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Abstract: Stock market analysis and prediction are crucial for understanding 
business ownership and financial performance, this study proposes an 
optimised CNN-stacked LSTM neural network model for accurate stock market 
trend prediction. The initial challenge lies in designing a customised  
CNN-stacked LSTM model for stock data prediction due to the abundance of 
non-optimised algorithms. To address this, we conducted training and testing 
using diverse datasets, including NYSE, NASDAQ, and NIFTY-50, observing 
variations in model accuracy based on the dataset. Remarkably, our model 
demonstrated exceptional performance with the NIFTY-50 dataset, accurately 
predicting up to 99% of stocks even during the testing phase. Throughout 
training and validation, we measured mean squared error (MSE) values ranging 
from 0.001 to 0.05 and 0.002 to 0.1, depending on the dataset. Our proposed 
CNN-stacked LSTM model presents a promising solution for accurate 
prediction of stock market trends, addressing the limitations of previous 
methods. 
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error; MAE. 
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1 Introduction 

The term ‘stock market’ refers to a monetary exchange where investors buy and sell 
shares of ownership in businesses. Since stock market investments can potentially 
provide substantial profits, studying how the market will behave is intriguing. However, 
due to its random walk characteristic (Yoo et al., 2022), forecasting the stock market is 
notoriously difficult. The stock market is a common area for corporate and business 
people to examine their ‘shares’ or other forms of ownership claims in their own 
companies. Since the stock market determines a nation’s wealth, it is a crucial part of the 
economy. Stock market forecasting is challenging because market data is dynamic. 

Financial markets are a captivating invention with a profound impact on various 
industries, including business and technology. Investors have increasingly shown interest 
in these markets as advancements in communication technology have facilitated 
participation and potential profits. The stock market provides a straightforward avenue 
for trading stocks and commodities, allowing traders to make substantial gains through 
intra-day or inter-day trading. However, it is important to recognise that the potential for 
high returns is accompanied by proportionate risks. While the stock market presents an 
enticing opportunity for low-income investors, it also exposes them to significant risk. It 
serves as an attractive market for both short and long-term investments, to generate 
profits. Nevertheless, it is crucial to acknowledge that the stock market offers substantial 
financial gains but also carries inherent risks. 

Many people in the beginning tried to foretell stock prices using traditional methods, 
but they mostly failed. Therefore, the likelihood of making accurate stock market 
predictions is low. Machine learning (ML) methods are being used to forecast stock price 
movements and advise investors on how to best contribute to a company’s success. 
However, they are false. This research examines previous efforts at stock market 
forecasting and introduces a novel method based on the CNN-stacked LSTM Neural 
Network model approach to forecasting time series data. Time series forecasting 
frequently makes use of the autoregressive integrated moving average (ARIMA) model, a 
type of statistical model. However, the linearity of the true process is assumed in 
ARIMA, which is not necessarily the case (Liu et al., 2019). When applied to the stock 



   

 

   

   
 

   

   

 

   

   198 K. Sudhakar and S. Naganjaneyulu    
 

    
 
 

   

   
 

   

   

 

   

       
 

market, artificial neural networks (ANN) and deep learning in general have been found to 
improve accuracy (Adebiyi et al., 2014). Time series forecasting is only one area where 
deep learning’s many algorithms can be put to use. Long short-term memory (LSTM) 
networks outperform more traditional deep neural networks (DNNs) at predicting the 
stock market (Shah et al., 2018). 

This study proposes a CNN-stacked LSTM solution to a major problem encountered 
when employing LSTM to analyse stock market data. In this research, we use a  
CNN-stacked LSTM model to forecast stock prices for client recommendations. This 
model is part of a larger framework that also includes preprocessing, feature selection, 
and a carefully crafted architecture. In order to evaluate the effectiveness of the suggested 
model, the loss function, mean absolute error (MAE), mean squared error (MSE) and root 
mean squared error (RMSE) were used to both the training and testing data. These 
measures give a thorough analysis of the model’s performance in capturing the dynamics 
of stock prices. The effectiveness of the proposed CNN-stacked LSTM model is verified 
via a comparison to both conventional LSTM and CNN-LSTM models. By contrasting 
the suggested model to other methods, its superiority in terms of accuracy and 
performance can be assessed. 

The research also explores different hyper parameters during the model design and 
training process. This research work introduces a novel CNN-stacked LSTM model to 
overcome the limitations of LSTM in stock market data analysis. By incorporating 
preprocessing, feature selection, and a carefully designed architecture, the proposed 
model aims to provide accurate stock price predictions for customer recommendations. 
The study rigorously evaluates the model’s performance using various evaluation metrics 
and compares it with LSTM and CNN-LSTM models. The exploration of different hyper 
parameters further contributes to the optimisation of the model for effective stock price 
prediction 

The goal of this paper is to use a deep learning approach to predict the behaviour of a 
stock market. Experimental results are put forward to show the benefits of our approach. 
The paper is structured as follows: Section 2 contains the basic preliminaries and related 
works; Section 3 describes the optimised CNN-Stacked LSTM model implementation on 
the stock market dataset. Section 4 showcases the results and discussion, and Section 5 
concludes respectively. 

2 Basic preliminaries and related research work 

In this section, we explain the theory behind the introduced concepts that will be applied 
and investigated. Further, we describe how the concepts are related to the application. 

A stock exchange serves as a marketplace where buyers and sellers come together to 
trade stocks, representing ownership in corporations. The prices of stocks are determined 
through the interaction of supply and demand on these exchanges. While stock trades are 
transactions between individuals and do not directly impact the issuing corporations, they 
hold significance in various ways. Major stock exchanges, such as the New York Stock 
Exchange (NYSE), NASDAQ, BSE, and NIFTY-50, play a crucial role in the global 
market. Stock market prediction is of great interest and importance due to several 
reasons. Firstly, it aids in investment decision-making by providing insights into price 
movements, trends, and market behaviour, enabling investors to optimise their strategies 
and maximise returns (Vasista, 2022). Additionally, it assists in risk management by 
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identifying potential market downturns and helping investors mitigate losses. Moreover, 
stock market predictions contribute to financial planning for individuals and businesses, 
allowing for long-term plans, investment goal-setting and informed decisions regarding 
financial commitments. These predictions also aid in market analysis, providing a deeper 
understanding of economic conditions and informing policymaking, analysis, and 
research. Furthermore, stock market prediction is essential in algorithmic trading, where 
predictive models and algorithms automate trading decisions based on real-time market 
data and predicted price movements. However, it’s important to acknowledge the 
complexity and challenges involved in stock market prediction, as it is influenced by 
various factors and subject to inherent uncertainty. Nevertheless, ongoing research and 
analysis strive to improve decision-making and risk management in the financial 
industry. 

2.1 Stock market prediction system 

A stock market prediction system goes through several phases: data collection, data 
preprocessing, feature selection/extraction, model selection, model training, prediction 
and evaluation, and deployment and monitoring. Data is collected from various sources, 
preprocessed to remove errors and inconsistencies, and relevant features are selected or 
extracted. Different prediction models are evaluated and chosen, and the selected model 
is trained using the available data. Predictions are made and evaluated against actual 
market movements. The system is then deployed in a real-world setting and continuously 
monitored for performance and updates. 

2.2 Basic preliminaries 

2.2.1 Artificial neural networks 
An ANN is an algorithm that will identify patterns in adapted data. The simplest ANN 
consists of one neuron. Each element in a vector input, x, is assigned a weight. The 
summation of the elements and weights is passed to the neuron. It is common for an 
activation function to be applied to adjust the outcome of the summation. Provided that 
the threshold is achieved, a signal will be sent from the neuron. The learning in the 
neuron develops when the weights of each element are adapted to the threshold. 
Furthermore, the complexity of the ANN will become more advanced when the number 
of neurons is greater (Olah, 2015). ANNs have trouble managing sequential data; hence a 
different tool is needed, such as an RNN (Goodfellow et al., 2016). 

2.2.2 Recurrent neural networks 
Recurrent neural network (RNN) differs from an ANN in a few ways. One major 
difference is that an RNN has as input at time t its output from time t – 1. Hence, the 
input to the RNN consists not only of the input data but the outcome of the last 
prediction. This allows the RNN to handle sequential data better when compared to an 
ANN. 

As seen in Figure 1, the input vector at time t, xt, concatenates with the previous 
output vector, ht–1, also known as the hidden state. The concatenation, [ht–1, xt], proceeds 
as the input vector for the ANN with the tanh activation function 
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[ ]( )1tanh , ,t t tW −= +h h x b  (1) 

where the nonlinear function is applied element-wise and the usage of the hyperbolic 
tangent function is such that the outcome vector is constrained between the values –1 and 
1. The matrix W stores the weights and the bias vector, b, adds an offset independently of 
xt to adjust the outcome. The new hidden state ht is the output for the input xt. The hidden 
state, ht, will be passed as an input together with xt+1 for the next state. 

Figure 1 RNN flow chart (see online version for colours) 

 

Note: The tanh block performs the operations shown in equation (1). 

Furthermore, the adjustable stored weights in the ANN can be adapted to learn patterns. 
This is done by a commonly applied technique named backpropagation (Goodfellow et 
al., 2016). The backpropagation algorithm calculates the gradient of the loss function, a 
function that measures the error; and adapts the weights to minimise the error of the 
outcome that the network outputs. However, when back propagating through the RNN 
elements of the weight matrices may become too small (Pascanu et al., 2013). This is due 
to the multiple matrix multiplications in the backpropagation algorithm combined with 
the elements within the weights matrices being less than one. The occurrence is defined 
as the vanishing gradient problem, leading to the performance of the RNN suffering. 

2.2.3 Long short-term memory 
The LSTM is proposed to solve the vanishing gradient problem (Olah, 2015). The 
architecture of the LSTM can be found in Figure 2. The LSTM is composed of four 
states: forget, store, update, and output. The forgotten state takes in an input vector xt, 
that concatenates with the previous output vector, ht–1. At the initial propagation of the 
network, the hidden state contains arbitrary scalars that will adapt for each iteration. The 
concatenated vector is passed through an ANN with a sigmoid activation function 

1
1

σ
e x

=
+ −

 (2) 

[ ]( )1,t f t t ff σ W h X b−= ⊗ =  (3) 

The subscripts on Wf and bf denote the forgotten state, as each state has individual 
weights and biases that are adapted through the data (the subscript should not be confused 
with the subscript of time, t). The ANN will pair the elements of the concatenated vector 
with adjustable weights and pass them through a sigmoid activation function. The result 
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of the ANN is a vector ft that contains numbers in an interval between zero and one. Zero 
will indicate discard and one will indicate retaining the information. Thus, the name 
forget state, as it decides whether the information is remembered or forgotten. The store 
state will identically pass the concatenated vector through an ANN with a sigmoid 
activation function with weights and bias that will differ from the forget state, that is, 

[ ]( ).1,t i t t ii σ= ⊗ +W W x b  (4) 

Furthermore, the concatenated vector will also be passed through an ANN with the 
hyperbolic tangent activation function, 

[ ]( ).1tanh ,t C t t c= ⊗ +C W h x b  (5) 

The final product of the state process is the vectors it which contain the information to be 
stored, and tC  which contains new possible values for the initial state. t ti C  consists 
of the new values scaled by the outcome of the ANN with a sigmoid activation function. 

Figure 2 LSTM organisational structure (see online version for colours) 

 

The update state consists of the cell state vector, Ct–1, which at the initial propagation 
contains arbitrary scalars analogous to the hidden state. Moreover, the cell state is 
updated according to 

.1 ˆt t t t tC f C i C= ⊗ + ⊗  (6) 

The first term updates the previous cell state and discards information that the algorithm 
wants to forget, and the second term adds new information that is scaled based on what 
information shall be remembered. This is due to the cell state being passed through an 
ANN with a sigmoid activation function, choosing what information to output, and then 
through a tanh activation function 

[ ]( ).1,t o t t oo σ W h X b= ⊗ +  (7) 

( )tanht t th o c= ⊗  

Then the hidden state is passed as an output for the input as well as the cell state and 
hidden state are passed to the next input xt+1. 
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The LSTM reduces the vanishing gradient problem since it does not involve matrix 
multiplication. In place of matrix multiplication, the LSTM applies element wise 
multiplication about the cell state, therefore reducing the occurrence of vanishing 
gradient problems when back propagating (Song et al., 2022). 

2.2.4 Stateful and stateless LSTM 
In theory, all RNN or LSTM models are stateful, meaning they are designed to remember 
the entire input sequence. However, as the length of the input sequence increases, the 
complexity of the network also grows. To address this issue, batches are introduced, 
allowing the model to update its weights using backpropagation through mini sequences 
within each batch. It is important to note that networks do not back propagate through a 
set of batches (Liu et al., 2019). 

In the case of a stateful LSTM, the model learns from the batch of data that is fed into 
the network. After backpropagation and weight updates, the network is then fed to the 
next batch. The weights set in each layer from the previous backpropagation serve as 
initial states for the subsequent batch. On the other hand, a stateless LSTM operates 
differently by resetting the weights to their initial states for every batch (Gers et al., 
1999). 

In financial models like price prediction, where the time-series data in different 
batches are dependent on each other, a stateful model is preferable. This allows the model 
to retain information from previous batches and capture the temporal dependencies 
within the data, improving its ability to predict prices accurately. 

2.2.5 Feature learning 
The intention of feature learning is data reduction and denoising. Stock data contains 
noise and as a result, interferes with learning (Song et al., 2022). Using feature learning 
we can effectively reduce the input space but also retain most of the information of the 
full dataset. Formally, feature learning estimates the correlation structure of the variables 
in a way that retains most of the information of the data. This is useful when the input 
dimension is high but several axes are redundant, that is, information on these axes is 
mostly irrelevant to the structure of the data (Wold et al., 1987). 

The goal of feature selection is to reduce a set of data from n dimensions down to a 
linear subspace of dimension d smaller than n, where all of the data points are contained. 
Feature components, which are d orthogonal vectors, define the subspace. This is done 
like this. Take X where the t rows of X denotes each sample and the n columns denote 
the n features of each sample. X is a t × n matrix. Let us call the primary component with 
the biggest variance U1. First, we define a linear combination of X with coefficients (or 
weights) w = [w1…wn]: 

1 = TU w X  (8) 

( ) ( )1var var= =T TU w X w Sw  (9) 

where S is the X covariance matrix over n independent samples. We chose to maximise 
wTSw while limiting w to have unit norm max wTSw, subject to wTw = 1 because 
increasing the size of w allows var(U1) to be arbitrarily big. 
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The weights that are initialised at the start of the LSTM are not adapted for the 
training data. However, for each iteration, the weights are adjusted to minimise the error. 
Transfer learning involves training the LSTM on correlated data before training on the 
original dataset. As a result, the weights will be fitted before the original dataset is 
applied (Kraus and Feuerriegel, 2017). 

2.3 Literature review 

Before the time of writing this paper, many have proposed and implemented various 
algorithms to predict stock market data. We did a literature survey to find some of the 
algorithms proposed and found some of the advantages, and disadvantages present in 
those algorithms. Table 1 shows the summary of the literature review. 

In their study, Kompella and Chakravarthy Chilukuri (2020) analysed different 
machine-learning methods for stock market data prediction. They discovered that random 
forest outperformed linear regression and other algorithms in terms of performance. 
However, they observed that the error percentage increased in the model when the input 
data was not pre-processed and smoothed beforehand. 

Pang et al. (2020) conducted an experimental analysis comparing RNN and LSTM 
models for stock market data prediction. They found that the LSTM model with an  
auto-encoder module (AELSTM) achieved better predictions compared to RNN. 
However, the implementation of the model was based on older libraries and when tested 
with real-time stock market data, the accuracy of the predictions was low. This 
highlighted the importance of considering the challenges and limitations when training 
models with real-time data. 

Gurav and Kotrappa (2020) proposed a new method where LSTM with a log bilinear 
layer on top of it. The model predicted most of the stock market data and turned out with 
high accuracy but it was proposed and not tested with real-time data, also it was meant to 
predict data only during the time of COVID-19 and not beyond that. 

Kimoto et al. (1990) presented a comprehensive discussion on a prediction system for 
buying and selling timing in the stock market. Their approach utilised a modular neural 
network that transformed technical and economic indexes into a spatial pattern, which 
was then fed into the neural networks for analysis. The results showed that the neural 
network model achieved a higher correlation coefficient compared to multiple regression. 
This indicates that the modular neural network approach outperformed traditional 
regression methods in predicting the optimal timing for buying and selling stocks. The 
study highlighted the effectiveness of neural networks in capturing complex patterns and 
relationships in stock market data, leading to improved prediction accuracy for 
investment decision-making. 

In their study, Guresen et al. (2011) experimented to assess the effectiveness of 
dynamic artificial neural networks (DAN2), multi-layer perceptron (MLP), and hybrid 
neural networks in time series forecasting. The results indicated that the classic ANN 
model, MLP, consistently provided the most reliable and accurate predictions. On the 
other hand, the hybrid methods tested in the study did not yield improved forecast results 
compared to the MLP model. These findings highlight the superiority of the MLP model 
for time series forecasting tasks and suggest that the inclusion of additional components 
or techniques in hybrid neural networks may not necessarily lead to enhanced 
performance in this context. 
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Table 1 Summary of the literature review on stock market prediction using time-series data 
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To forecast stock price movements at 15-minute intervals using a combination of price 
history and technical analysis indicators, Nelson et al. (2017) presented an LSTM 
network. Predictions about whether a stock’s price will rise in the near future were 
correct 55.9% of the time on average. 

Selvin et al. (2017) tried out a sliding window technique with three distinct deep 
learning models (CNN, RNN, and LSTM). CNN’s superior performance over the other 
two models can be attributed to its exclusive focus on the most recent data when making 
stock-price forecasts. This paves the way for CNN to comprehend the evolving patterns 
and shifts in the current frame. However, RNN and LSTM forecast future instances based 
on data from earlier lags. 

Experiments comparing ANN, MLP, LSTM, and RNN were undertaken in Hiransha 
et al. (2018). Both ANN and RNN were able to recognise the pattern early on, but once 
the pattern had been there for a while, neither could. Similarly, LSTM demonstrated 
reduced accuracy for the projected values during some time periods, but CNN still tended 
to outperform the other three networks. 

Intelligent decentralised stock market models based on ML and DAG-based crypto 
currency were introduced in Bansal et al. (2019). The proposed model, which made use 
of LSTM (a RNN), managed a very respectable 99.71% accuracy in its predictions. Each 
stock’s feature vector had a feature vector with four parameters: open, close, low, and 
high. The model was trained for a total of 100 iterations with a batch size of 50 for 
optimal results. This research shows that LSTM, a ML technique, can be used to forecast 
future stock market patterns in a distributed, intelligent system. 

These studies explore various aspects of stock market prediction, including the 
performance of different ML models, the importance of data preprocessing, the 
effectiveness of neural network models, and the potential of intelligent decentralised 
approaches. 

2.4 Motivation and research issues identified 

The implementation of an optimised CNN-Stacked LSTM neural network model for 
stock market prediction is driven by the significance of accurate predictions in the 
financial industry. The volatile and complex nature of stock market data, the need to 
incorporate relevant features, limitations of existing models, and the potential of the 
CNN-Stacked LSTM architecture all contribute to the motivation. Accurate predictions 
are crucial for investors and traders to make informed decisions, and the optimised model 
aims to overcome the challenges and improve prediction accuracy in this domain. 

By addressing these research issues and implementing an optimised CNN-Stacked 
LSTM neural network model, this research aims to provide a more effective and accurate 
tool for predicting stock market time-series data, enabling investors and traders to make 
informed decisions and improve their financial outcomes. 

3 An optimised CNN-stacked LSTM model for stock market predictions 

Considering the research gaps, we focused on making the deep learning model for time 
series data. We decided to go on with the CNN-Stacked LSTM Neural Network approach 
because CNN helps in tracking the features of the dataset and LSTM helps in tracking the 
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patterns, allowing us to train on them. This approach is not the first time as some 
researchers already tried to implement the CNN-stacked LSTM method but we tweaked 
the parameters, kernel sizes (for CNN), and layers to experiment and test it on real-time 
data. Since this is a regression type of problem where we had to train with time-series 
data, we used MSE as the standard metric rather than accuracy. The architecture diagram 
for the neural network is shown in Figure 3. 

Figure 3 Proposed methodology for optimised CNN-stacked LSTM neural network model for 
predicting stock market time-series data (see online version for colours) 
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The objective for using CNN-stacked LSTM in stock market prediction stems from the 
desire to leverage the unique strengths of these models. CNNs excel at capturing spatial 
patterns, while LSTMs are effective at modelling temporal dependencies. By combining 
these architectures, researchers aim to capture complex and multi-dimensional patterns in 
the stock market data, extract meaningful features from sequential data, model long-term 
dependencies, handle multivariate inputs, capture nonlinear relationships, and draw upon 
the success of these models in other domains. The ultimate goal is to develop robust 
prediction models that provide accurate insights into stock market trends, enabling 
investors and financial institutions to make informed decisions and improve risk 
management. 

3.1 Dataset description 

Data opening, closing, high, low, and volume are all examples of numerical historical 
data employed in these models. The information also includes technical indicators based 
on past performance. The rolling window approach is utilised for time series forecasting. 
A series of matrices, where each row represents a day and each column a feature, is 
created by rolling window. 

The description of each dataset is 
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1 NIFTY-50: The NIFTY-50 is a stock market index of the National Stock Exchange 
(NSE) in India. It consists of the 50 largest and most actively traded stocks across 
various sectors of the Indian economy. Similar to the SENSEX dataset, the NIFTY-
50 dataset may include historical price data, trading volumes, market capitalisation, 
sector information, and other relevant variables (Kaggle, 2017). 

2 NASDAQ: The NASDAQ is a global electronic marketplace for buying and selling 
securities, with a focus on technology stocks. The NASDAQ Composite Index 
represents the performance of over 3,000 stocks listed on the NASDAQ stock 
exchange. Datasets related to NASDAQ may include historical price data, trading 
volumes, company information, sector classification, and other variables relevant to 
the listed stocks (Kaggle, 2020). 

3 NYSE: The NYSE is the world’s largest stock exchange by market capitalisation. It 
lists a wide range of stocks from various industries. Datasets related to the NYSE 
may include historical price data, trading volumes, company information, sector 
classification, market indices, and other variables associated with the stocks listed on 
the NYSE (Kaggle, 2022). 

4 S&P 500: The S&P 500 stock dataset contains historical financial data for companies 
listed on the S&P 500 index. It includes information such as opening and closing 
prices, trading volume, and adjusted closing prices. The dataset is used for financial 
analysis, risk assessment, and stock market prediction. It is a valuable resource for 
investors and researchers studying the performance of S&P 500 companies (Kaggle, 
2022). 

3.2 Exploratory data analysis 

Before making a model, the first step is to collect enough datasets such that the base 
analysis is made to study the stock market data. So, we gathered enough datasets from 
Kaggle (explained in later stages) but realised that they are sample ones and we had to 
search for real-time ones. Then, we came across several finance APIs like Yahoo 
Finance, and Alpha Vantage which help in gathering stock data for a specific period. So, 
we took Alpha Vantage API and used the ‘TIME SERIES DAILY’ option to obtain stock 
data of a company ranging from ten years. We used ‘full’ mode to collect enough data 
rather than using ‘compact’ mode in API (which fetches only 100 columns meant for 
rapid usage cases) and we were able to collect the data for any company with valid API 
keys. Some stock data is also gathered using Google Sheets via the 
‘GOOGLEFINANCE’ function. Then we stored the data in CSV format for the testing 
phase. Then, we did an exploratory data analysis (EDA) on the dataset to know about the 
stock market data in depth. We also implemented Moving Average and Daily Return 
columns to know how a stock market works and analysed some of the features present in 
it. After that, we went to preprocessing phase. 

In the preprocessing phase, we first cleansed the data by removing NULL values from 
the dataset and taking the mean of data, and replacing it if necessary using the Pandas 
library. Then we took the four columns of any stock market dataset, namely ‘open’, 
‘close’, ‘high’, and ‘low’. These are the columns which mainly involve in training the 
dataset especially the ‘close’ column (shown in Table 2). The graphs are plotted using the 
matplotlib and seaborn libraries in Python. 
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3.3 Data normalisation and feature data construction 

Label transformation, duplicate elimination, and data normalisation are the three phases 
of data pre-processing for the proposed stock market prediction model. The initial step is 
to translate the symbolic class input columns into numerical labels depending on the 
prediction type. To minimise biased categorisation toward frequent data records, the 
second step is to remove duplicate information. The most essential stage is the third, 
which is primarily beneficial in stabilising the dataset by eliminating the biased features 
of greater values. It entails converting each element’s values into a proportionate range. 
The range [0, 1] is specified in the proposed method, and the elements are standardised 
toward it utilising a generalised normalisation condition. 

min

max min
normalised

Y YY
Y Y

−=
−

 (10) 

where Ymin and Ymax are the data feature’s minimum and maximum values, respectively, 
and Y is the data feature’s current value. The data characteristics are normalised to allow 
for linear data processing. 

During the preprocessing stage, we realised that CNN always considers  
two-Dimensional and three-dimensional arrays to train and select required features. But 
here, the data we have is of one-dimensional arrays. This is one of the reasons why CNN 
is often seen in computer vision (CV)-based applications and not in NLP-based 
applications. So, for the CNN model to parse the dataset, we made a function where the 
1D arrays are made to convert to 2D arrays. Table 2 shows the instance of the sample 
stock market dataset. 

[100, 1] tensors (precisely, a vector). Tensors are a type of data structure that 
describes a multilinear relationship between a set of objects in a vector space. So, for 
converting a 1-D array to a tensor, every 100 rows are taken, and from that the mean of 
the values are calculated and made to store in a separate column. This process is done for 
the entire dataset. In our case, we did this on the ‘close’ column as it’s the main column 
where we would decide the prediction of the stock data. 
Table 2 Instance of stock market dataset 

S. no. Date Symbol Open High Low Close VWAP Volume 
1 2004-08-25 TCS 1,198.7 1,198.7 979 987.95 1008.32 17,116,372 
2 2004-08-26 TCS 992 997 975.3 979 985.65 5,055,400 
3 2004-08-27 TCS 982.4 982.4 958.55 962.65 969.94 3,830,750 
4 2004-08-30 TCS 969.9 990 965 986.75 982.65 3,058,151 
5 2004-08-31 TCS 986.5 990 976 988.1 982.18 2,649,332 
6 2004-09-01 TCS 990 995 983.6 987.9 989.68 2,491,943 

After this step, we would obtain tensors for the CNN side of the model to train. Then, we 
split 80% for training and 20% for testing. Finally, we reshaped the data and sent it to the 
training phase. 
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3.4 CNN-stacked LSTM for stock price prediction 

The CNN is generally utilised in tasks based on recognition of objects and CNN can 
overcome the problems related to processing the objects. The performance of CNN 
architecture is analysed to predict the best stock according to the user’s previous 
portfolio. The stacked LSTM is used as a numerical function to aid in the provision of the 
stock market. A sequence processing model called a stacked LSTM, also referred to as a 
stacked LSTM, is made up of two LSTMs, first LSTM is trained on the data, and the 
second is trained on the outcome of the first LSTM to access additional data, which 
improves the context of the algorithm. The CNN is composed of the convolutional layer 
which acts as a platform to project the CNN where the attributes of products are stored. 
In this paper, the stacked LSTM is combined with the CNN architecture to provide an 
effective and efficient prediction of time series data prediction on stocks. The primary 
objective of the proposed stacked-LSTM architecture is to develop an efficient system 
that can be accessible with less data. The study utilises standard sequential CNN 
architecture to predict the best stock according to the company and user portfolio. 

3.4.1 CNN for extraction of feature attributes 
CNN is utilised to extract the top-notch features of the product attribute from input data. 
Based on the performance of the model and to reduce computational complexity, the 
sequential CNN architecture is adopted on the different stock market datasets. For an 
input attribute that has an area of 64 × 64 in channels based on attributes. The output is 
obtained as feature maps based on the CNN (trained) and it is denoted as 7 7

i
D

tF R × ×∈  
and 7 7

j
D

bF R × ×∈  in that the dimensional size of the output is denoted as D and the size of 
the feature map is denoted as 7 × 7. The visuals based on feature maps are compressed by 

itF ) and jbF  to gather dimensional vectors. The vectors based on the dimensions are 

denoted as 1 2 49{ , , ..., }i i i
i

t t t
tv V V V=  and 1 2 49{ , , ..., }i i i

j
t t t

bv V V V=  where the number of 
features represent in to feature map is denoted as V ∈ RD. The vectors ti and bj is obtained 
by pooling the respective itv  and jbv  vectors in a pooling layer, mathematically 
represented by equation (1). This approach allows for the extraction and representation of 
relevant features from the input data for stock market prediction tasks. 

49 49

1 1

1 1,
49 49

ji
i j

bt
t n b nn n

v V v V
= =

= =   (11) 

where the features utilised for embedding ti and bj is denoted as , .i j
D

t bv v R∈  

3.4.2 Stacked LSTM architecture 
The initial model for forecasting stock prices, which all the proposed models are based 
upon, consists of 2 LSTM architectures, thus the name stacked LSTM. The architecture 
of a stacked LSTM is constructed by the first LSTM is trained on the data, and the second 
is trained on the outcome of the first LSTM. The result of a stacked LSTM is the ability 
to detect complex features in the data and improve the performance of forecasting (Song 
et al., 2022). Figure 4 represents the stacked LSTM model organisation. 
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Figure 4 Stacked LSTM model organisation (see online version for colours) 

  

3.4.3 Initial CNN-stacked LSTM model 
Before the model is initialised the data is prepared. The data is partitioned into training, 
validation, and testing. The data does not only consist of the sequences of stock prices but 
also a vector based on the closing prices, and labels, as the model will adjust its weights 
according to these values. As the model is a stacked LSTM, two sets of models which are 
based on the equations of the LSTM background will be constructed. More specifications 
on how and which hyper parameters were chosen for the equations can be found in 
Section 4. Note the initial value of the h0 and c0 will consist of random elements, as these 
vectors are needed to be passed into the model at the initial time. To obtain an optimal 
model it is relevant to address the problem of overfitting, which has an impact on the 
stacked LSTM. Figure 5 represents the proposed CNN-stacked LSTM model for stock 
market time series data prediction. 

Figure 5 Proposed CNN-stacked LSTM model for stock market time series data prediction  
(see online version for colours) 
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3.4.4 Training phase 
After the dataset is processed, the NN model has to be made. In our case, it is the  
CNN-stacked LSTM Neural Network model. For our model, we considered dividing the 
model into two parts, CNN and stacked LSTM. 

• CNN: For the CNN section of the model, we followed a custom way instead of 
ascending kind of way in the size of layers. So, we made three layers of neuron size 
6,412,864 with kernel size = 3 along with max pooling layers in between. Finally, we 
added a flatten layer at the end of the CNN section to convert the tensors back to a 
1D array. All CNN layers are added with the time distributed function to train every 
temporal slice of input, as we’re approaching a time-series problem in this case. 
Then, the processed data is sent to LSTM layers. 

• LSTM: For the LSTM, we made two bidirectional LSTM layers to detect the features 
and train them forward and backward. For each layer, the neuron size is 100. 
Additionally, dropout layers are added in between with a value of 0.5 in drop some 
features for stability. Last, we added a dense layer with a linear activation function, 
and ‘Adam’ optimiser, MSE as the loss function, and ‘MSE’ and ‘MAE’ as metrics. 

Overfitting poses a common challenge in ML, leading to decreased performance on test 
datasets. It arises when the algorithm overly fits the training data, usually due to model 
complexity, mismatched dataset representation, or excessive noise. To mitigate 
overfitting, dropout is employed as a preventive measure. Dropout temporarily 
deactivates a random set of neurons, allowing the remaining neurons to continue training. 
This prevents excessive adaptation to the training set (Srivastava et al., 2014). In the 
proposed model, dropout is applied to each model to address overfitting. 

The model is learning during the training phase, the data from the sequence and labels 
are passed to the model in cycles called epochs. For each prediction, the value is applied 
to the loss function, which for this model is the mean square error, together with the 
matching label value. The value of the loss function is then applied to the back 
propagating algorithm Adam which is applied according to Kingma and Ba (2014). The 
Adam optimiser will adjust the weights of the stacked LSTMs to minimise the loss, thus 
for each epoch, the model will adjust its weights concerning the data. 

( )2

1

1 N
i ii

MSE p t
N =

= −  (12) 

To find the most optimal model and also as a way to avoid overfitting, a validation 
dataset is constructed from the total dataset. Each time the model is adjusting the weights, 
it is tested on the validation dataset. Note that if the validation loss increases it implies 
the model is overfitting. Therefore, to obtain the most optimally performing model, the 
one model with the lowest validation error will be saved. When the training phase is 
completed, the saved model will be loaded and set to the evaluation model, turning 
dropout off, this also occurs in the validation dataset. Thereafter the testing dataset is 
applied, which has been unstandardised, and evaluated according to a given set of 
evaluation metrics. 
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3.4.5 Testing phase 
After the model has been trained and the values are noted, we saved the model in HDF5 
format using Keras API in the TensorFlow library. Then, we loaded the HDF5 file and 
tried training the model again but this time with a different dataset, we were able to train 
the model but the loss value varies accordingly. For example, if the loss is 0.055 during 
the training phase, the loss increases to 0.153 (estimated, not accurate). It is also found 
that this happens depending on the dataset we use, for the NIFTY sample dataset, the 
error did not occur whereas, in the NASDAQ dataset, it occurred while loading up the 
saved model. 

3.5 Performance measures 

For the evaluation of the model the common metrics are used: mean average percentage 
error (MAPE), MAE, RMSE, and the correlation coefficient (Powers and Ailab, 2011). 

3.5.1 Mean average percentage error 
MAPE describes the error in percentage in consideration of the true value, ti, and the 
predicted value, pi 

1

1 N
i i

ii

p tMAPE
N t=

−=   (13) 

3.5.2 Mean absolute error 
MAE represents the average absolute error 

1

1 N

i i
i

MAE p t
N =

= −  (14) 

3.5.3 Root mean squared error 
RMSE is a measurement of the average Euclidean distance between ti and pi 

( )2

1

1 N

i i
i

RMSE p t
N =

= −  (15) 

3.5.4 The correlation coefficient (R) 
The correlation coefficient (R) measures the correlation between the prediction and the 
true value. A greater value on R implies a greater correlation between the variables t and 
p. 
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 (16) 

3.5.5 Regularisation 

• L1 regularisation, also known as the goal of the ML technique known as Lasso 
regularisation is to include a penalty term whose magnitude is directly related to the 
absolute values of the model’s coefficients (Tibshirani, 1996). 

• L2 regularisation known as ridge regularisation is applied to models to combat 
overfitting. Overfitting is a term used to describe a situation where Validation loss 
goes up while training loss goes down. In other words, the model is well fitted on 
training data but it is not predicting accurately for validation data. The model is not 
able to generalise (Tikhonov, 1943). 

( )( | ) ( )minimise Loss Data Model complexity model+  (17) 

The complexity of the models used in the paper was minimised by using L2 
regularisation. The formula of L2 regularisation is the sum of the square of all the 
weights, 

2 2 2 2
2 1 2regularisation term || || ... nL w w w w= = + + +  (18) 

In the models, two layers of L2 regularisation were used before the final output layer. 

3.5.6 Evaluation of loss function 
In the context of stock market prediction, the evaluation of the loss function is crucial. 
The dataset primarily consists of positive ratings representing successful stock 
predictions, while negative ratings indicating unsuccessful predictions are absent. To 
address this, a ranking loss function is employed to capture the relationship between the 
actual price and the predicted price. This loss function generates pairs of positive and 
negative for each stock, incorporating corrupted pairs (ti, bj′) and (ti′, bj) where positive 
and negative are exchanged. By considering these pairs, the ranking loss function 
facilitates a comprehensive assessment of stock market predictions. So, the noticed pair 
must be given priority at on higher rate than the unnoticed one, it is represented in 
equation (14) shown below, 

( )( )( , , )
ˆ ˆln compat compat

rl ij iji j j D
L σ y y ′′ ∈

= − −  (19) 

where all training samples are represented as D and the sigmoid function is denoted as σ. 
Finally, by using equations (2), (4), and (14), the objective function of the Attribute 

specific recommendation system for health products is formulated using equation (15). 

category attribute rlL L L L= + +  (20) 
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Assessing the model’s prognostic accuracy during times of extreme index volatility, such 
as large out-of-the-ordinary swings in either direction, is also part of the evaluation 
process. 

3.6 CNN-stacked LSTM for stock market price prediction 

Algorithm: CNN-Stacked LSTM for stock market price prediction 
Input: NIFTY-50, NYSE, and S&P 500 stock data 
Output: Predictions 
Step 1 Import the necessary libraries. 
Step 2 Prepare the input data: 
 X_train: Training input features (time series data) 
 y_train: Training target labels (stock prices) 
 Partition of the Data in training, and testing 
Step 3 Define the model architecture: 
 Create a Sequential model. 
 Add a Conv1D layer with filters, kernel size, and activation function. 
 Add Bidirectional LSTM layers with units and return_sequences set to True. 
 Add any additional LSTM layers as needed. 
 Add a Dense output layer. 
 model.add(Dense(units=1)) 
Step 4 Compile the model: 
 Choose an optimiser (e.g., ‘adam’) and a suitable loss function (e.g., ‘mse’). 
Step 5 Train the model: 
 Fit the model to the training data (Xtrain, ytrain) with the desired number of epochs and batch 

size. 
 for epoch in epochs do 
 Model set to training mode, activating dropout for each data in training data do 
Step 6 Make predictions: 
 Use the trained model to predict stock prices on the test data. 
 Predict using training data and LSTM 
Step 7 Evaluate the model (optional): Calculate evaluation metrics such as mean squared 

error (MSE) using the predictions and actual values. 
Step 8 Perform any further analysis or visualisation based on the predictions and evaluation 

metrics. 

4 Results and discussion 

In this section, we describe the hyper parameters that were used for the models, the 
specifications on the computer that the model was trained on, and how the data was 
collected. Further, the details of how the data was partitioned are explained and what 
measurements are applied for evaluation. At last, the experimental results of the models 
are shown. We tested and experimented with the model with different datasets from 
Kaggle consisting of sample data of mixed content from different stock markets (Kaggle, 
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2017), NIFTY-50 (Kaggle, 2020), NASDAQ, and NYSE (Kaggle, 2022) to find how the 
model copes with the different stock market. The proposed research work is implemented 
using the libraries Pytorch and Sklearn. 

4.1 Experimental setup 

The number of tuneable parameters, hyper parameters, of the model is 5 and is set to, 
batch size: 1, hidden size: 128, number of stacked LSTMs: 2, dropout: 0.3, and learning 
rate: 0.001. A changeable parameter that does not involve the model is the size of the 
window that is used for the rolling window method, which according to Nti et al. (2021) 
changes the performance. In this research work, the window size is set to 20. Table 3 
shows the model parameters used in implementing this research work. 
Table 3 Model parameter 

Hyper parameters Value 
Batch size 40 
Hidden size 128 
LSTM modules (integrated into the stacked environment) 2 
Dropout 0.5 
Kernel size 3 
Learning rate 0.001 
Activation function ReLu 
Optimiser Adam 
Window size 20 

The training and validation data is shuffled, meaning each time the data is propagating 
through the model it is reshuffled. If the validation error is lower than the epoch before, 
the model is then saved. To minimise the training for the model, the algorithm will 
monitor if the validation error has not decreased in 50 epochs the model will break and 
continue to the test data. The number of components was chosen based on the inbuilt 
function in sklearn for feature selection. 

4.2 Results on NIFTY-50 (NSE), NASDAQ 

MSE and MAE were determined during training to assess the CNN-Stacked LSTM 
model’s performance on the NIFTY-50 (NSE) and NASDAQ datasets. When comparing 
projected and observed values, the MSE measures the average squared discrepancy, 
while the MAE shows the average absolute discrepancy. These metrics indicate the level 
of accuracy and precision achieved by the model during training on the NIFTY-50 (NSE) 
and NASDAQ datasets. By monitoring and analysing the MSE and MAE values obtained 
during training, it is possible to assess the model’s convergence, identify areas for 
improvement, and gauge its suitability for predicting stock market trends and making 
informed investment decisions. Figures 6 and 7 represent MSE obtained during training 
and MAE obtained during training for the NIFTY-50 dataset. 
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Figure 6 MSE performance during training (see online version for colours) 

 

Figure 7 MAE performance during training (see online version for colours) 

 

The CNN-stacked LSTM model has been applied to both the NIFTY-50 (NSE) dataset 
and the NASDAQ dataset. The prediction graphs were generated to visualise the model’s 
performance. For the NIFTY-50 (NSE) dataset, the prediction graph was based on 
shuffled sample data, while for the real stock data of NIFTY-50, the prediction graph was 
generated without shuffling the data. These graphs provide a visual representation of how 
well the model predicts stock market trends and fluctuations in both the sample and real 
datasets. Analysing these prediction graphs can provide insights into the model’s ability 
to capture and forecast the patterns and movements in the NIFTY-50 (NSE) and 
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NASDAQ datasets, assisting in financial forecasting and investment decision-making. 
Figure 8 the prediction graph for sample NSE data (shuffled) and the prediction graph for 
real stock data NIFTY-50 (un-shuffled) is shown in Figure 9. 

Figure 8 The prediction graph for training data (shuffled) (see online version for colours) 

 

Figure 9 The prediction graph for NIFTY-50 (un-shuffled) the prediction graph for testing data 
(see online version for colours) 
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Table 4 presents accuracy scores of the CNN-Stacked LSTM model on the NIFTY-50 
dataset. Metrics such as MSE, MAE, variance, and R2 score assess the model’s 
performance in predicting stock prices. The low MSE value of 0.030 indicates accurate 
predictions and successful capture of patterns and trends in the dataset. The model’s 
ability to recommend stocks demonstrates its practical value for investment decisions. By 
utilising the model’s accurate predictions, investors can make informed choices and 
potentially enhance their investment performance. Table 5 represents the model 
performance on different stock markets (Kaggle, 2017), NIFTY-50 (Kaggle, 2020), 
NASDAQ, and NYSE (Kaggle, 2022) to find how the model copes with the different 
stock markets. The model tested with stock data both shuffled and un-shuffled. It was 
able to predict most of the stocks as shown in Table 5. 
Table 4 Various performance scores on NIFTY-50 dataset 

Name Score 
Loss 0.0012 
Train MSE 0.0012 
Train MAE 0.0265 
Test MSE 0.0148 
Test MAE 0.0814 
Variance 0.938731 
R2 score 0.938751 
Max error 0.250160 

Table 5 MSE score with datasets NIFTY-50 (Kaggle, 2020), NASDAQ, and NYSE (Kaggle, 
2022) 

Dataset and MSE scores 
Dataset MSE score 
NIFTY (SBIN – sample) 0.001 
NASDAQ (ACTG – sample) 0.1565 
NASDAQ (AAOI – sample) 0.0016 
NYSE (IBM – real) 0.0027 
BSE (RELIANCE – real) 0.0145 

The MSE performance of the LSTM, CNN-LSTM, and CNN-stacked LSTM models was 
compared to evaluate their effectiveness in predicting stock prices or other time series 
data. The CNN-Stacked LSTM model achieved the lowest MSE of 0.030, followed by 
the CNN-LSTM model with an MSE of 0.035, and the LSTM model with an MSE of 
0.045. These MSE values indicate the average squared difference between the predicted 
and actual values, serving as a measure of accuracy for the models’ predictions. The 
lower MSE values for the CNN-Stacked LSTM and CNN-LSTM models suggest their 
superior performance in capturing patterns and trends in the data, leading to more 
accurate predictions compared to the LSTM model. Table 6 provides a visual 
representation of the MSE comparison among the models. 
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Table 6 MSE Scores for LSTM, CNN-LSTM, and CNN-stacked LSTM models 

Model MSE score (Avg) 
LSTM 0.045 
CNN-LSTM 0.035 
CNN-Stacked LSTM 0.0014 

4.3 CNN-stacked LSTM model performance loss on NIFTY-50 dataset 

The performance loss function of the CNN-Stacked LSTM model on the Nifty-50 dataset 
plays a crucial role in evaluating the model’s predictive accuracy. The choice of an 
appropriate loss function is essential for guiding the training process and optimising the 
model’s parameters. Commonly used loss functions for regression tasks on financial 
datasets, such as the Nifty-50 dataset, include MSE and MAE. On the other hand, MAE 
computes the average absolute difference, which is useful for assessing the model’s 
ability to capture the magnitude of the predicted values accurately. By minimising the 
loss function during training, the CNN-Stacked LSTM model aims to improve its 
predictive capabilities and achieve higher accuracy in forecasting the Nifty-50 dataset. 
Figure 10 represents the performance loss of the CNN-stacked LSTM model on the 
NIFTY-50 dataset. 

Figure 10 The performance of the CNN-stacked LSTM model on the NIFTY-50 dataset  
(see online version for colours) 

 

4.4 Performance of CNN-Stacked LSTM model on NIFTY-50 

The performance of the CNN-Stacked LSTM model on the Nifty-50 dataset was assessed 
using metrics such as MSE, MAE, variance, and R2 score. These metrics provide a 
comprehensive evaluation of the model’s predictive accuracy, precision, and overall 
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performance on the Nifty-50 dataset. Figure 11 visually represents the model’s 
performance, showing that it predicts the stock prices closely to the actual prices. By 
analysing the MSE, MAE, variance, and R2 score, it is possible to determine the model’s 
effectiveness in capturing and forecasting patterns and trends in the NIFTY-50 dataset. 

Figure 11 Generalised performance of CNN-stacked LSTM model on NIFTY-50 dataset  
(see online version for colours) 

 

Figure 12 Models prediction NYSE stock (see online version for colours) 
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4.5 Performance of CNN-stacked LSTM model on the NYSE dataset 

The CNN-stacked LSTM model was trained on the NYSE dataset, and the MSE and 
MAE were used to evaluate its performance. The MSE measures the average squared 
difference between predicted and actual values, while the MAE represents the average 
absolute difference. These metrics assess the model’s accuracy and precision during 
training on the NYSE dataset. Monitoring the MSE and MAE values helps assess 
convergence, identify areas for improvement, and evaluate the model’s suitability  
for predicting stock market trends and making informed investment decisions.  
Figures 12 and 13 display the stock prediction rate of the NYSE dataset. 

Figure 13 Models prediction NYSE stock (see online version for colours) 

 

4.6 Performance of CNN-Stacked LSTM model on S&P 500 dataset 

The performance of a CNN-Stacked LSTM model on the S&P 500 dataset was assessed 
through graphical analysis. The model’s predictions for the next 5, 10, 25, 50, and 100 
days were plotted and examined. Figure 14 provides visual representations of the model’s 
forecasting capabilities and can be used to evaluate its accuracy and reliability in 
predicting future trends in the S&P 500 dataset. This hybrid architecture allows the model 
to effectively capture both spatial and temporal patterns in the data. The results showed 
that the CNN-Stacked LSTM model achieved promising performance in predicting the 
S&P 500 dataset. Further analysis of the graphs can offer insights into the model’s 
performance and potential applications in financial forecasting and investment decision-
making. 
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Figure 14 Performance of CNN-stacked LSTM model on S&P 500 dataset (see online version  
for colours) 
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5 Conclusions 

Designing a customised CNN-LSTM model can initially be challenging due to the 
existence of numerous algorithms for stock data prediction that is not fully optimised. To 
address this, we conducted training and testing using various datasets such as NYSE, 
NASDAQ, and NIFTY and observed variations in the model’s accuracy based on the 
dataset. Notably, for the NIFTY dataset, the model exhibited excellent performance, 
accurately predicting up to 99% of the stocks even during the testing phase. However, 
when dealing with datasets like NYSE, the accuracy varied during testing, possibly due 
to noise present in the dataset during that phase. We measured the MSE during training 
and testing, obtaining values ranging from 0.001 to 0.05 (approx) and 0.002 to 0.1 
(approx) respectively, depending on the dataset. The paper focuses on demonstrating how 
the combination of CNN and LSTM can extract features from processed dataset tensors 
and detect patterns. It presents an approach for predicting stock market movements with a 
high level of accuracy. 

As a future work, several potential areas for future exploration in the project include 
investigating the use of gated recurrent units (GRUs) as they have shown promising 
performance compared to LSTM models. Optimisation of hyper parameters, loss 
functions, and optimisers could enhance results, as the current parameters are arbitrary. 
Transfer learning could be expanded to train models on multiple stocks, potentially 
revealing hidden market structures. Ensembling techniques combining technical and 
fundamental indicators may improve model performance. Lastly, studying the impact of 
data variations, such as different technical indicators and timeframes, could yield better 
insights. 
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