were plotted based on input cutting conditions in the range from v 90–120 m/min,  
f 0.1–0.2 mm/rev, but a was kept constant at 0.25 mm (for the overlaid contour plot at the 
left side) and 0.50 mm (for the overlaid contour plot at the right side) while the value of 
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surface roughness (Ra) was also in range (1.6–3.2 μm). As shown in Figures 9 and 10, 
the results of the overlaid contour plots show that the white areas of those plots are the 
feasible areas for having surface roughness (Ra) values between 1.6 μm and 3.2 mm. The 
cutting conditions in Table 3 are also inside the feasible areas of the overlaid contour 
plots. 

Figure 10 Overlaid contour plot for Ra (1.6–3.2) μm (MQL) (see online version for colours) 

  

Figures 9 and 10 show the boundary-cutting condition for the feasible areas of expected 
surface roughness (Ra) between 1.6 μm to 3.2 μm can be provided and presented in  
Table 4. Referring to the boundary cutting condition in Table 4, there are many 
possibilities of cutting conditions that can now be arranged rather than what we have 
previously in Table 3. However, the question now is about the best way to obtain the 
predicted surface roughness (Ra) value for those cutting conditions within the boundary 
in Table 4. Moreover, the Ra value should be associated with high MRR so that the 
study’s objective, productivity improvement, could be achieved. A ML technique was 
introduced in this study to answer the question. 

Table 4 The boundary-cutting condition for the feasible areas of expected surface roughness 
(Ra) between 1.6 μm and 3.2 μm 

Condition Boundary 
v f a 

m/min mm/rev mm 

Dry Low 90 0.100 0.250 

High 120 0.135 

Low 90 0.100 0.500 

High 120 0.120 

MQL Low 90 0.110 0.250 

High 120 0.160 

Low 90 0.100 0.500 

High 120 0.140 
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3.3 Model and prediction 

The Ra value (experiment) result in Table 2 is plotted with the predicted Ra value 
resulting from the LR model and presented in Figures 11 for the dry condition and 12 for 
the MQL condition. 

Figure 11 Plot of experiment and predicted of Ra under dry condition 

 

Figure 12 Plot of experiment and predicted of Ra under MQL condition (see online version  
for colours) 

 

As shown in Figure 11, the plot of the Ra experiment and prediction show that the trend 
and value agree. Both models’ MSE and RMSE values are calculated to assess the model 
performance. The value of MSE and RMSE of the LR model for dry condition are 
recorded at 0.124 μm and 0.352 μm, respectively. In Figure 12, the plot of the Ra 
experiment and prediction for MQL are also in good agreement. The MSE and RMSE 
values of the LR model are recorded at 0.173 μm and 0.416 μm, respectively. 

Further assessment of model performance is using coefficient of determination (R2). 
The visualisation of prediction quality provided by the LR model is presented in the 
scatter plot of the Ra experiment versus Ra prediction (Figure 13). A line corresponding 
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to the equality between the values of the Ra experiment and Ra prediction is plotted for 
reference. It is also a trendline used to determine the R2 score. In Figure 13(a), the LR 
model for the dry condition shows that R2 = 0.9662, and in Figure 13(b), the LR model 
for the MQL condition shows that R2 = 0.9638. These R2 scores indicate that about 96% 
variability is explained by both LR models. The values and scores of MSE, RMSE, and 
R2 are mentioned in Figure 13 to summarise the model assessment results. Based on 
these, as both MSE and RMSE metrics are relatively low while R2 is relatively high, both 
LR models predict the surface roughness (Ra) values well. 

Figure 13 Scatter plot of Ra experiment vs. Ra prediction, (a) dry (b) MQL conditions  
(see online version for colours) 

  

(a)     (b) 

So far, the LR model has been successfully generated and well performed. Using both LR 
models, the cutting conditions in Table 4 were used as the testing set to obtain the 
predicted Ra value for improved productivity. For this purpose, the boundary-cutting 
condition in Table 4 was arranged as in Table 5, and the new testing set was designed 
using DoE full factorial. From Table 5, there were 2 (two) new testing sets generated (dry 
and MQL) with 64 cutting conditions (runs) for each testing set. 

Table 5 Factors and levels of the new testing sets designed by DoE full factorial 

Condition Levels 
v f a 

m/min mm/rev mm 

Dry 1 90 0.100 0.250 

2 100 0.115 0.350 

3 110 0.125 0.400 

4 120 0.135 0.500 

MQL 1 90 0.100 0.250 

2 100 0.120 0.350 

3 110 0.140 0.400 

4 120 0.160 0.500 

3.4 Solution and validation 

Both new testing datasets (dry and MQL) were then made as the input data to the dry and 
MQL models, resulting in the LR algorithm described in the former paragraph. After 
executing the Python code for each new testing dataset and model, the predicted Ra value 
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for dry and MQL results are plotted and shown in Figure 14. The scatter plots in  
Figure 14 present the MRR values versus the corresponding Ra prediction values for 64 
cutting conditions (for each plot) as per Table 5. Regarding this study’s surface roughness 
quality of medium finish (N8~3.2 μm) to finish (N7~1.6 μm), the horizontal line at  
Ra = 3.2 μm is plotted as the borderline of the scatter plots in Figure 14. As a result, 28 
MRR values in Figure 14(a) and 39 MRR values in Figure 14(b) are acceptable for 
further analysis. Among 28 MRR values in Figure 14(a), the highest is recorded at  
MRR = 5.2 cm3/min, and among 39 MRR values in Figure 14(b), the highest is recorded 
at MRR = 7.2 cm3/min. It indicates that the MQL condition is affected by the MRR. The 
corresponding cutting conditions of those accepted MRR and the Ra prediction values for 
dry and MQL conditions are listed in Tables 6 and 7, respectively. 

Figure 14 Scatter plot of MRR vs. Ra prediction, (a) dry (b) MQL conditions (see online version 
for colours) 

  

(a)     (b) 

In Table 6, the prediction result for dry condition shows that 28 out of 64 cutting 
conditions can be accepted with predicted Ra values ranging from 1.6 μm to 3.2 μm. 
However, the lowest predicted Ra is noted at 2.3 μm. The MRR is also listed, and the 
value is associated with the predicted Ra. The lowest predicted Ra, 2.3 μm, could result 
in an MRR of 2.3 cm3/min. Moreover, the predicted Ra value of 3.2 μm could result in 
MRR of 3.1, 4.4, 4.6, and 5.2 cm3/min. When MRR is concerned, 2.3 cm3/min and  
6.0 cm3/min are the lowest and the highest MRR that could be achieved. 

In Table 7, the prediction result for the MQL condition shows that 39 out of 64 
cutting conditions can be accepted with predicted Ra values ranging from 1.6 μm to  
3.2 μm. In this case, the lowest predicted Ra is noted at 1.3 μm. The lowest predicted Ra 
value is associated with an MRR value of 2.3 cm3/min. Regarding the predicted Ra value 
of 3.2 μm, there are 2 MRR values associated with it, which are 5.6 and 7.2 cm3/min. The 
MRR of 7.2 cm3/min is the highest MRR value that could be achieved under MQL 
condition with the acceptable value of predicted Ra. 

Some of the predicted Ra values in Table 6 (cutting condition numbers 1–4, 13–15, 
and 25–28) and 7 (cutting condition numbers 1–5, 15–18, and 36–39) were validated. The 
hard turning at those cutting conditions was repeated three times, and the measurements 
were taken. The results of the validation activity were also presented in Tables 6 (dry) 
and 7 (MQL). For the validation under dry condition, the validation value of Ra for 
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cutting condition number 3 (v 90 m/min, f 0.115 mm/rev, a 0.50 mm), those validation 
values are higher than the predicted and the acceptable Ra values (>3.2 μm). Therefore, 
cutting condition three is excluded from the final solution for productivity improvement 
of hard turning under dry condition in this study. 

Table 6 The results of predicted Ra and its validation (dry) 

No. 
v f a MRR Predicted Ra Validated Ra 

m/min mm/rev mm cm3/min μm μm μm μm 

1 120 0.100 0.50 6.0 3.109 3.219 3.263 3.217 

2 110 0.100 0.50 5.5 3.003 3.121 3.147 3.118 

3* 90 0.115 0.50 5.2 3.249 3.407 3.427 3.402 

4 100 0.100 0.50 5.0 2.897 3.023 3.032 3.019 

…         

13 100 0.100 0.40 4.0 2.708 2.817 2.809 2.815 

14 110 0.100 0.35 3.9 2.718 2.812 2.813 2.812 

15 90 0.115 0.35 3.6 2.965 3.099 3.092 3.096 

…         

25 110 0.100 0.25 2.8 2.529 2.607 2.590 2.609 

26 90 0.115 0.25 2.6 2.775 2.893 2.869 2.892 

27 100 0.100 0.25 2.5 2.423 2.509 2.474 2.510 

28 90 0.100 0.25 2.3 2.317 2.411 2.359 2.410 

Note: *excluded. 

Table 7 The results of predicted Ra and its validation (MQL) 

No. 
v f a MRR Predicted Ra Validated Ra 

m/min mm/rev mm cm3/min μm μm μm μm 

1* 120 0.12 0.50 7.2 3.204 3.341 3.325 3.310 

2 110 0.12 0.50 6.6 2.904 3.028 3.015 3.000 

3 90 0.14 0.50 6.3 3.013 3.131 3.118 3.112 

4 120 0.10 0.50 6.0 2.495 2.610 2.603 2.577 

5 100 0.12 0.50 6.0 2.604 2.714 2.706 2.690 

…         

15 120 0.10 0.40 4.8 2.373 2.479 2.470 2.460 

16 100 0.12 0.40 4.8 2.482 2.582 2.573 2.572 

17 110 0.12 0.35 4.6 2.720 2.830 2.816 2.824 

18 90 0.10 0.50 4.5 1.596 1.669 1.675 1.647 

…         

36 110 0.10 0.25 2.8 1.889 1.968 1.962 1.973 

37 90 0.12 0.25 2.7 1.998 2.071 2.064 2.085 

38 100 0.10 0.25 2.5 1.589 1.654 1.652 1.663 

39 90 0.10 0.25 2.3 1.290 1.340 1.343 1.353 

Note: *excluded. 
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In the validation activity for the MQL condition, as presented in Table 7, cutting 
condition number 1 with the highest MRR for productivity improvement (7.2 cm3/min) 
failed and was excluded from the final solution. This is because the validated Ra values 
from three times of re-hard turning validation activity were higher than the predicted Ra 
and also out of the gauge. 

4 Conclusions 

This study successfully integrates RSM and ML techniques to optimise the hard turning 
of AISI 4340 steel, demonstrating significant enhancements in productivity and surface 
quality. The key findings reveal that integrating RSM and ML allowed for precisely 
identifying optimal cutting conditions. Under MQL, the process achieved a minimum 
surface roughness (Ra) of 1.297 µm and a maximum MRR of 7.2 cm3/min. For dry 
conditions, the optimal MRR was recorded at 5.2 cm3/min, with Ra maintained within the 
acceptable range. 

The cutting feed emerged as the most critical factor influencing Ra. This insight is 
crucial for setting parameters that balance productivity and surface quality. 

The ML model, specifically LR, accurately predicted Ra for various cutting 
conditions. The model was assessed using MSE and RMSE, with lower values indicating 
better performance. The MSE and RMSE values were 0.124 and 0.352 µm, respectively, 
for the dry condition and 0.173 and 0.416 µm for the MQL condition. The coefficient of 
determination (R2) values were 0.9662 for the dry condition and 0.9638 for the MQL 
condition. This indicates that the model explained about 96% of the variability in Ra, 
confirming the model’s reliability and effectiveness. 

The baseline conditions provided by the industrial partner included a cutting speed of 
60 m/min, feed rate of 0.1 mm/rev, and depth of cut of 0.2 mm, resulting in an MRR of 
1.2 cm3/min and Ra ranging from 1.6 to 3.2 µm. The optimised conditions identified in 
this study significantly improved these metrics. The highest MRR of 7.2 cm3/min was 
obtained under MQL conditions at a Ra of 3.2 µm. For dry condition, the maximum 
MRR recorded was 5.2 cm3/min, with Ra maintained within the acceptable range. 

However, the study has limitations that warrant further investigation. The focus on 
AISI 4340 steel and uncoated carbide tools may need to be fully generalised to other 
materials and tool types. Future research should explore a broader range of materials and 
tool types and validate the findings in diverse industrial settings to enhance the 
robustness and applicability of the optimisation framework. 

Finally, this study demonstrates a robust method for optimising hard turning 
processes, significantly improving productivity and surface quality. The integration of 
RSM and ML techniques provides a valuable tool for the manufacturing industry, paving 
the way for further advancements in machining optimisation. 
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