N

&NDERSCIENCE PUBLISHERS

Linking academia, business and industry through research

International Journal of Machining and Machinability of
Materials

ISSN online: 1748-572X - ISSN print: 1748-5711
https://www.inderscience.com/ijmmm

il

Productivity improvement in hard turning of AISI 4340 with
response surface methodology and machine learning

A. Ginting, R.A. Sidabutar, F.D. Pranata, K. Syam, S. Situmorang, T. Fikriawan

DOI: 10.1504/I)|MMM.2024.10067461

Article History:

Received: 21 April 2024
Last revised: 30 July 2024
Accepted: 04 August 2024
Published online: 18 March 2025

Copyright © 2025 Inderscience Enterprises Ltd.


https://www.inderscience.com/jhome.php?jcode=ijmmm
https://dx.doi.org/10.1504/IJMMM.2024.10067461
http://www.tcpdf.org

Int. J. Machining and Machinability of Materials, Vol. 27, No. 1, 2025 85

Productivity improvement in hard turning of AISI 4340
with response surface methodology and machine
learning

A. Ginting*

Laboratory of Machining Processes,
Department of Mechanical Engineering,
Faculty of Engineering,

Universitas Sumatera Utara,

Jalan Almamater, Kampus USU,
Medan 20155, Indonesia

Email: armansyah.ginting@usu.ac.id
*Corresponding author

R.A. Sidabutar

Department of Mechanical Engineering,
Faculty of Engineering,

Universitas Darma Agung,

Jalan Dr. T.D. Pardede No. 21,

Medan 20153, Indonesia

Email: rotamaarifinsidabutar@gmail.com

F.D. Pranata, K. Syam, S. Situmorang and
T. Fikriawan

Laboratory of Machining Processes,
Department of Mechanical Engineering,
Faculty of Engineering,

Universitas Sumatera Utara,

Jalan Almamater, Kampus USU,

Medan 20155, Indonesia

Email: febydinanpranata@gmail.com
Email: kemalabdullah.18@gmail.com
Email: suryadisimangunsongl@gmail.com
Email: topanfikriawan@gmail.com

Abstract: This study aims to optimise the hard turning of AISI 4340 steel to
improve productivity using response surface methodology (RSM) and machine
learning (ML) techniques. The novelty lies in integrating these methods to
enhance material removal rate (MRR) while maintaining surface roughness
(Ra) quality. Experiments were conducted with an uncoated carbide tool under
dry and minimum quantity lubrication (MQL) conditions, varying cutting
speed, feed, and depth of cut. RSM identified feed as the most significant factor
affecting Ra, while ML, specifically linear regression (LR), predicted optimal
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cutting conditions. Key findings include achieving an optimum MRR of
5.2 cm3/min under dry and 7.2 cm3/min under MQL conditions, with Ra within
the acceptable range (1.6 pm-3.2 pm). Validation confirmed the model’s
accuracy, demonstrating high agreement between predicted and experimental
Ra values. This integrated approach offers a robust solution for optimising
hard-turning processes in industrial applications.

Keywords: surface roughness; Ra; material removal rate; MRR; linear
regression; LR; minimum quantity lubrication; MQL.
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1 Introduction

The background of the study reported in this paper is the application of hard machining
technology in producing post-harvest machinery parts. As one of the world’s major
agricultural countries, Indonesia needs post-harvest machinery to process harvest
products. Many players, from small and medium enterprises (SMES) up to
high-investment industries, contribute to the various aspects of manufacturing businesses
to provide the availability of post-harvest machinery in the country. As steel is mainly the
raw material for machinery parts, the metal-cutting industry is vital in manufacturing
machinery. In line with the increasing demand for machinery parts in the country, the
metal-cutting industries must increase their productivity. The strategies for increasing
productivity in metal cutting technology can be applied by hard machining technology
(Koenig et al., 1984; Astakhov, 2011) and cooling conditions during machining (Klocke
and Eisenblaetter, 1997; Weinert et al., 2004; Goindi and Sarkar, 2017).

As hard machining technology can be used for any machining operation, particularly
for post-harvest machinery, hard turning is mostly taken operation for production.
Astakhov (2011) recommended the simple rule for the key success in applying hard
turning by minimising the overhangs, tool and part extensions, eliminating shims and
spacers when turning operation. In short, the setup of the turning operation must be kept
as close as possible to the turret or spindle head of the lathe. For cooling conditions,
although most hard turning operations are carried out under dry conditions (Sarma and
Rajbongshi, 2021; Ginting et al., 2020), if a coolant is needed, high pressure is
recommended. In this case, applying the minimum quantity of lubrication (MQL) cooling
conditions is recommended, as reported in Weinert et al. (2004) and Goindi and Sarkar
(2017). The last but prime recommendation is selecting the proper tool material,
including tool geometry, tool accessories (insert shape, tool holder, etc.), and the
appropriate or optimal cutting condition when possible. As highlighted in Koenig et al.
(1984) and Konig et al. (1990), three tool materials are recommended, i.e., carbide,
ceramic, and cubic boron nitride (CBN). Carbide can machine ferrous alloys of hardness
up to 58 HRC, ceramic for up to 63 HRC, and CBN for up to 70 HRC.

Turning hardened steel at a certain magnitude of cutting parameters (cutting speed,
feed, and depth of cut) and resulting in an acceptable value of objective (response)
parameters (i.e., surface roughness, tool life, etc.) are the ways of finding the appropriate
cutting condition. In this case, the acceptable level can be higher, better, or lower,
depending on the objective parameter’s nature; for instance, the higher, the better when
the objective is tool life, but the lower, the better when the objective is surface roughness.
Based on this understanding, finding the appropriate cutting condition is commonly done
by utilising optimalisation technique. Therefore, to find the appropriate cutting condition
with the objective of surface roughness, various statistical approaches, from classical
regression to today’s machine learning (ML) technique, have been utilised (Dubey et al.,
2022; Motta et al., 2022; Mazid et al., 2023; Ahmad et al., 2015; Chatterjee et al., 2021).

There is useful fundamental information related to ML applied in manufacturing and
machining that can be obtained from Kim et al. (2018), Aggogeri et al. (2020), Nasir and
Sassani (2021) and Arinez et al. (2020). ML is a subset of artificial intelligence that
empowers systems to learn and improve from experience without explicit programming.
Standard techniques include supervised learning, semi-supervised, and unsupervised
learning. Supervised learning is a ML paradigm where a model is trained on labelled
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data, associating input features with corresponding output labels. It involves algorithms
that enable computers to recognise patterns, make predictions, and adapt to new data.
Mostly, the research in machining with the design of experiment (DoE), such as the study
reported in this paper, adopted supervised learning and algorithms such as linear
regression (LR), random forest (RF), support vector regression (SVR), and Gaussian
process regression (GPR) (Motta et al., 2022; Mazid et al., 2023; Ahmad et al., 2015;
Brillinger et al., 2021).

The objective of this paper is to find the appropriate and optimum cutting condition
applied for hard turning of AISI 4340 through response surface methodology (RSM) and
ML techniques to increase productivity, showcase enhanced material removal rates
(MRRs), and maintain surface roughness (Ra) within acceptable quality ranges. Unlike
the selection of the ML algorithm in the other studies, the selection of LR as the ML
algorithm for model development in this study is based on the result of the RSM analysis.

2 Materials and method

Figure 1 is the illustration of a strategy designed for this study. The study started with a
hard turning activity. In this activity, the AISI 4340 steel with a diameter of 70 mm,
length of 350 mm, and hardness of 50 HRC is selected as the workpiece material. The
workpiece is rigidly mounted onto a CNC Turning machine model CKA6136 spindle
powered by a 4,000 rpm motor. As the turning experiment is carried out under dry and
minimum quantity lubrication (MQL) conditions, the CNC Turning machine is equipped
with the MQL systems (see Figure 2 for the setup). The MQL systems work constantly at
a pressure of 4 bar, with a cutting fluid capacity of 100 mL/h, and the ECOCUT 1012 ID
is used as the cutting fluid.

Figure 1 The strategy developed to achieve the objective of the study
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The uncoated carbide coded DCMT11T304-F2 HX is selected as the cutting tool and
attached to the tool holder coded SDJCR1616H11. Since the results of this study will
benefit our industrial partner, the workpiece material and the cutting tool used in this
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study are provided and received from them. Even the CBN cutting tool is superior for
hard turning. However, we support the decision of our industrial partner to select the
uncoated carbide tool used in this study for 2 (two) reasons. Firstly, the hardness number
of material to be cut is at the entry-level of hard machining application (50 HRc). Carbide
showed a good performance for turning hardened ferrous alloys up to 58 HRc (Koenig
et al., 1984). Secondly, our industrial partner is in the SME industry; the small investment
and low production cost have to be considered. The CBN insert cutting tool is more
costly than carbide.

Figure 2 Setup of the turning experiment under dry and MQL conditions

Table 1 The DoE of Box-Behnken design: factors and values

Factor Unit Lower value Upper value
v Cutting speed (m/min) 90 120
f  Feed (mm/rev) 0.10 0.20
a Depth of cut (mm) 0.25 0.50

As the method of process optimisation in this study is RSM, the Box-Behnken design is
then taken as the DoE for hard turning activity. The turning parameter, factors, and
values used for the DoE are identified and result from the preliminary study (see
Table 1). The baseline turning parameter used by the industry is cutting speed (v) of 60
m/min, feed (f) of 0.1 mm/rev, depth of cut (a) of 0.2 mm, and the process is only under
dry condition. The surface roughness quality ranges from medium finish with a
roughness grade number of N8 (~3.2 um) to finish with a roughness grade number of N7
(~1.6 um). If the productivity is measured by MRR, which mathematically can be given
as:

MRR =vx f xa 1)

thus, the MRR of the baseline turning parameter is 1.2 cm3min. The hard turning activity
is conducted as per design, with the response variable being surface roughness under the
Ra (average roughness) parameter. The surface roughness tester Surftest SJ-210 is
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utilised to measure the response. The measurement of Ra is taken five times/pass until the
cutting tool reaches the flank wear at VB of about (0.20-0.23) mm, and finally, the Ra
average is recorded for each cutting condition (run) as per the DoE of Box-Behnken
design ().

RSM then analyses the data (@) from the hard turning activity for process
optimisation. The quadratic model is developed, and the adequacy is checked. The RSM
analysis could be continued once the best-fit model is obtained and confirmed. The goal
of this activity is a set of potential cutting conditions (®) with high MRR value and good
Ra value in which quality ranges from medium finish (N8) to finish (N7) (ISO 4288,
1998). Simultaneously, the data (@) is also used as a set of data to be trained for creating
the model using the ML approach. A supervised ML technique is adopted, and the
computer code is developed using Python. Using supervised learning, input variables in
the labelled datasets (v, f, a) are trained to learn the relationship between the input and
output variables. Once the training phase has been completed, the ML model can process
new input data (@) and provide the predicted Ra values. The result of the ML activity
(model and prediction) is a set of potential cutting conditions, including the predicted Ra
values (©). This dataset will be the solution to cutting conditions that can be applied to
improving the productivity of the hard turning process in producing the post-harvest
machinery parts for our industrial partner. As for the final adjustment, from the set of
data in (©), the cutting conditions are classified as potential optimum cutting conditions,
which are characterised by high MRR value with accepted Ra value at roughness grade
number (N8) and (N7). The potential optimum cutting conditions are then validated by
re-hard turning testing.

The application of the LR algorithm in this study is carried out by writing a set of
Python code and utilising the Scikit-Learn library for ML programming (Mdiller and
Guido, 2015; Hastie et al., 2009). The pseudo-code of the LR algorithm can be given as
follows:

Step1 Assume X is the input feature, and y is the target variable. In this study, X is the
cutting condition (v, f, a), and y is the response (Ra).

Step 2 Split the data in Table 2 into training and testing sets.
Step 3  Train the model on the training set.
Step 4  Predict the test set. Data in Table 2 was used as the testing sets.

Step 5 Evaluate the model performance using mean squared error (MSE), root mean
squared error (RMSE), and R? (coefficient of determination).

MSE and RMSE are commonly used metrics to evaluate the performance of a regression
model (step 5). The MSE measures the average squared difference between the
experiment and predicted values and quantifies how well the model performs regarding
the average magnitude of the error. A lower MSE indicates better model performance,
which means the model’s prediction is closer to the experimental values. The RMSE is
the square root of the MSE and measures the average magnitude of errors in the same
units as the target variable. It is beneficial for understanding the typical size of errors the
model makes. As MSE, a lower RMSE indicates better model performance. In addition to
MSE and RMSE, the R?, also known as the coefficient of determination, is used to
evaluate the model performance. The coefficient of determination is a measure that
indicates the percentage of the response parameter variation that a regression model
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explains. A higher R? score indicates that the regression model explains more variability
and the regression model fits the data better.

3 Result and discussion

3.1 Hard turning

The results of hard turning activity as per DoE Box-Behnken design under dry and MQL
conditions are presented in Table 2. Table 2 shows that all MRR values are more
significant than the MRR of the baseline turning parameter (1.2 cm®min). All MRR
values indicate that the cutting conditions can improve productivity. Besides, the Ra
values resulting both under dry and MQL conditions seem promising where the surface
roughness with quality of medium finish (N8~3.2 um) and finish (N7~1.6 pum) are
covered.

As mentioned, Ra was measured per pass (cutting length of 330 mm/pass), five times
of measurement/pass, until the cutting tool reached flank wear at VB of (0.20-0.23) mm.
This VB limit was chosen because, above the limit, the cutting tool experienced
excessive chipping (Figure 3). At the VB limit, the flank wear was generally observed in
the vicinity of the active cutting tool edge (within the cutting tool nose radius). The flank
wear condition was believed because the cutting condition variables where f (0.1 to 0.2
mm/rev) and a (0.25 to 0.5 mm) were about the same dimension as the cutting tool nose
radius (0.4 mm). After all, the cutting condition variables f and a are both assigned at the
active cutting tool edge, where chip formation actively occurs during the turning.

Table 2 The results of the hard turning experiment under dry and MQL conditions

v f a MRR Ra dry Ra MQL

Run m/min mm/rev mm cm3/min um um

1 90 0.10 0.375 34 2.125 1.640
2 120 0.10 0.375 4.5 2.664 2.166
3 90 0.20 0.375 6.8 5.802 4.881
4 120 0.20 0.375 9.0 5.565 6.014
5 90 0.15 0.250 3.4 3.788 2.854
6 120 0.15 0.250 4.5 4514 3.980
7 90 0.15 0.500 6.8 4.253 3.434
8 120 0.15 0.500 9.0 4.922 4.049
9 105 0.10 0.250 2.6 2.461 1.856
10 105 0.20 0.250 53 5.682 4.592
11 105 0.10 0.500 53 3.012 2.125
12 105 0.20 0.500 10.5 6.403 5.639
13 105 0.15 0.375 5.9 4.233 3.904
14 105 0.15 0.375 5.9 3.893 3.806
15 105 0.15 0.375 5.9 4.384 3.578
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Figure 3  Excessive chipping (dry, v 120 m/min, f 0.20 mm/rev, a 0.375 mm)

3.2 Process optimisation

Prior to analysing the data in Table 2 using the RSM technique, the distribution data was
checked, and the goodness-of-fit was assessed. Understanding data distribution would
help us choose the appropriate statistical methods and make valid inferences. For this
purpose, the probability plot with a 95% confidence interval (Cl) was studied. The plots
are shown in Figures 4 and 5 for the data resulting under dry and MQL conditions,
respectively.

The probability plots in Figures 4 and 5 show that the resulting Ra data under dry and
MQL conditions follow the normal distribution. The legends in Figures 4 and 5 show that
the Anderson-Darling (AD) test gives a low value of 0.227 for dry and 0.255 for MQL. In
this case, a lower value suggests a better fit. The P-value (closer to 1) is associated with
the AD test values and indicates a better fit to the normal distribution. In this case, the
P-values of 0.775 and 0.676 are the results for dry and MQL conditions, respectively. The
high P-value suggests insufficient evidence to reject the hypothesis that the data comes
from a normal distribution. The analysis results through the probability plot confirm that
the Ra data that resulted both under dry and MQL conditions are suitable for further
statistical testing and model development.

The results of hard turning activity per DoE Box-Behnken design under dry and MQL
conditions in Table 2 were then analysed using the RSM technique. As the probability
plot, this analysis was done using the commercial statistical software Minitab. The first
step in the analysis under the RSM technique was finding the best-fit model for the data.
After developing a full quadratic model, calculating all coefficients, and retrieving the
result of ANOVA of response surface regression (Ra versus v, f, a), the results showed
that a linear model was the best-fit model to represent the data both for dry and MQL
conditions with a coefficient of determination (R?) of 96.64% and 97.56%, respectively.
The square and two-way interaction models were not significant. Figures 6 and 7 show
the result of ANOVA for the response surface regression linear model in detail. From the
figures, it can be seen that the contribution (effect) of independent variables (v, f, a) on a
response variable (Ra) is mainly dominated by f (92.66% under dry and 89.78% under
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MQL conditions). It is followed by a and v for turning under dry condition and v and a

for turning under MQL condition.

Figure 4 The probability plot of Ra (dry) (see online version for colours)
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The next step in the analysis under the RSM technique is finding the optimum value of
the response variable (Ra). In this case, the optimum value of Ra is at the extremum
minimum. For this purpose, the surface plots of Ra, as shown in Figure 8, were
examined. The red arrows in Figure 8 show the position of Ra minimum, and based on
the ANOVA results, that linear model was the best-fit model for the response surface
regression (Ra versus v, f, a); thus, it can be concluded that the optimum value of Ra
(minimum) could be found at the lowest value of the cutting condition (v, f, a).
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Figure 6 The ANOVA for response surface regression linear model (dry)

Figure 7 The ANOVA for response surface regression linear model (MQL)

Figure 8

Surface plot of Ra data, (a) dry (b) MQL conditions (see online version for colours)
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The Minitab menu under DoE RSM was executed to find the optimum value with
minimum criterion (extremum minimum) and validate the conclusion. The results
showed that the optimum Ra (minimum) under the dry condition was 2.117 pum, and
under the MQL condition was 1.297 pum. Both were obtained at v 90 m/min, f 0.10
mm/rev, and 2.50 mm (the lowest value of the cutting condition). This result confirms the
conclusion.

The value of Ra minimum at 2.117 um for dry and 1.297 um for MQL are both in the
range of the expected surface finish (1.6-3.2 um) and even better (1.297 um). When this
result is related to the MRR value as the indicator of productivity in this study, the Ra
minimum for hard turning under dry and MQL conditions is obtained at an MRR value of
2.25 cm3/min. This result is promising since the MRR of 2.25 cm3/min is higher than the
origin turning parameter practiced by the industrial partner (1.2 cm3/min). Even when the
range of surface roughness quality from medium finish (N8~3.2 um) to finish (N7~1.6
um) is concerned, it is possible to raise productivity higher than MRR of 2.25 cm3/min.
To address this possibility, the menu for the resulting predicted value in the Minitab
application was utilised, and the results are presented in Table 3.

Table 3 Predicted cutting condition and MRR at expected Ra value

» Ra* VA fn ar MRR?
Condition - -
Lm m/min mm/rev mm cm3/min
Dry 1.6 90 0.100 0.250 2.25
3.2 105 0.125 0.250 3.28
MQL 1.6 90 0.100 0.400 3.60
3.2 105 0.145 0.250 3.81

Notes: *expected; “predicted.

Figure 9 Overlaid contour plot for Ra (1.6-3.2) um (dry) (see online version for colours)
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Further analysis with Minitab for finding the predicted cutting condition and MRR with
Ra is in the range of the expected values of (1.6-3.2 um). The overlaid contour plot can
be extended, as shown in Figures 9 and 10. The overlaid contour plots in Figures 9 and
10 were plotted based on input cutting conditions in the range from v 90-120 m/min,
f0.1-0.2 mm/rev, but a was kept constant at 0.25 mm (for the overlaid contour plot at the
left side) and 0.50 mm (for the overlaid contour plot at the right side) while the value of
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surface roughness (Ra) was also in range (1.6-3.2 um). As shown in Figures 9 and 10,
the results of the overlaid contour plots show that the white areas of those plots are the
feasible areas for having surface roughness (Ra) values between 1.6 um and 3.2 mm. The
cutting conditions in Table 3 are also inside the feasible areas of the overlaid contour
plots.

Figure 10 Overlaid contour plot for Ra (1.6-3.2) um (MQL) (see online version for colours)

Figures 9 and 10 show the boundary-cutting condition for the feasible areas of expected
surface roughness (Ra) between 1.6 um to 3.2 um can be provided and presented in
Table 4. Referring to the boundary cutting condition in Table 4, there are many
possibilities of cutting conditions that can now be arranged rather than what we have
previously in Table 3. However, the question now is about the best way to obtain the
predicted surface roughness (Ra) value for those cutting conditions within the boundary
in Table 4. Moreover, the Ra value should be associated with high MRR so that the
study’s objective, productivity improvement, could be achieved. A ML technique was
introduced in this study to answer the question.

Table 4 The boundary-cutting condition for the feasible areas of expected surface roughness
(Ra) between 1.6 um and 3.2 um

Condition Boundary ! - ! a
m/min mm/rev mm
Dry Low 90 0.100 0.250
High 120 0.135
Low 90 0.100 0.500
High 120 0.120
MQL Low 90 0.110 0.250
High 120 0.160
Low 90 0.100 0.500

High 120 0.140
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3.3 Model and prediction

The Ra value (experiment) result in Table 2 is plotted with the predicted Ra value
resulting from the LR model and presented in Figures 11 for the dry condition and 12 for
the MQL condition.

Figure 11 Plot of experiment and predicted of Ra under dry condition

Figure 12 Plot of experiment and predicted of Ra under MQL condition (see online version
for colours)

As shown in Figure 11, the plot of the Ra experiment and prediction show that the trend
and value agree. Both models’ MSE and RMSE values are calculated to assess the model
performance. The value of MSE and RMSE of the LR model for dry condition are
recorded at 0.124 pum and 0.352 pm, respectively. In Figure 12, the plot of the Ra
experiment and prediction for MQL are also in good agreement. The MSE and RMSE
values of the LR model are recorded at 0.173 pm and 0.416 pm, respectively.

Further assessment of model performance is using coefficient of determination (R?).
The visualisation of prediction quality provided by the LR model is presented in the
scatter plot of the Ra experiment versus Ra prediction (Figure 13). A line corresponding
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to the equality between the values of the Ra experiment and Ra prediction is plotted for
reference. It is also a trendline used to determine the R? score. In Figure 13(a), the LR
model for the dry condition shows that R? = 0.9662, and in Figure 13(b), the LR model
for the MQL condition shows that R? = 0.9638. These R? scores indicate that about 96%
variability is explained by both LR models. The values and scores of MSE, RMSE, and
R? are mentioned in Figure 13 to summarise the model assessment results. Based on
these, as both MSE and RMSE metrics are relatively low while R? is relatively high, both
LR models predict the surface roughness (Ra) values well.

Figure 13 Scatter plot of Ra experiment vs. Ra prediction, (a) dry (b) MQL conditions
(see online version for colours)

U 1 2 3 4 5 B 7
Ra experiment (um)
(@) (b)

So far, the LR model has been successfully generated and well performed. Using both LR
models, the cutting conditions in Table 4 were used as the testing set to obtain the
predicted Ra value for improved productivity. For this purpose, the boundary-cutting
condition in Table 4 was arranged as in Table 5, and the new testing set was designed
using DoE full factorial. From Table 5, there were 2 (two) new testing sets generated (dry
and MQL) with 64 cutting conditions (runs) for each testing set.

Table 5 Factors and levels of the new testing sets designed by DoE full factorial

v f a
Condition Levels -
m/min mm/rev mm

Dry 1 90 0.100 0.250

2 100 0.115 0.350

3 110 0.125 0.400

4 120 0.135 0.500
MQL 1 90 0.100 0.250

2 100 0.120 0.350

3 110 0.140 0.400

4 120 0.160 0.500

3.4 Solution and validation

Both new testing datasets (dry and MQL) were then made as the input data to the dry and
MQL models, resulting in the LR algorithm described in the former paragraph. After
executing the Python code for each new testing dataset and model, the predicted Ra value
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for dry and MQL results are plotted and shown in Figure 14. The scatter plots in
Figure 14 present the MRR values versus the corresponding Ra prediction values for 64
cutting conditions (for each plot) as per Table 5. Regarding this study’s surface roughness
quality of medium finish (N8~3.2 um) to finish (N7~1.6 um), the horizontal line at
Ra = 3.2 um is plotted as the borderline of the scatter plots in Figure 14. As a result, 28
MRR values in Figure 14(a) and 39 MRR values in Figure 14(b) are acceptable for
further analysis. Among 28 MRR values in Figure 14(a), the highest is recorded at
MRR = 5.2 cm3/min, and among 39 MRR values in Figure 14(b), the highest is recorded
at MRR = 7.2 cm®/min. It indicates that the MQL condition is affected by the MRR. The
corresponding cutting conditions of those accepted MRR and the Ra prediction values for
dry and MQL conditions are listed in Tables 6 and 7, respectively.

Figure 14 Scatter plot of MRR vs. Ra prediction, (a) dry (b) MQL conditions (see online version
for colours)

(a) (b)

In Table 6, the prediction result for dry condition shows that 28 out of 64 cutting
conditions can be accepted with predicted Ra values ranging from 1.6 um to 3.2 um.
However, the lowest predicted Ra is noted at 2.3 um. The MRR is also listed, and the
value is associated with the predicted Ra. The lowest predicted Ra, 2.3 um, could result
in an MRR of 2.3 cm3/min. Moreover, the predicted Ra value of 3.2 um could result in
MRR of 3.1, 4.4, 4.6, and 5.2 cm3min. When MRR is concerned, 2.3 cm3/min and
6.0 cm3/min are the lowest and the highest MRR that could be achieved.

In Table 7, the prediction result for the MQL condition shows that 39 out of 64
cutting conditions can be accepted with predicted Ra values ranging from 1.6 um to
3.2 um. In this case, the lowest predicted Ra is noted at 1.3 um. The lowest predicted Ra
value is associated with an MRR value of 2.3 cm3min. Regarding the predicted Ra value
of 3.2 um, there are 2 MRR values associated with it, which are 5.6 and 7.2 cm®/min. The
MRR of 7.2 cm®/min is the highest MRR value that could be achieved under MQL
condition with the acceptable value of predicted Ra.

Some of the predicted Ra values in Table 6 (cutting condition numbers 1-4, 13-15,
and 25-28) and 7 (cutting condition numbers 1-5, 15-18, and 36-39) were validated. The
hard turning at those cutting conditions was repeated three times, and the measurements
were taken. The results of the validation activity were also presented in Tables 6 (dry)
and 7 (MQL). For the validation under dry condition, the validation value of Ra for
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cutting condition number 3 (v 90 m/min, f 0.115 mm/rev, a 0.50 mm), those validation
values are higher than the predicted and the acceptable Ra values (>3.2 um). Therefore,
cutting condition three is excluded from the final solution for productivity improvement
of hard turning under dry condition in this study.

Table 6 The results of predicted Ra and its validation (dry)

v f a MRR Predicted Ra Validated Ra

No- m/min  mm/rev mm cm3/min 4m um 4m 4m

120 0.100 0.50 6.0 3.109 3.219 3.263 3.217

110 0.100 0.50 5.5 3.003 3.121 3.147 3.118
3* 90 0.115 0.50 5.2 3.249 3.407 3.427 3.402
4 100 0.100 0.50 5.0 2.897 3.023 3.032 3.019
13 100 0.100 0.40 4.0 2.708 2.817 2.809 2.815
14 110 0.100 0.35 3.9 2.718 2.812 2.813 2.812
15 90 0.115 0.35 3.6 2.965 3.099 3.092 3.096
25 110 0.100 0.25 2.8 2.529 2.607 2.590 2.609
26 90 0.115 0.25 2.6 2.775 2.893 2.869 2.892
27 100 0.100 0.25 25 2.423 2.509 2.474 2.510
28 90 0.100 0.25 2.3 2.317 2.411 2.359 2.410

Note: *excluded.
Table 7 The results of predicted Ra and its validation (MQL)

v f a MRR Predicted Ra Validated Ra

No. m/min mm/rev mm cm3/min Hm Hm Lm um

1* 120 0.12 0.50 7.2 3.204 3.341 3.325 3.310
2 110 0.12 0.50 6.6 2.904 3.028 3.015 3.000
3 90 0.14 0.50 6.3 3.013 3.131 3.118 3.112
4 120 0.10 0.50 6.0 2.495 2.610 2.603 2.577
5 100 0.12 0.50 6.0 2.604 2.714 2.706 2.690
15 120 0.10 0.40 4.8 2.373 2.479 2.470 2.460
16 100 0.12 0.40 4.8 2.482 2.582 2.573 2.572
17 110 0.12 0.35 4.6 2.720 2.830 2.816 2.824
18 90 0.10 0.50 4.5 1.596 1.669 1.675 1.647
36 110 0.10 0.25 2.8 1.889 1.968 1.962 1.973
37 90 0.12 0.25 2.7 1.998 2.071 2.064 2.085
38 100 0.10 0.25 25 1.589 1.654 1.652 1.663
39 90 0.10 0.25 2.3 1.290 1.340 1.343 1.353

Note: *excluded.
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In the validation activity for the MQL condition, as presented in Table 7, cutting
condition number 1 with the highest MRR for productivity improvement (7.2 cm3/min)
failed and was excluded from the final solution. This is because the validated Ra values
from three times of re-hard turning validation activity were higher than the predicted Ra
and also out of the gauge.

4  Conclusions

This study successfully integrates RSM and ML techniques to optimise the hard turning
of AISI 4340 steel, demonstrating significant enhancements in productivity and surface
quality. The key findings reveal that integrating RSM and ML allowed for precisely
identifying optimal cutting conditions. Under MQL, the process achieved a minimum
surface roughness (Ra) of 1.297 um and a maximum MRR of 7.2 cm3/min. For dry
conditions, the optimal MRR was recorded at 5.2 cm3/min, with Ra maintained within the
acceptable range.

The cutting feed emerged as the most critical factor influencing Ra. This insight is
crucial for setting parameters that balance productivity and surface quality.

The ML model, specifically LR, accurately predicted Ra for various cutting
conditions. The model was assessed using MSE and RMSE, with lower values indicating
better performance. The MSE and RMSE values were 0.124 and 0.352 um, respectively,
for the dry condition and 0.173 and 0.416 um for the MQL condition. The coefficient of
determination (R?) values were 0.9662 for the dry condition and 0.9638 for the MQL
condition. This indicates that the model explained about 96% of the variability in Ra,
confirming the model’s reliability and effectiveness.

The baseline conditions provided by the industrial partner included a cutting speed of
60 m/min, feed rate of 0.1 mm/rev, and depth of cut of 0.2 mm, resulting in an MRR of
1.2 cm®/min and Ra ranging from 1.6 to 3.2 um. The optimised conditions identified in
this study significantly improved these metrics. The highest MRR of 7.2 cm3min was
obtained under MQL conditions at a Ra of 3.2 um. For dry condition, the maximum
MRR recorded was 5.2 cm3/min, with Ra maintained within the acceptable range.

However, the study has limitations that warrant further investigation. The focus on
AISI 4340 steel and uncoated carbide tools may need to be fully generalised to other
materials and tool types. Future research should explore a broader range of materials and
tool types and validate the findings in diverse industrial settings to enhance the
robustness and applicability of the optimisation framework.

Finally, this study demonstrates a robust method for optimising hard turning
processes, significantly improving productivity and surface quality. The integration of
RSM and ML techniques provides a valuable tool for the manufacturing industry, paving
the way for further advancements in machining optimisation.
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