N

&NDERSCIENCE PUBLISHERS

Linking academia, business and industry through research

International Journal of Computational Economics and
Econometrics

Economelrics

ISSN online: 1757-1189 - ISSN print: 1757-1170
https://www.inderscience.com/ijcee

An optimised CNN-stacked LSTM neural network model for
predicting stock market time-series data

Kalva Sudhakar, Satuluri Naganjaneyulu

DOI: 10.1504/IJCEE.2025.10069875

Article History:

Received: 06 December 2023
Last revised: 25 September 2024
Accepted: 25 November 2024
Published online: 17 March 2025

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijcee
https://dx.doi.org/10.1504/IJCEE.2025.10069875
http://www.tcpdf.org

196 Int. J. Computational Economics and Econometrics, Vol. 15, Nos. 1/2, 2025

An optimised CNN-stacked LSTM neural network
model for predicting stock market time-series data

Kalva Sudhakar*

Department of Computer Science and Engineering,
Jawaharlal Nehru Technological University Kakinada,
Kakinada, India

and

CSE Department,

G Pulla Reddy Engineering College (Autonomous),
Kurnool, A.P, India

Email: sudhakarkalva484@gmail.com
*Corresponding author

Satuluri Naganjaneyulu

Department of Information Technology,

LakiReddy Bali Reddy College of Engineering (Autonomous),
NTR District, Mylavaram AP-521230, India

Email: naganjaneyulu.s@]lbrce.ac.in

Abstract: Stock market analysis and prediction are crucial for understanding
business ownership and financial performance, this study proposes an
optimised CNN-stacked LSTM neural network model for accurate stock market
trend prediction. The initial challenge lies in designing a customised
CNN-stacked LSTM model for stock data prediction due to the abundance of
non-optimised algorithms. To address this, we conducted training and testing
using diverse datasets, including NYSE, NASDAQ, and NIFTY-50, observing
variations in model accuracy based on the dataset. Remarkably, our model
demonstrated exceptional performance with the NIFTY-50 dataset, accurately
predicting up to 99% of stocks even during the testing phase. Throughout
training and validation, we measured mean squared error (MSE) values ranging
from 0.001 to 0.05 and 0.002 to 0.1, depending on the dataset. Our proposed
CNN-stacked LSTM model presents a promising solution for accurate
prediction of stock market trends, addressing the limitations of previous
methods.

Keywords: stock market prediction; CNN-stacked LSTM model; time-series
data; NYSE; NASDAQ; NIFTY; mean squared error; MSE; mean absolute
error; MAE.

Reference to this paper should be made as follows: Sudhakar, K. and
Naganjaneyulu, S. (2025) ‘An optimised CNN-stacked LSTM neural network
model for predicting stock market time-series data’, Int. J. Computational
Economics and Econometrics, Vol. 15, Nos. 1/2, pp.196-224.

Biographical notes: Kalva Sudhakar is currently pursuing his PhD degree as a
research scholar in the Department of Computer Science and Engineering,
Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
He is working as an Assistant Professor in Department of Computer Science

Copyright © 2025 Inderscience Enterprises Ltd.

An optimised CNN-stacked LSTM neural network model 197

and Engineering, at G Pulla Reddy Engineering College (Autonomous)
Kurnool, India. He received a research grant from University Grants
Commission of India. His research interests include big data analytics, machine
learning, and data mining.

Satuluri Naganjaneyulu is working as a Professor in the Department of
Information Technology at Lakireddy Bali Reddy College of Engineering,
Krishna, Andhra Pradesh, India. He received his PhD in Computer Science and
Engineering from Acharya Nagarjuna University, Guntur, Andhra Pradesh,
India, in 2014. He received International Paper Presenter Award from CSI in
the CS12020 Annual Convention during 16 through 18 January 2020 at Kalinga
Institute of Industrial Technology, Deemed to be University, Bhubaneswar,
Odisha, India. He is a life member of Computer Society of India (CSI) —
L1501249. His research interests include data mining, big data, machine
learning, etc.

1 Introduction

The term ‘stock market’ refers to a monetary exchange where investors buy and sell
shares of ownership in businesses. Since stock market investments can potentially
provide substantial profits, studying how the market will behave is intriguing. However,
due to its random walk characteristic (Yoo et al., 2022), forecasting the stock market is
notoriously difficult. The stock market is a common area for corporate and business
people to examine their ‘shares’ or other forms of ownership claims in their own
companies. Since the stock market determines a nation’s wealth, it is a crucial part of the
economy. Stock market forecasting is challenging because market data is dynamic.

Financial markets are a captivating invention with a profound impact on various
industries, including business and technology. Investors have increasingly shown interest
in these markets as advancements in communication technology have facilitated
participation and potential profits. The stock market provides a straightforward avenue
for trading stocks and commodities, allowing traders to make substantial gains through
intra-day or inter-day trading. However, it is important to recognise that the potential for
high returns is accompanied by proportionate risks. While the stock market presents an
enticing opportunity for low-income investors, it also exposes them to significant risk. It
serves as an attractive market for both short and long-term investments, to generate
profits. Nevertheless, it is crucial to acknowledge that the stock market offers substantial
financial gains but also carries inherent risks.

Many people in the beginning tried to foretell stock prices using traditional methods,
but they mostly failed. Therefore, the likelihood of making accurate stock market
predictions is low. Machine learning (ML) methods are being used to forecast stock price
movements and advise investors on how to best contribute to a company’s success.
However, they are false. This research examines previous efforts at stock market
forecasting and introduces a novel method based on the CNN-stacked LSTM Neural
Network model approach to forecasting time series data. Time series forecasting
frequently makes use of the autoregressive integrated moving average (ARIMA) model, a
type of statistical model. However, the linearity of the true process is assumed in
ARIMA, which is not necessarily the case (Liu et al., 2019). When applied to the stock

198 K. Sudhakar and S. Naganjaneyulu

market, artificial neural networks (ANN) and deep learning in general have been found to
improve accuracy (Adebiyi et al., 2014). Time series forecasting is only one area where
deep learning’s many algorithms can be put to use. Long short-term memory (LSTM)
networks outperform more traditional deep neural networks (DNNs) at predicting the
stock market (Shah et al., 2018).

This study proposes a CNN-stacked LSTM solution to a major problem encountered
when employing LSTM to analyse stock market data. In this research, we use a
CNN-stacked LSTM model to forecast stock prices for client recommendations. This
model is part of a larger framework that also includes preprocessing, feature selection,
and a carefully crafted architecture. In order to evaluate the effectiveness of the suggested
model, the loss function, mean absolute error (MAE), mean squared error (MSE) and root
mean squared error (RMSE) were used to both the training and testing data. These
measures give a thorough analysis of the model’s performance in capturing the dynamics
of stock prices. The effectiveness of the proposed CNN-stacked LSTM model is verified
via a comparison to both conventional LSTM and CNN-LSTM models. By contrasting
the suggested model to other methods, its superiority in terms of accuracy and
performance can be assessed.

The research also explores different hyper parameters during the model design and
training process. This research work introduces a novel CNN-stacked LSTM model to
overcome the limitations of LSTM in stock market data analysis. By incorporating
preprocessing, feature selection, and a carefully designed architecture, the proposed
model aims to provide accurate stock price predictions for customer recommendations.
The study rigorously evaluates the model’s performance using various evaluation metrics
and compares it with LSTM and CNN-LSTM models. The exploration of different hyper
parameters further contributes to the optimisation of the model for effective stock price
prediction

The goal of this paper is to use a deep learning approach to predict the behaviour of a
stock market. Experimental results are put forward to show the benefits of our approach.
The paper is structured as follows: Section 2 contains the basic preliminaries and related
works; Section 3 describes the optimised CNN-Stacked LSTM model implementation on
the stock market dataset. Section 4 showcases the results and discussion, and Section 5
concludes respectively.

2 Basic preliminaries and related research work

In this section, we explain the theory behind the introduced concepts that will be applied
and investigated. Further, we describe how the concepts are related to the application.

A stock exchange serves as a marketplace where buyers and sellers come together to
trade stocks, representing ownership in corporations. The prices of stocks are determined
through the interaction of supply and demand on these exchanges. While stock trades are
transactions between individuals and do not directly impact the issuing corporations, they
hold significance in various ways. Major stock exchanges, such as the New York Stock
Exchange (NYSE), NASDAQ, BSE, and NIFTY-50, play a crucial role in the global
market. Stock market prediction is of great interest and importance due to several
reasons. Firstly, it aids in investment decision-making by providing insights into price
movements, trends, and market behaviour, enabling investors to optimise their strategies
and maximise returns (Vasista, 2022). Additionally, it assists in risk management by

An optimised CNN-stacked LSTM neural network model 199

identifying potential market downturns and helping investors mitigate losses. Moreover,
stock market predictions contribute to financial planning for individuals and businesses,
allowing for long-term plans, investment goal-setting and informed decisions regarding
financial commitments. These predictions also aid in market analysis, providing a deeper
understanding of economic conditions and informing policymaking, analysis, and
research. Furthermore, stock market prediction is essential in algorithmic trading, where
predictive models and algorithms automate trading decisions based on real-time market
data and predicted price movements. However, it’s important to acknowledge the
complexity and challenges involved in stock market prediction, as it is influenced by
various factors and subject to inherent uncertainty. Nevertheless, ongoing research and
analysis strive to improve decision-making and risk management in the financial
industry.

2.1 Stock market prediction system

A stock market prediction system goes through several phases: data collection, data
preprocessing, feature selection/extraction, model selection, model training, prediction
and evaluation, and deployment and monitoring. Data is collected from various sources,
preprocessed to remove errors and inconsistencies, and relevant features are selected or
extracted. Different prediction models are evaluated and chosen, and the selected model
is trained using the available data. Predictions are made and evaluated against actual
market movements. The system is then deployed in a real-world setting and continuously
monitored for performance and updates.

2.2 Basic preliminaries

2.2.1 Artificial neural networks

An ANN is an algorithm that will identify patterns in adapted data. The simplest ANN
consists of one neuron. Each element in a vector input, x, is assigned a weight. The
summation of the elements and weights is passed to the neuron. It is common for an
activation function to be applied to adjust the outcome of the summation. Provided that
the threshold is achieved, a signal will be sent from the neuron. The learning in the
neuron develops when the weights of each element are adapted to the threshold.
Furthermore, the complexity of the ANN will become more advanced when the number
of neurons is greater (Olah, 2015). ANNs have trouble managing sequential data; hence a
different tool is needed, such as an RNN (Goodfellow et al., 2016).

2.2.2 Recurrent neural networks

Recurrent neural network (RNN) differs from an ANN in a few ways. One major
difference is that an RNN has as input at time t its output from time ¢ — 1. Hence, the
input to the RNN consists not only of the input data but the outcome of the last
prediction. This allows the RNN to handle sequential data better when compared to an
ANN.

As seen in Figure 1, the input vector at time ¢, X, concatenates with the previous
output vector, h, |, also known as the hidden state. The concatenation, [h.;, X,], proceeds
as the input vector for the ANN with the tanh activation function

200 K. Sudhakar and S. Naganjaneyulu

h, = tanh (W [h,_;, x,]+b), (1)

where the nonlinear function is applied element-wise and the usage of the hyperbolic
tangent function is such that the outcome vector is constrained between the values —1 and
1. The matrix W stores the weights and the bias vector, b, adds an offset independently of
X, to adjust the outcome. The new hidden state h, is the output for the input x,. The hidden
state, h;, will be passed as an input together with x;; for the next state.

Figure 1 RNN flow chart (see online version for colours)

hy
A

hy.q —~>» tanh ’— hy

Xt
Note: The tanh block performs the operations shown in equation (1).

Furthermore, the adjustable stored weights in the ANN can be adapted to learn patterns.
This is done by a commonly applied technique named backpropagation (Goodfellow et
al., 2016). The backpropagation algorithm calculates the gradient of the loss function, a
function that measures the error; and adapts the weights to minimise the error of the
outcome that the network outputs. However, when back propagating through the RNN
elements of the weight matrices may become too small (Pascanu et al., 2013). This is due
to the multiple matrix multiplications in the backpropagation algorithm combined with
the elements within the weights matrices being less than one. The occurrence is defined
as the vanishing gradient problem, leading to the performance of the RNN suffering.

2.2.3 Long short-term memory

The LSTM is proposed to solve the vanishing gradient problem (Olah, 2015). The
architecture of the LSTM can be found in Figure 2. The LSTM is composed of four
states: forget, store, update, and output. The forgotten state takes in an input vector x,,
that concatenates with the previous output vector, h.;. At the initial propagation of the
network, the hidden state contains arbitrary scalars that will adapt for each iteration. The
concatenated vector is passed through an ANN with a sigmoid activation function

1

Clte—x

(@)

fi=o(W; ®[h, X,]=b;) 3)

The subscripts on W, and b, denote the forgotten state, as each state has individual
weights and biases that are adapted through the data (the subscript should not be confused
with the subscript of time, £). The ANN will pair the elements of the concatenated vector
with adjustable weights and pass them through a sigmoid activation function. The result

An optimised CNN-stacked LSTM neural network model 201

of the ANN is a vector f; that contains numbers in an interval between zero and one. Zero
will indicate discard and one will indicate retaining the information. Thus, the name
forget state, as it decides whether the information is remembered or forgotten. The store
state will identically pass the concatenated vector through an ANN with a sigmoid
activation function with weights and bias that will differ from the forget state, that is,

i =0 (W; ®[W.1,x,]+b;))

Furthermore, the concatenated vector will also be passed through an ANN with the
hyperbolic tangent activation function,

C, =tanh(Wc ®[h,,, x,]+b.) (5)

The final product of the state process is the vectors i; which contain the information to be
stored, and C, which contains new possible values for the initial state. i QC[consists
of the new values scaled by the outcome of the ANN with a sigmoid activation function.

Figure 2 LSTM organisational structure (see online version for colours)

h'(
" [- I ™Y e
\Jl_1 X +, "v't
dand—x)
o X< 0] [0
ht.1 —>hy
bl

The update state consists of the cell state vector, C.i, which at the initial propagation
contains arbitrary scalars analogous to the hidden state. Moreover, the cell state is
updated according to

C=f®C,+i®C, (6)

The first term updates the previous cell state and discards information that the algorithm
wants to forget, and the second term adds new information that is scaled based on what
information shall be remembered. This is due to the cell state being passed through an
ANN with a sigmoid activation function, choosing what information to output, and then
through a tanh activation function

Ot:U(VVo ®[htAlth]+bo) @
h =0, ®tanh(c,)

Then the hidden state is passed as an output for the input as well as the cell state and
hidden state are passed to the next input X;+1.

202 K. Sudhakar and S. Naganjaneyulu

The LSTM reduces the vanishing gradient problem since it does not involve matrix
multiplication. In place of matrix multiplication, the LSTM applies element wise
multiplication about the cell state, therefore reducing the occurrence of vanishing
gradient problems when back propagating (Song et al., 2022).

2.2.4 Stateful and stateless LSTM

In theory, all RNN or LSTM models are stateful, meaning they are designed to remember
the entire input sequence. However, as the length of the input sequence increases, the
complexity of the network also grows. To address this issue, batches are introduced,
allowing the model to update its weights using backpropagation through mini sequences
within each batch. It is important to note that networks do not back propagate through a
set of batches (Liu et al., 2019).

In the case of a stateful LSTM, the model learns from the batch of data that is fed into
the network. After backpropagation and weight updates, the network is then fed to the
next batch. The weights set in each layer from the previous backpropagation serve as
initial states for the subsequent batch. On the other hand, a stateless LSTM operates
differently by resetting the weights to their initial states for every batch (Gers et al.,
1999).

In financial models like price prediction, where the time-series data in different
batches are dependent on each other, a stateful model is preferable. This allows the model
to retain information from previous batches and capture the temporal dependencies
within the data, improving its ability to predict prices accurately.

2.2.5 Feature learning

The intention of feature learning is data reduction and denoising. Stock data contains
noise and as a result, interferes with learning (Song et al., 2022). Using feature learning
we can effectively reduce the input space but also retain most of the information of the
full dataset. Formally, feature learning estimates the correlation structure of the variables
in a way that retains most of the information of the data. This is useful when the input
dimension is high but several axes are redundant, that is, information on these axes is
mostly irrelevant to the structure of the data (Wold et al., 1987).

The goal of feature selection is to reduce a set of data from n dimensions down to a
linear subspace of dimension d smaller than n, where all of the data points are contained.
Feature components, which are d orthogonal vectors, define the subspace. This is done
like this. Take X where the ¢ rows of X denotes each sample and the n columns denote
the n features of each sample. X is a ¢ x n matrix. Let us call the primary component with
the biggest variance U,. First, we define a linear combination of X with coefficients (or
weights) w = [wi...w,]:

U =w'X ®
var(U,) = var (WTX) = wTSw ©)

where S is the X covariance matrix over » independent samples. We chose to maximise
wTISw while limiting w to have unit norm max wTSw, subject to wI'w = 1 because
increasing the size of w allows var(U,) to be arbitrarily big.

An optimised CNN-stacked LSTM neural network model 203

The weights that are initialised at the start of the LSTM are not adapted for the
training data. However, for each iteration, the weights are adjusted to minimise the error.
Transfer learning involves training the LSTM on correlated data before training on the
original dataset. As a result, the weights will be fitted before the original dataset is
applied (Kraus and Feuerriegel, 2017).

2.3 Literature review

Before the time of writing this paper, many have proposed and implemented various
algorithms to predict stock market data. We did a literature survey to find some of the
algorithms proposed and found some of the advantages, and disadvantages present in
those algorithms. Table 1 shows the summary of the literature review.

In their study, Kompella and Chakravarthy Chilukuri (2020) analysed different
machine-learning methods for stock market data prediction. They discovered that random
forest outperformed linear regression and other algorithms in terms of performance.
However, they observed that the error percentage increased in the model when the input
data was not pre-processed and smoothed beforehand.

Pang et al. (2020) conducted an experimental analysis comparing RNN and LSTM
models for stock market data prediction. They found that the LSTM model with an
auto-encoder module (AELSTM) achieved better predictions compared to RNN.
However, the implementation of the model was based on older libraries and when tested
with real-time stock market data, the accuracy of the predictions was low. This
highlighted the importance of considering the challenges and limitations when training
models with real-time data.

Gurav and Kotrappa (2020) proposed a new method where LSTM with a log bilinear
layer on top of it. The model predicted most of the stock market data and turned out with
high accuracy but it was proposed and not tested with real-time data, also it was meant to
predict data only during the time of COVID-19 and not beyond that.

Kimoto et al. (1990) presented a comprehensive discussion on a prediction system for
buying and selling timing in the stock market. Their approach utilised a modular neural
network that transformed technical and economic indexes into a spatial pattern, which
was then fed into the neural networks for analysis. The results showed that the neural
network model achieved a higher correlation coefficient compared to multiple regression.
This indicates that the modular neural network approach outperformed traditional
regression methods in predicting the optimal timing for buying and selling stocks. The
study highlighted the effectiveness of neural networks in capturing complex patterns and
relationships in stock market data, leading to improved prediction accuracy for
investment decision-making.

In their study, Guresen et al. (2011) experimented to assess the effectiveness of
dynamic artificial neural networks (DAN2), multi-layer perceptron (MLP), and hybrid
neural networks in time series forecasting. The results indicated that the classic ANN
model, MLP, consistently provided the most reliable and accurate predictions. On the
other hand, the hybrid methods tested in the study did not yield improved forecast results
compared to the MLP model. These findings highlight the superiority of the MLP model
for time series forecasting tasks and suggest that the inclusion of additional components
or techniques in hybrid neural networks may not necessarily lead to enhanced
performance in this context.

K. Sudhakar and S. Naganjaneyulu

204

Summary of the literature review on stock market prediction using time-series data

Table 1

‘s3urpoes Suturen
pue s10J09A 21M)edJ dy10ads Jursn uonorpaid o03s ur
KorINOd® 0] /'66 SIAIYOE [dpowt TN PAseq-INLST

[Te10A0 douewIofiod 101309 pamoys NND

MOPUIM JUDLIND A}
Suropisuod Aq NLST pue NN pauwojrodino NND

spuan do11d Sunorpad
ur KoBINDIR 96°GS JO 9TRIOAR UR PIAJIYOY

‘synsax oaoxdun

10U Op SPOYIOW PLIGAY [TYM ‘SUT)SLIAIOJ SILIAS ST}
10 S)|NSAI dqeIaI sow Y} sap1aoid [opowr JTN
“Surwr joxprewr Sunorpaid

10J UOIssa13a1 A[dn[nu ULy} JUSIOFI0I UOTIB[ILI0D
10ySTY & SMOYS [OPOW YI0MIOU [RINOU Y],

BIBp SWI)-[Bdl

I PAISI] 10U JNq ‘PIARIYoL sem KoeInooe YSIH
“BJep OWN-[B31 PUB SILIBIQI]

P10 £q pa3oajje st AoeInode Jnq ‘[jom suirojrod
(LS TAV) 2[NPOW 19p0du-0Ine YIM NLST

dSIN
ddVIN
o8ejuoorad Jo1rg
[1e9a1 ‘uoistoard

‘14 ‘Aoemooy

91095 JUDIONJO00
‘AVIN ‘ASIN

JURIONJO00
uone[eLI0)

KoeInooe ‘GSIA

Koenooe ‘GSIN

dSAN

0S-ALAIN

0S-ALJIN

PILAd ‘€TI0
‘PANLI $OAdd ‘11VAOLD

OVASVYN

(ueder) X1dOL
PAXIN

sadourg “xapur
apsoduwod areys-y reysueys

PO JONIBW JO0)S PASI[ENUIOAP JudTI[[ojur
pasodoig (paseq-Hy) $19eNUOD JIeWS YIM N LST
uono1paid 390)s 10J sfpow NNY PUe ‘LS T

‘d'TIN NNV paredwiod NN ‘LS T ‘d TN NNV
MopuLsm SuIprys yim

sjopow INLST Pue ‘NNY ‘NND paredwos yoeoidde
MOPUIM-UIPI[S oY) YA NLST PUe ‘NNY ‘NND
uonorpaid dord

00)S WLIA}-}I0YS 10} dHomiau NS T pasodord INIST

SYI0MIOU [BINOU PLIGAY pUE ‘g TN
TNV parenfeag NN PHIAH ‘dTIN TNV ‘NNV

Surum
Surpes/3uiAng 10§ j10M)aU [eINU Je[npow padojareq

uonodpaid 61-AIAOD
10y 10Ae| Ieaur|iq So[yim WIST pasodord WIST-TdT

uonorpaxd ejep JoyIeW J003S J0J S[pou
NLST pue NNY paredwoo INLSTAV ‘NLSTA ALST

(6107) T2 10 [esueg

(8107) 'Te 10 BysUBI

(L107) 'Te 10 WIARS

(L107) 'Te 32 UOS]AN

(1107) ‘T8 10 U9saInD

(0661) Te 30 Oj0WIIY]

(0207)
eddenoy] pue Aeinn

(0207) e 10 Sueq

*AoeIndoe uonorpaid (0202)

paaoxduur 10y A1essaoau st Surypoows ejep yndur HVIN uonorpaid ejep Jo3IBW Y00)s 10§ spoylow Lnyn{Iy) AyueAenRyD)
INq ‘uoIssaIFal Ieaul] suLoj1adino 1s210j wopuey “ISIN ‘QouBLIB A Jasejep pasmuoIsny) TIN SNOLIBA PIsA[eu. UOISSIISAI JBIUI|)S210] WOpURY pue e[jodwoy]
sauo021no Ay pasn soLaN PISN J2SDIDP/IYADUL YI0IS poyW 20Uy

An optimised CNN-stacked LSTM neural network model 205

To forecast stock price movements at 15-minute intervals using a combination of price
history and technical analysis indicators, Nelson et al. (2017) presented an LSTM
network. Predictions about whether a stock’s price will rise in the near future were
correct 55.9% of the time on average.

Selvin et al. (2017) tried out a sliding window technique with three distinct deep
learning models (CNN, RNN, and LSTM). CNN’s superior performance over the other
two models can be attributed to its exclusive focus on the most recent data when making
stock-price forecasts. This paves the way for CNN to comprehend the evolving patterns
and shifts in the current frame. However, RNN and LSTM forecast future instances based
on data from earlier lags.

Experiments comparing ANN, MLP, LSTM, and RNN were undertaken in Hiransha
et al. (2018). Both ANN and RNN were able to recognise the pattern early on, but once
the pattern had been there for a while, neither could. Similarly, LSTM demonstrated
reduced accuracy for the projected values during some time periods, but CNN still tended
to outperform the other three networks.

Intelligent decentralised stock market models based on ML and DAG-based crypto
currency were introduced in Bansal et al. (2019). The proposed model, which made use
of LSTM (a RNN), managed a very respectable 99.71% accuracy in its predictions. Each
stock’s feature vector had a feature vector with four parameters: open, close, low, and
high. The model was trained for a total of 100 iterations with a batch size of 50 for
optimal results. This research shows that LSTM, a ML technique, can be used to forecast
future stock market patterns in a distributed, intelligent system.

These studies explore various aspects of stock market prediction, including the
performance of different ML models, the importance of data preprocessing, the
effectiveness of neural network models, and the potential of intelligent decentralised
approaches.

2.4 Motivation and research issues identified

The implementation of an optimised CNN-Stacked LSTM neural network model for
stock market prediction is driven by the significance of accurate predictions in the
financial industry. The volatile and complex nature of stock market data, the need to
incorporate relevant features, limitations of existing models, and the potential of the
CNN-Stacked LSTM architecture all contribute to the motivation. Accurate predictions
are crucial for investors and traders to make informed decisions, and the optimised model
aims to overcome the challenges and improve prediction accuracy in this domain.

By addressing these research issues and implementing an optimised CNN-Stacked
LSTM neural network model, this research aims to provide a more effective and accurate
tool for predicting stock market time-series data, enabling investors and traders to make
informed decisions and improve their financial outcomes.

3 An optimised CNN-stacked LSTM model for stock market predictions

Considering the research gaps, we focused on making the deep learning model for time
series data. We decided to go on with the CNN-Stacked LSTM Neural Network approach
because CNN helps in tracking the features of the dataset and LSTM helps in tracking the

206 K. Sudhakar and S. Naganjaneyulu

patterns, allowing us to train on them. This approach is not the first time as some
researchers already tried to implement the CNN-stacked LSTM method but we tweaked
the parameters, kernel sizes (for CNN), and layers to experiment and test it on real-time
data. Since this is a regression type of problem where we had to train with time-series
data, we used MSE as the standard metric rather than accuracy. The architecture diagram
for the neural network is shown in Figure 3.

Figure 3 Proposed methodology for optimised CNN-stacked LSTM neural network model for
predicting stock market time-series data (see online version for colours)

NIFTY-50
b Feature
ata .
NYSE preprocessing selection
S&P 500 Processed data

Train data Test data

CNN

Stacked LSTM

Performance
evaluation

The objective for using CNN-stacked LSTM in stock market prediction stems from the
desire to leverage the unique strengths of these models. CNNs excel at capturing spatial
patterns, while LSTMs are effective at modelling temporal dependencies. By combining
these architectures, researchers aim to capture complex and multi-dimensional patterns in
the stock market data, extract meaningful features from sequential data, model long-term
dependencies, handle multivariate inputs, capture nonlinear relationships, and draw upon
the success of these models in other domains. The ultimate goal is to develop robust
prediction models that provide accurate insights into stock market trends, enabling
investors and financial institutions to make informed decisions and improve risk
management.

3.1 Dataset description

Data opening, closing, high, low, and volume are all examples of numerical historical
data employed in these models. The information also includes technical indicators based
on past performance. The rolling window approach is utilised for time series forecasting.
A series of matrices, where each row represents a day and each column a feature, is
created by rolling window.

The description of each dataset is

An optimised CNN-stacked LSTM neural network model 207

1 NIFTY-50: The NIFTY-50 is a stock market index of the National Stock Exchange
(NSE) in India. It consists of the 50 largest and most actively traded stocks across
various sectors of the Indian economy. Similar to the SENSEX dataset, the NIFTY-
50 dataset may include historical price data, trading volumes, market capitalisation,
sector information, and other relevant variables (Kaggle, 2017).

2 NASDAQ: The NASDAQ is a global electronic marketplace for buying and selling
securities, with a focus on technology stocks. The NASDAQ Composite Index
represents the performance of over 3,000 stocks listed on the NASDAQ stock
exchange. Datasets related to NASDAQ may include historical price data, trading
volumes, company information, sector classification, and other variables relevant to
the listed stocks (Kaggle, 2020).

3 NYSE: The NYSE is the world’s largest stock exchange by market capitalisation. It
lists a wide range of stocks from various industries. Datasets related to the NYSE
may include historical price data, trading volumes, company information, sector
classification, market indices, and other variables associated with the stocks listed on
the NYSE (Kaggle, 2022).

4 S&P 500: The S&P 500 stock dataset contains historical financial data for companies
listed on the S&P 500 index. It includes information such as opening and closing
prices, trading volume, and adjusted closing prices. The dataset is used for financial
analysis, risk assessment, and stock market prediction. It is a valuable resource for
investors and researchers studying the performance of S&P 500 companies (Kaggle,
2022).

3.2 Exploratory data analysis

Before making a model, the first step is to collect enough datasets such that the base
analysis is made to study the stock market data. So, we gathered enough datasets from
Kaggle (explained in later stages) but realised that they are sample ones and we had to
search for real-time ones. Then, we came across several finance APIs like Yahoo
Finance, and Alpha Vantage which help in gathering stock data for a specific period. So,
we took Alpha Vantage API and used the ‘TIME SERIES DAILY’ option to obtain stock
data of a company ranging from ten years. We used ‘full” mode to collect enough data
rather than using ‘compact’ mode in API (which fetches only 100 columns meant for
rapid usage cases) and we were able to collect the data for any company with valid API
keys. Some stock data is also gathered wusing Google Sheets via the
‘GOOGLEFINANCE’ function. Then we stored the data in CSV format for the testing
phase. Then, we did an exploratory data analysis (EDA) on the dataset to know about the
stock market data in depth. We also implemented Moving Average and Daily Return
columns to know how a stock market works and analysed some of the features present in
it. After that, we went to preprocessing phase.

In the preprocessing phase, we first cleansed the data by removing NULL values from
the dataset and taking the mean of data, and replacing it if necessary using the Pandas
library. Then we took the four columns of any stock market dataset, namely ‘open’,
‘close’, ‘high’, and ‘low’. These are the columns which mainly involve in training the
dataset especially the ‘close’ column (shown in Table 2). The graphs are plotted using the
matplotlib and seaborn libraries in Python.

208 K. Sudhakar and S. Naganjaneyulu

3.3 Data normalisation and feature data construction

Label transformation, duplicate elimination, and data normalisation are the three phases
of data pre-processing for the proposed stock market prediction model. The initial step is
to translate the symbolic class input columns into numerical labels depending on the
prediction type. To minimise biased categorisation toward frequent data records, the
second step is to remove duplicate information. The most essential stage is the third,
which is primarily beneficial in stabilising the dataset by eliminating the biased features
of greater values. It entails converting each element’s values into a proportionate range.
The range [0, 1] is specified in the proposed method, and the elements are standardised
toward it utilising a generalised normalisation condition.
Y-T, min

Yoormalised = m (10)

where Ymin and Yimax are the data feature’s minimum and maximum values, respectively,
and Y is the data feature’s current value. The data characteristics are normalised to allow
for linear data processing.

During the preprocessing stage, we realised that CNN always considers
two-Dimensional and three-dimensional arrays to train and select required features. But
here, the data we have is of one-dimensional arrays. This is one of the reasons why CNN
is often seen in computer vision (CV)-based applications and not in NLP-based
applications. So, for the CNN model to parse the dataset, we made a function where the
1D arrays are made to convert to 2D arrays. Table 2 shows the instance of the sample
stock market dataset.

[100, 1] tensors (precisely, a vector). Tensors are a type of data structure that
describes a multilinear relationship between a set of objects in a vector space. So, for
converting a 1-D array to a tensor, every 100 rows are taken, and from that the mean of
the values are calculated and made to store in a separate column. This process is done for
the entire dataset. In our case, we did this on the ‘close’ column as it’s the main column
where we would decide the prediction of the stock data.

Table 2 Instance of stock market dataset
S. no. Date Symbol ~ Open High Low Close VwAP Volume
1 2004-08-25 TCS 1,198.7 1,198.7 979 987.95 1008.32 17,116,372
2 2004-08-26 TCS 992 997 975.3 979 985.65 5,055,400
3 2004-08-27 TCS 982.4 9824 95855 962.65 969.94 3,830,750
4 2004-08-30 TCS 969.9 990 965 986.75 982.65 3,058,151
5 2004-08-31 TCS 986.5 990 976 988.1 982.18 2,649,332
6 2004-09-01 TCS 990 995 983.6 987.9 989.68 2,491,943

After this step, we would obtain tensors for the CNN side of the model to train. Then, we
split 80% for training and 20% for testing. Finally, we reshaped the data and sent it to the
training phase.

An optimised CNN-stacked LSTM neural network model 209

3.4 CNN-stacked LSTM for stock price prediction

The CNN is generally utilised in tasks based on recognition of objects and CNN can
overcome the problems related to processing the objects. The performance of CNN
architecture is analysed to predict the best stock according to the user’s previous
portfolio. The stacked LSTM is used as a numerical function to aid in the provision of the
stock market. A sequence processing model called a stacked LSTM, also referred to as a
stacked LSTM, is made up of two LSTMs, first LSTM is trained on the data, and the
second 1is trained on the outcome of the first LSTM to access additional data, which
improves the context of the algorithm. The CNN is composed of the convolutional layer
which acts as a platform to project the CNN where the attributes of products are stored.
In this paper, the stacked LSTM is combined with the CNN architecture to provide an
effective and efficient prediction of time series data prediction on stocks. The primary
objective of the proposed stacked-LSTM architecture is to develop an efficient system
that can be accessible with less data. The study utilises standard sequential CNN
architecture to predict the best stock according to the company and user portfolio.

3.4.1 CNN for extraction of feature attributes

CNN is utilised to extract the top-notch features of the product attribute from input data.
Based on the performance of the model and to reduce computational complexity, the
sequential CNN architecture is adopted on the different stock market datasets. For an
input attribute that has an area of 64 X 64 in channels based on attributes. The output is
obtained as feature maps based on the CNN (trained) and it is denoted as F, € RP*™7

and F, € R”™7 in that the dimensional size of the output is denoted as D and the size of

the feature map is denoted as 7 x 7. The visuals based on feature maps are compressed by
F,) and F,, to gather dimensional vectors. The vectors based on the dimensions are

denoted as v, ={V",V;,...V5} and v, ={", V), .., Vit where the number of
features represent in to feature map is denoted as ¥ € RP. The vectors #; and b; is obtained
by pooling the respective v, and v, vectors in a pooling layer, mathematically

represented by equation (1). This approach allows for the extraction and representation of
relevant features from the input data for stock market prediction tasks.

_1 9, _1 9
vti _E nlen ’Vb/ _EZn:II/n (11)

where the features utilised for embedding # and b; is denoted as v;,, v, € RP.

3.4.2 Stacked LSTM architecture

The initial model for forecasting stock prices, which all the proposed models are based
upon, consists of 2 LSTM architectures, thus the name stacked LSTM. The architecture
of a stacked LSTM is constructed by the first LSTM is trained on the data, and the second
is trained on the outcome of the first LSTM. The result of a stacked LSTM is the ability
to detect complex features in the data and improve the performance of forecasting (Song
et al., 2022). Figure 4 represents the stacked LSTM model organisation.

210 K. Sudhakar and S. Naganjaneyulu

Figure 4 Stacked LSTM model organisation (see online version for colours)

| Input |

A 4

LSTE

Y

| Output |

3.4.3 Initial CNN-stacked LSTM model

Before the model is initialised the data is prepared. The data is partitioned into training,
validation, and testing. The data does not only consist of the sequences of stock prices but
also a vector based on the closing prices, and labels, as the model will adjust its weights
according to these values. As the model is a stacked LSTM, two sets of models which are
based on the equations of the LSTM background will be constructed. More specifications
on how and which hyper parameters were chosen for the equations can be found in
Section 4. Note the initial value of the /¢ and ¢ will consist of random elements, as these
vectors are needed to be passed into the model at the initial time. To obtain an optimal
model it is relevant to address the problem of overfitting, which has an impact on the
stacked LSTM. Figure 5 represents the proposed CNN-stacked LSTM model for stock
market time series data prediction.

Figure 5 Proposed CNN-stacked LSTM model for stock market time series data prediction
(see online version for colours)

LSTM |mmmp LSTM —)
Output

Input Conv Conv Conv Max rc
foyer Layer 64 Layer 128 Layer 64 Pooling ayer
filters filters filters Layer

CNN Stacked LSTM

An optimised CNN-stacked LSTM neural network model 211

3.4.4 Training phase

After the dataset is processed, the NN model has to be made. In our case, it is the
CNN-stacked LSTM Neural Network model. For our model, we considered dividing the
model into two parts, CNN and stacked LSTM.

e CNN: For the CNN section of the model, we followed a custom way instead of
ascending kind of way in the size of layers. So, we made three layers of neuron size
6,412,864 with kernel size = 3 along with max pooling layers in between. Finally, we
added a flatten layer at the end of the CNN section to convert the tensors back to a
1D array. All CNN layers are added with the time distributed function to train every
temporal slice of input, as we’re approaching a time-series problem in this case.
Then, the processed data is sent to LSTM layers.

e LSTM: For the LSTM, we made two bidirectional LSTM layers to detect the features
and train them forward and backward. For each layer, the neuron size is 100.
Additionally, dropout layers are added in between with a value of 0.5 in drop some
features for stability. Last, we added a dense layer with a linear activation function,
and ‘Adam’ optimiser, MSE as the loss function, and ‘MSE’ and ‘MAE’ as metrics.

Overfitting poses a common challenge in ML, leading to decreased performance on test
datasets. It arises when the algorithm overly fits the training data, usually due to model
complexity, mismatched dataset representation, or excessive noise. To mitigate
overfitting, dropout is employed as a preventive measure. Dropout temporarily
deactivates a random set of neurons, allowing the remaining neurons to continue training.
This prevents excessive adaptation to the training set (Srivastava et al., 2014). In the
proposed model, dropout is applied to each model to address overfitting.

The model is learning during the training phase, the data from the sequence and labels
are passed to the model in cycles called epochs. For each prediction, the value is applied
to the loss function, which for this model is the mean square error, together with the
matching label value. The value of the loss function is then applied to the back
propagating algorithm Adam which is applied according to Kingma and Ba (2014). The
Adam optimiser will adjust the weights of the stacked LSTMs to minimise the loss, thus
for each epoch, the model will adjust its weights concerning the data.

1 N 2
MSE:NZ[:I(p,- —1) (12)

To find the most optimal model and also as a way to avoid overfitting, a validation
dataset is constructed from the total dataset. Each time the model is adjusting the weights,
it is tested on the validation dataset. Note that if the validation loss increases it implies
the model is overfitting. Therefore, to obtain the most optimally performing model, the
one model with the lowest validation error will be saved. When the training phase is
completed, the saved model will be loaded and set to the evaluation model, turning
dropout off, this also occurs in the validation dataset. Thereafter the testing dataset is
applied, which has been unstandardised, and evaluated according to a given set of
evaluation metrics.

212 K. Sudhakar and S. Naganjaneyulu

3.4.5 Testing phase

After the model has been trained and the values are noted, we saved the model in HDF5
format using Keras API in the TensorFlow library. Then, we loaded the HDFS5 file and
tried training the model again but this time with a different dataset, we were able to train
the model but the loss value varies accordingly. For example, if the loss is 0.055 during
the training phase, the loss increases to 0.153 (estimated, not accurate). It is also found
that this happens depending on the dataset we use, for the NIFTY sample dataset, the
error did not occur whereas, in the NASDAQ dataset, it occurred while loading up the
saved model.

3.5 Performance measures

For the evaluation of the model the common metrics are used: mean average percentage
error (MAPE), MAE, RMSE, and the correlation coefficient (Powers and Ailab, 2011).

3.5.1 Mean average percentage error

MAPE describes the error in percentage in consideration of the true value, #, and the
predicted value, p;

1 < pi—t
MAPE =—) |/

1

(13)

3.5.2 Mean absolute error

MAE represents the average absolute error

1 N
MAE =— i =1 14
~ ;]Ip | (14)
3.5.3 Root mean squared error

RMSE is a measurement of the average Euclidean distance between ¢; and p;

RMSE = %Z(p,-—t,-f (15)

3.5.4 The correlation coefficient (R)

The correlation coefficient (R) measures the correlation between the prediction and the
true value. A greater value on R implies a greater correlation between the variables ¢ and

p.

An optimised CNN-stacked LSTM neural network model 213

Zi]\i] (ti Umean) (pt ~ Pmean)
\/Z l mean \/z pmean 2

3.5.5 Regularisation

(16)

e L] regularisation, also known as the goal of the ML technique known as Lasso
regularisation is to include a penalty term whose magnitude is directly related to the
absolute values of the model’s coefficients (Tibshirani, 1996).

o L2 regularisation known as ridge regularisation is applied to models to combat
overfitting. Overfitting is a term used to describe a situation where Validation loss
goes up while training loss goes down. In other words, the model is well fitted on
training data but it is not predicting accurately for validation data. The model is not
able to generalise (Tikhonov, 1943).

minimise(Loss(Data | Model) + complexity(model)) (17)

The complexity of the models used in the paper was minimised by using L2
regularisation. The formula of L2 regularisation is the sum of the square of all the
weights,

L, regularisation term =|| w [?=w? + w3 +...+ w7 (18)

In the models, two layers of L2 regularisation were used before the final output layer.

3.5.6 Evaluation of loss function

In the context of stock market prediction, the evaluation of the loss function is crucial.
The dataset primarily consists of positive ratings representing successful stock
predictions, while negative ratings indicating unsuccessful predictions are absent. To
address this, a ranking loss function is employed to capture the relationship between the
actual price and the predicted price. This loss function generates pairs of positive and
negative for each stock, incorporating corrupted pairs (#, by) and (¢;, bj) where positive
and negative are exchanged. By considering these pairs, the ranking loss function
facilitates a comprehensive assessment of stock market predictions. So, the noticed pair
must be given priority at on higher rate than the unnoticed one, it is represented in
equation (14) shown below,

Ly :_Z(i,./,_/')eol ((y i = ;?mpm)))

where all training samples are represented as D and the sigmoid function is denoted as o.
Finally, by using equations (2), (4), and (14), the objective function of the Attribute
specific recommendation system for health products is formulated using equation (15).

L= Lcategory + Lattribute + Lrl (20)

214 K. Sudhakar and S. Naganjaneyulu
Assessing the model’s prognostic accuracy during times of extreme index volatility, such

as large out-of-the-ordinary swings in either direction, is also part of the evaluation
process.

3.6 CNN-stacked LSTM for stock market price prediction

Algorithm: CNN-Stacked LSTM for stock market price prediction
Input: NIFTY-50, NYSE, and S&P 500 stock data
Output: Predictions
Step 1 Import the necessary libraries.
Step 2 Prepare the input data:
X _train: Training input features (time series data)
y_train: Training target labels (stock prices)
Partition of the Data in training, and testing
Step 3 Define the model architecture:
Create a Sequential model.
Add a Conv1D layer with filters, kernel size, and activation function.
Add Bidirectional LSTM layers with units and return_sequences set to True.
Add any additional LSTM layers as needed.
Add a Dense output layer.
model.add(Dense(units=1))
Step4 Compile the model:
Choose an optimiser (e.g., ‘adam’) and a suitable loss function (e.g., ‘mse”’).
Step 5 Train the model:

Fit the model to the training data (Xirain, ytrain) With the desired number of epochs and batch
size.

for epoch in epochs do

Model set to training mode, activating dropout for each data in training data do
Step 6 Make predictions:

Use the trained model to predict stock prices on the test data.

Predict using training data and LSTM

Step 7 Evaluate the model (optional): Calculate evaluation metrics such as mean squared
error (MSE) using the predictions and actual values.

Step 8 Perform any further analysis or visualisation based on the predictions and evaluation
metrics.

4 Results and discussion

In this section, we describe the hyper parameters that were used for the models, the
specifications on the computer that the model was trained on, and how the data was
collected. Further, the details of how the data was partitioned are explained and what
measurements are applied for evaluation. At last, the experimental results of the models
are shown. We tested and experimented with the model with different datasets from
Kaggle consisting of sample data of mixed content from different stock markets (Kaggle,

An optimised CNN-stacked LSTM neural network model 215

2017), NIFTY-50 (Kaggle, 2020), NASDAQ, and NYSE (Kaggle, 2022) to find how the
model copes with the different stock market. The proposed research work is implemented
using the libraries Pytorch and Sklearn.

4.1 Experimental setup

The number of tuneable parameters, hyper parameters, of the model is 5 and is set to,
batch size: 1, hidden size: 128, number of stacked LSTMs: 2, dropout: 0.3, and learning
rate: 0.001. A changeable parameter that does not involve the model is the size of the
window that is used for the rolling window method, which according to Nti et al. (2021)
changes the performance. In this research work, the window size is set to 20. Table 3
shows the model parameters used in implementing this research work.

Table 3 Model parameter

Hyper parameters Value
Batch size 40
Hidden size 128
LSTM modules (integrated into the stacked environment) 2
Dropout 0.5
Kernel size 3
Learning rate 0.001
Activation function ReLu
Optimiser Adam
Window size 20

The training and validation data is shuffled, meaning each time the data is propagating
through the model it is reshuffled. If the validation error is lower than the epoch before,
the model is then saved. To minimise the training for the model, the algorithm will
monitor if the validation error has not decreased in 50 epochs the model will break and
continue to the test data. The number of components was chosen based on the inbuilt
function in sklearn for feature selection.

4.2 Results on NIFTY-50 (NSE), NASDAQ

MSE and MAE were determined during training to assess the CNN-Stacked LSTM
model’s performance on the NIFTY-50 (NSE) and NASDAQ datasets. When comparing
projected and observed values, the MSE measures the average squared discrepancy,
while the MAE shows the average absolute discrepancy. These metrics indicate the level
of accuracy and precision achieved by the model during training on the NIFTY-50 (NSE)
and NASDAQ datasets. By monitoring and analysing the MSE and MAE values obtained
during training, it is possible to assess the model’s convergence, identify areas for
improvement, and gauge its suitability for predicting stock market trends and making
informed investment decisions. Figures 6 and 7 represent MSE obtained during training
and MAE obtained during training for the NIFTY-50 dataset.

216 K. Sudhakar and S. Naganjaneyulu
Figure 6 MSE performance during training (see online version for colours)

— train mse
0.007 — val mse

0.005
un
Fr]
3 0.004
0.003
0.002
0.001
0 5 10 15 20 25 30 35 40
epoch

Figure 7 MAE performance during training (see online version for colours)

- {rain mae
—— val mae

=

Loss

D 5 10

15 20 25 30 35 40

£V &2 - -

epoch

The CNN-stacked LSTM model has been applied to both the NIFTY-50 (NSE) dataset
and the NASDAQ dataset. The prediction graphs were generated to visualise the model’s
performance. For the NIFTY-50 (NSE) dataset, the prediction graph was based on
shuffled sample data, while for the real stock data of NIFTY-50, the prediction graph was
generated without shuffling the data. These graphs provide a visual representation of how
well the model predicts stock market trends and fluctuations in both the sample and real
datasets. Analysing these prediction graphs can provide insights into the model’s ability
to capture and forecast the patterns and movements in the NIFTY-50 (NSE) and

An optimised CNN-stacked LSTM neural network model 217

NASDAQ datasets, assisting in financial forecasting and investment decision-making.
Figure 8 the prediction graph for sample NSE data (shuffled) and the prediction graph for
real stock data NIFTY-50 (un-shuffled) is shown in Figure 9.

Figure 8 The prediction graph for training data (shuffled) (see online version for colours)
Stock Price Prediction

20 Predicted Stock Price
- Real Stock Price

18

Stock Price
E K & &

(=]

o

0 100 200 300 400 500 600
Time

Figure 9 The prediction graph for NIFTY-50 (un-shuffled) the prediction graph for testing data
(see online version for colours)

Stock Price Prediction
140

—— Predicted Stock Price
— Real Stock Price
120 "y
Q
—
a 100
.
(-
2]
W
BO
B0

200 400 600 800 1000
Time

(=]

218 K. Sudhakar and S. Naganjaneyulu

Table 4 presents accuracy scores of the CNN-Stacked LSTM model on the NIFTY-50
dataset. Metrics such as MSE, MAE, variance, and R? score assess the model’s
performance in predicting stock prices. The low MSE value of 0.030 indicates accurate
predictions and successful capture of patterns and trends in the dataset. The model’s
ability to recommend stocks demonstrates its practical value for investment decisions. By
utilising the model’s accurate predictions, investors can make informed choices and
potentially enhance their investment performance. Table 5 represents the model
performance on different stock markets (Kaggle, 2017), NIFTY-50 (Kaggle, 2020),
NASDAQ, and NYSE (Kaggle, 2022) to find how the model copes with the different
stock markets. The model tested with stock data both shuffled and un-shuffled. It was
able to predict most of the stocks as shown in Table 5.

Table 4 Various performance scores on NIFTY-50 dataset
Name Score
Loss 0.0012
Train MSE 0.0012
Train MAE 0.0265
Test MSE 0.0148
Test MAE 0.0814
Variance 0.938731
R? score 0.938751
Max error 0.250160
Table 5 MSE score with datasets NIFTY-50 (Kaggle, 2020), NASDAQ, and NYSE (Kaggle,
2022)
Dataset and MSE scores
Dataset MSE score
NIFTY (SBIN — sample) 0.001
NASDAQ (ACTG — sample) 0.1565
NASDAQ (AAOI — sample) 0.0016
NYSE (IBM — real) 0.0027
BSE (RELIANCE - real) 0.0145

The MSE performance of the LSTM, CNN-LSTM, and CNN-stacked LSTM models was
compared to evaluate their effectiveness in predicting stock prices or other time series
data. The CNN-Stacked LSTM model achieved the lowest MSE of 0.030, followed by
the CNN-LSTM model with an MSE of 0.035, and the LSTM model with an MSE of
0.045. These MSE values indicate the average squared difference between the predicted
and actual values, serving as a measure of accuracy for the models’ predictions. The
lower MSE values for the CNN-Stacked LSTM and CNN-LSTM models suggest their
superior performance in capturing patterns and trends in the data, leading to more
accurate predictions compared to the LSTM model. Table 6 provides a visual
representation of the MSE comparison among the models.

An optimised CNN-stacked LSTM neural network model 219

Table 6 MSE Scores for LSTM, CNN-LSTM, and CNN-stacked LSTM models

Model MSE score (Avg)
LSTM 0.045
CNN-LSTM 0.035
CNN-Stacked LSTM 0.0014

4.3 CNN-stacked LSTM model performance loss on NIFTY-50 dataset

The performance loss function of the CNN-Stacked LSTM model on the Nifty-50 dataset
plays a crucial role in evaluating the model’s predictive accuracy. The choice of an
appropriate loss function is essential for guiding the training process and optimising the
model’s parameters. Commonly used loss functions for regression tasks on financial
datasets, such as the Nifty-50 dataset, include MSE and MAE. On the other hand, MAE
computes the average absolute difference, which is useful for assessing the model’s
ability to capture the magnitude of the predicted values accurately. By minimising the
loss function during training, the CNN-Stacked LSTM model aims to improve its
predictive capabilities and achieve higher accuracy in forecasting the Nifty-50 dataset.
Figure 10 represents the performance loss of the CNN-stacked LSTM model on the
NIFTY-50 dataset.

Figure 10 The performance of the CNN-stacked LSTM model on the NIFTY-50 dataset
(see online version for colours)

| = [rain loss
007 | —— val loss
|
0.005 \
S ooos |
A
0 I';"ILH_
1
\ {“—xfr__\’_}‘l
LRILLP. 'H-.HII II‘-\-_.-"“M__-‘: = |
=S e T

- - - . - - 4 -r
: 10 z I n 3 40

epoch

4.4 Performance of CNN-Stacked LSTM model on NIFTY-50

The performance of the CNN-Stacked LSTM model on the Nifty-50 dataset was assessed
using metrics such as MSE, MAE, variance, and R? score. These metrics provide a
comprehensive evaluation of the model’s predictive accuracy, precision, and overall

220 K. Sudhakar and S. Naganjaneyulu
performance on the Nifty-50 dataset. Figure 11 visually represents the model’s
performance, showing that it predicts the stock prices closely to the actual prices. By

analysing the MSE, MAE, variance, and R? score, it is possible to determine the model’s
effectiveness in capturing and forecasting patterns and trends in the NIFTY-50 dataset.

Figure 11 Generalised performance of CNN-stacked LSTM model on NIFTY-50 dataset
(see online version for colours)

— real
1000 == predicted
900
800
700
600
500

400

300

Figure 12 Models prediction NYSE stock (see online version for colours)

155
=== Model m
1504 —— Real -] N/A:f-’- \\“
LR AN AN i\\}‘(l\\w/ WA
WV N |
0 140+ W Wi
G 140 ik
- Y \
|
135 1 ll"“
\ \
130 1 V\\
125 - \
0 20 40 60 80 100 120

Time

An optimised CNN-stacked LSTM neural network model 221

4.5 Performance of CNN-stacked LSTM model on the NYSE dataset

The CNN-stacked LSTM model was trained on the NYSE dataset, and the MSE and
MAE were used to evaluate its performance. The MSE measures the average squared
difference between predicted and actual values, while the MAE represents the average
absolute difference. These metrics assess the model’s accuracy and precision during
training on the NYSE dataset. Monitoring the MSE and MAE values helps assess
convergence, identify areas for improvement, and evaluate the model’s suitability
for predicting stock market trends and making informed investment decisions.
Figures 12 and 13 display the stock prediction rate of the NYSE dataset.

Figure 13 Models prediction NYSE stock (see online version for colours)

A —_——
12.0 - / Model
4 —— Real
11.5 1 ra
-] 2 v’
11.0 7
10.5 +
a "
D 10.04 A
Uf\"{l \ A\\
9.51 L2 " ‘\'\,\/ \
| v N
9.0 A%
~
yu
8.5 1 ‘qi,
8:0 T T T T T T T
0 20 40 60 80 100 120

Time

4.6 Performance of CNN-Stacked LSTM model on S&P 500 dataset

The performance of a CNN-Stacked LSTM model on the S&P 500 dataset was assessed
through graphical analysis. The model’s predictions for the next 5, 10, 25, 50, and 100
days were plotted and examined. Figure 14 provides visual representations of the model’s
forecasting capabilities and can be used to evaluate its accuracy and reliability in
predicting future trends in the S&P 500 dataset. This hybrid architecture allows the model
to effectively capture both spatial and temporal patterns in the data. The results showed
that the CNN-Stacked LSTM model achieved promising performance in predicting the
S&P 500 dataset. Further analysis of the graphs can offer insights into the model’s
performance and potential applications in financial forecasting and investment decision-
making.

222 K. Sudhakar and S. Naganjaneyulu

Figure 14 Performance of CNN-stacked LSTM model on S&P 500 dataset (see online version
for colours)

Date
——y_pred_t50 ——y_pred_t25 ——y_pred_t10 ——y_pred_t5

———y_pred_t100

— \ct U

=] o =] =] =] =] =] =) =) =] =] L

=] =] =1 =] =] =] =] =] =1 =1 =1 9

=] =) = ~ o Il A Il o~ — (=] S
o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0(_‘

005 43S

An optimised CNN-stacked LSTM neural network model 223

5 Conclusions

Designing a customised CNN-LSTM model can initially be challenging due to the
existence of numerous algorithms for stock data prediction that is not fully optimised. To
address this, we conducted training and testing using various datasets such as NYSE,
NASDAQ, and NIFTY and observed variations in the model’s accuracy based on the
dataset. Notably, for the NIFTY dataset, the model exhibited excellent performance,
accurately predicting up to 99% of the stocks even during the testing phase. However,
when dealing with datasets like NYSE, the accuracy varied during testing, possibly due
to noise present in the dataset during that phase. We measured the MSE during training
and testing, obtaining values ranging from 0.001 to 0.05 (approx) and 0.002 to 0.1
(approx) respectively, depending on the dataset. The paper focuses on demonstrating how
the combination of CNN and LSTM can extract features from processed dataset tensors
and detect patterns. It presents an approach for predicting stock market movements with a
high level of accuracy.

As a future work, several potential areas for future exploration in the project include
investigating the use of gated recurrent units (GRUs) as they have shown promising
performance compared to LSTM models. Optimisation of hyper parameters, loss
functions, and optimisers could enhance results, as the current parameters are arbitrary.
Transfer learning could be expanded to train models on multiple stocks, potentially
revealing hidden market structures. Ensembling techniques combining technical and
fundamental indicators may improve model performance. Lastly, studying the impact of
data variations, such as different technical indicators and timeframes, could yield better
insights.

References

Adebiyi, A.A., Adewumi, A.O. and Ayo, C.K. (2014) ‘Comparison of ARIMA and artificial neural
networks models for stock price prediction’, Journal of Applied Mathematics, Vol. 2014,
pp-181-201.

Bansal, G., Hasija, V., Chamola, V., Kumar, N. and Guizani, M. (2019) ‘Smart stock exchange
market: a secure predictive decentralized model’, in 2019 IEEE Global Communications
Conference (GLOBECOM), IEEE, December, pp.1-6.

Gers, F.A., Schmidhuber, J. and Cummins, F. (1999) ‘Learning to forget: continual prediction with
LSTM’, 1999 Ninth International Conference on Artificial Neural Networks ICANN 99, Conf.
Publ. No. 470, Edinburgh, UK, Vol. 2, pp.850-855, DOIL: 10.1049/cp:19991218.

Goodfellow, 1., Bengio, Y. and Courville, A. (2016) Deep Learning, The MIT Press, Washington.

Gurav, U. and Kotrappa, D.S. (2020) ‘Impact of COVID-19 on stock market performance using
efficient and predictive LBL-LSTM based mathematical model’, International Journal on
Emerging Technologies, Vol. 11, No. 4, pp.108-115.

Guresen, E., Kayakutlu, G. and Daim, T.U. (2011) ‘Using artificial neural network models in stock
market index prediction’, Expert Systems with Applications, Vol. 38, No. 8, pp.10389—-10397.

Hiransha, M., Gopalakrishnan, E.A., Menon, V.K. and Soman, K.P. (2018) ‘NSE stock market
prediction using deep-learning models’, Procedia Computer Science, Vol. 132, pp.1351-1362.

Kaggle (2017) Huge Stock Market Dataset [online] https://www.kaggle.com/borismarjanovic/
price-volume-data-for-allus-stocks-etfs.

Kaggle (2020) NIFTY-50 Stock Market Data (2000-2021) [online] https://www.kaggle.com/
rohanrao/nifty50-stock-market-data.

Kaggle (2022) Stock Market Data (NASDAQ, NYSE, S&P500) [online] https://www.kaggle.com/
paultimothymooney/stock-market-data.

224 K. Sudhakar and S. Naganjaneyulu

Kimoto, T., Asakawa, K., Yoda, M. and Takeoka, M. (1990) ‘Stock market prediction system with
modular neural networks’, in 1990 IJCNN International Joint Conference on Neural
Networks, IEEE, June, pp.1-6.

Kingma, D.P. and Ba, J. (2014) ‘Adam: a method for stochastic optimization’, International
Conference on Learning Representations.

Kompella, S. and Chakravarthy Chilukuri, K.C.C. (2020) ‘Stock market prediction using machine
learning methods’, International Journal of Computer Engineering and Technology, Vol. 10,
No. 3, p.2019.

Kraus, M. and Feuerriegel, S. (2017) ‘Decision support from financial disclosures with deep neural
networks and transfer learning’, Decision Support Systems, December, Vol. 104, No. C,
pp-38-48.

Liu, J., Chao, F., Lin, Y-C. and Lin, C-M. (2019) Stock Prices Prediction using Deep Learning
Models, arXiv preprint arXiv: 1909.12227.

Nelson, D.M., Pereira, A.C. and de Oliveira, R.A. (2017) ‘Stock market’s price movement
prediction with LSTM neural networks’, in 2017 International Joint Conference on Neural
Networks (IJCNN), IEEE, May, pp.1419-1426.

Nti, LK., Adekoya, A.F. and Weyori, B.A. (2021) ‘A novel multisource information-fusion
predictive framework based on deep neural networks for accuracy enhancement in stock
market prediction’, Journal of Big Data, Vol. 8, No. 1, pp.1-28.

Olah, C. (2015) Understanding LSTM Networks [online] http://colah.github.io/posts/2015-08-
Understanding-LSTMs.

Pang, X., Zhou, Y., Wang, P., Lin, W. and Chang, V. (2020) ‘An innovative neural network
approach for stock market prediction’, The Journal of Supercomputing, Vol. 76, No. 3,
pp-2098-2118.

Pascanu, R., Mikolov, T. and Bengio, Y. (2013) ‘On the difficulty of training recurrent neural
networks’, in International Conference on Machine Learning, pp.1310—-1318.

Powers, D. and Ailab (2011) ‘Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness & correlation’, J. Mach. Learn. Technol., Vol. 2. pp.2229-3981,
DOI: 10.9735/2229-3981.

Selvin, S., Vinayakumar, R., Gopalakrishnan, E.A., Menon, V.K. and Soman, K.P. (2017) ‘Stock
price prediction using LSTM, RNN and CNN-sliding window model’, in 2017 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), 1EEE,
September, pp.1643—-1647.

Shah, D., Campbell, W. and Zulkernine, F.H. (2018) ‘A comparative study of LSTM and DNN for
stock market forecasting’, in IEEE International Conference on Big Data (Big Data),
pp.4148-4155.

Song, D., Qin, Y., Chen, H., Cheng, W. and Jiang, G. (2022) Deep Reinforcement Learning for
Asset Allocation and Portfolio Management: A Survey, arXiv preprint arXiv: 2201.02663.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) ‘Dropout: a
simple way to prevent neural networks from overfitting’, Journal of Machine Learning

Research, Vol. 15, No. 56, pp.1929-1958.

Tibshirani, R. (1996) ‘L1 regularization: regression shrinkage and selection via the Lasso’, Journal
of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 58, No. 1,
pp.267-288.

Tikhonov, A.N. (1943) ‘L2 regularization: on the stability of inverse problems’, Doklady Akademii
Nauk SSSR, Vol. 39, Nos. 5-6, pp.195-198.

Vasista, K. (2022) ‘Role of a stock exchange in buying and selling shares’, Int. J. Curr. Sci.,
Vol. 12, No. 1, pp.1770-2250.

Wold, S., Esbensen, K. and Geladi, P. (1987) ‘Principal component analysis’, Chemometrics and
Intelligent Laboratory Systems, Vol. 2, Nos. 1-3, pp.37-52.

Yoo, J., Soun, Y., Park, Y. and Kang, U. (2022) ‘Accurate stock movement prediction with
self-supervised learning from sparse noisy tweets’, in 2022 IEEE International Conference on
Big Data (Big Data), IEEE, pp.1-11.

