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Abstract: In conventional independent component analysis (ICA) algorithms,
the definition of the objective function is typically based on specific
dependency criteria. The choice of these criteria significantly influences the
performance of the algorithm. This article introduces a general class of
dependency criteria, which is based on the cumulative distribution function,
to characterise the independence of two variables. Furthermore, an applicable
ICA algorithm, grounded in this class and utilising a non-parametric
estimator, is proposed. The performance of the proposed algorithm is
evaluated and compared with several well-known traditional algorithms, using
Amari error estimation calculation as a benchmark. The proposed algorithms
have been applied to a real-time series data, serving as a pre-processing
clustering method.
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1 Introduction

Multivariate data, due to its high dimensionality and complex interdependencies among
observed values, presents significant challenges for analysis. Therefore, it becomes
essential to segregate the data into different aspects to discern patterns effectively.
Independent component analysis (ICA) has been extensively utilised as an unsupervised
tool for blind source separation in multivariate statistics, particularly for analysing
mixtures of independent source signals (Pfister et al., 2019). ICA was first introduced
by Hérault in the 1980s, with further developments made by Hyvärinen et al. (2001)
and Comon (1994). The application of ICA on signal data has been explored by Comon
and Jutten (2010) and Nordhausen and Oja (2018).

ICA is a matrix factorisation technique where the signals captured by each individual
matrix factor are optimised to be as mutually independent as possible. This method
has been highlighted in various works for its applications in dimensionality reduction,
deconvolution, data pre-processing, meta-analysis, and other areas across different data
types (Sompairac et al., 2019). The primary objective of ICA is to extract significant
components from a dataset, which can encompass various forms such as sounds, stock
markets, or images.

ICA has been utilised across multiple fields for the extraction of independent
components. These include network analysis for traffic incident detection and estimation
(Sheikh and Regan, 2022), optimal portfolio diversification (Lassance et al., 2022),
identification of structural autoregressive models in macroeconomics (Moneta and
Pallante, 2022), and magnetotelluric sounding data analysis (Zhou et al., 2022).
Furthermore, it has been employed for clustering in wireless sensor networks (Shahina
and Kumar, 2022), image feature extraction (Shang et al., 2022), and various medical
applications, such as brain activity analysis (Tabanfar et al., 2022; Meng et al., 2022;
Jayabal et al., 2022), electroencephalogram (EEG) analysis (Lyu and Fu, 2022; Antony
et al., 2022), individual molecular characterisation (Rincourt et al., 2022), and the
dissociation of biologically single-layer networks (Lipshutz et al., 2022), among others.

ICA has found applications in diverse scientific fields, including medical signals
(Xie et al., 2017; Pontifex et al., 2017), audio signals for noise elimination (Du
and Swamy, 2014), robust automatic speech discernment model projection (Cho and
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Park, 2016), biological assays (Aziz et al., 2016), space image reception (Naik and
Kumar, 2011), climate data analysis (Funaro et al., 2001), financial data (Moneta et al.,
2010), and socio-economic data, work environment, and employment rate (Tan and
Zhang, 2012). It is also used as a pre-processing step in clustering time series data
(Rahmanishamsi et al., 2018; Nascimento et al., 2017).

ICA is a computational technique utilised for decomposing a multivariate signal into
constituent, additive sub-components. It aims to identify independent components by
maximising the statistical independence among the estimated elements. The formulation
of the ICA algorithm hinges upon the selection of a metric for independence, with two
primary paradigms being the minimisation of mutual information and the maximisation
of non-Gaussianity.

This study introduces a novel set of dependency criteria founded on the distribution
function to characterise the independence of two random variables and examine
their properties. Additionally, an ICA algorithm is proposed based on an approach
derived from these novel criteria. To assess the efficacy of the proposed algorithm, a
comparative analysis is conducted between the new algorithm and existing methods.
Finally, the algorithm is employed as a pre-processing step for ICA in clustering a batch
of time series examples.

In the upcoming section, we will delve into the concept of ICA. Following this,
an exploration into a dependency criterion based on distribution functions will be
introduced and substantiated. Section 4 will unveil several new algorithms designed for
ICA. Their comparative performance against existing ICA algorithms will be evaluated
in terms of the average of Amari errors via a Monte Carlo simulation survey, presented
in Section 5. Section 6 will focus on the application of these algorithms in time series
data clustering. Furthermore, this study delves into the application of data clustering
methodologies to a set of real-time series data, specifically the gross domestic product
(GDP) per capita index, extracted from the statistics of 26 countries spanning from
1975 to 2020. The conclusion of the research is drawn by summarising the results and
analysing the structures extracted, as detailed in Section 7.

2 Independent component analysis

Given the complexity and high dimensionality inherent in multivariate data analysis, it
often presents challenges in its application. Therefore, it becomes essential to segregate
different facets of the data for effective utilisation, particularly in the context of
identifying specific patterns in such scenarios (Tharwat, 2021).

In this study, ICA has been employed for signal analysis. Consider each signal
as a time-varying vector, denoted as si = (s1i, s2i, . . . , sni)

T , i = 1, 2, ..., d represent
a signal where n is the number of time steps, sij is time j of the signal si, and d
is the number of source signals. Here, (d) also represents independent source signals,
and a matrix S = (s1, s2, · · · , sd) is defined, where S ∈ Rn×d is matrix of the source
signals. These source signals may be mixed, and each source signal influencing the
output signals in different ways. Therefore, d mixtures can be represented as X =: SA,
where X ∈ Rn×d is the matrix of the mixed signals, n is the number of mixes, and A ∈
Rd×d is a mixing coefficients matrix. S into a mixed signal in X = (x1,x2, · · · ,xd)
space as X = SA. The objective of the model is defined as the extraction of source
signals by finding the unmixing coefficient matrix (W ). This matrix is used to convert
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the mixed signals into a set of independent signals as as X → Y : Y = XW , where
W ∈ Rd×d is the matrix of unmixing coefficients, and it is inverse of the matrix A.

Based on the estimation principles of ICA, the stages of centralisation and whitening
are commonly employed. Data whitening involves transforming mixed signals into
uncorrelated signals and scaling them by their respective variances. This whitening
process is a step that is essential for preparing the data for the ICA algorithm. Notably,
the principal component analysis (PCA) method can be used to whiten the output signals
in ICA. The PCA has been used by Ismail et al. (2009), Anbumalar et al. (2011), Kaur
and Vashisht (2011), Sivaramakrishna (2011) and Rahmanr et al. (2012).

In various research studies, different types of ICA procedures and their
interpretations have been explored. Most ICA algorithms aim to minimise a contrast
function that measures the degree of dependency between components. The effectiveness
of these algorithms is contingent upon the choice of the contrast function and the
algorithm used to implement the optimisation problem. The estimation of the unmixing
matrix (W matrix) can be achieved through several main approaches to independence,
leading to the creation of unmixed matrices with slight variations. In all these
approaches, an unmixed matrix is obtained, and the whitened data is projected onto
this matrix to extract the independent signals. For further details, the works of Tharwat
(2021), Pfister et al. (2019) and Stone (2004) are recommended for reference.

To estimate the independent components, several methods have investigated in
previous re- searches. Based on Hyvärinen et al. (2001), maximising non-Gaussianity by
negative entropy and estimating the W matrix by the maximum likelihood. Minimising
the mutual information (MI) criterion (Hyvärinen, 1999) has represented one of the most
popular ICA estimation perspectives. There are several algorithms constructed base on
minimising MI to estimate the independent components (Langlois et al., 2010).

Some of the most applicable algorithm in these perspectives are FastICA algorithm
based on MI minimisation (Hyvärinen, 1999), Infomax algorithm based on the
maximum likelihood method (Lee et al., 1999), JADE algorithm based on maximising
kurtosis (Cardoso, 1999), RADICAL algorithm based on the kullback leibler criterion
(Learned-Miller and Fisher, 2003), HICA algorithm based on the copula function of
Hoeffding’s criterion (Rahmanishamsi et al., 2018) and RLICA algorithm based on the
copula function of the squared loss MI criterion (Rahmanishamsi and Dolati, 2018). In
the next section, some ICA approaches based on minimising MI will be investigated.

The estimation of independent components in ICA involves various methods and
criteria. One approach, as proposed by Bingham and Hyvärinen (2000), is based on
non-Gaussianity, measured by kurtosis and negative entropy (negentropy), with the
aim of maximising non-Gaussianity to find the independent components (Shimizu
et al., 2006). Additionally, the maximum likelihood (ML) method is utilised in ICA
to estimate the matrix W , providing the best fit for the extracted Y signals – see:
Gaeta (1990), Pham et al. (1992) and Pearlmutter and Parra (1996). Due to the mutual
information (MI) criterion measures the independence between two random variables,
many algorithms for ICA are constructed based on minimising MI to estimate the initial
signals (Langlois et al., 2010). Therefore, independent components can be obtained by
minimising MI between different components; see Pfister et al. (2019) and Tharwat
(2021). In this setting, the matrix W is obtained such that the MI criterion to be close
to zero.
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3 Proposed dependency criterion

The formulation of the objective function in ICA traditionally relies on density or copula
density functions. However, accurately estimating these functions poses significant
challenges due to inherent errors in the estimation process. A potential resolution to
this issue lies in the utilisation of cumulative distribution functions (CDFs) within
ICA methodologies. Unlike non-parametric-based density function estimators, empirical
distribution functions (EDFs) offer a notably simpler and faster approach in statistical
inference. EDFs exhibit a convergence towards theoretical cumulative distribution
functions, enhancing their efficacy in approximating dependencies between variables.
The use of empirical distribution functions, which converge to theoretical CDFs, holds
promise in evaluating the independence between two random variables. This approach
proves particularly valuable when assessing a dependency criterion for characterising
independence between variables.

Drawing from these interpretations, an investigation centred on a criterion
employing cumulative distribution functions has been undertaken. This criterion aims to
characterise the independence between two random variables by evaluating their equality
to zero.

To explore this function, consider two random variables, X1 and X2, with a joint
distribution function F , and individual marginal distribution functions F1 and F2,
respectively. Let g : R+ → R+ be a decreasing function for x < 1, increasing for x ≥
1, and g(1) = 0. A generalised dependency criterion denoted as GDCg , based on
cumulative distribution functions, is defined as follows:

GDCg(X1, X2) = sup
(x1,x2)∈R2

[
g

(
F (x1, x2)

F1(x1)F2(x2)

)]
.

Notice that these divergences will vanish if and only if the random variables X1 and
X2 are independent.

Let Xn×2 be the matrix of observation from random vector (X1, X2) with the
joint distribution function F and the marginal cumulative distribution functions F1 and
F2, respectively. Consider xij = [X]ij , where i = 1, 2, ..., n, j = 1, 2. The functions
denoted as F̂1(x1) =

∑n
i=1 I(xi1≤x1)

n and F̂2(x2) =
∑n

i=1 I(xi2≤x2)

n correspond to the
marginal distribution functions, while F̂ (x1, x2) =

∑n
i=1 I(xi1≤x1,xi2≤x2)

n represents the
joint empirical distribution function. Consequently, the GDCg can be estimated as:

ĜDCg(X1, X2) = sup
(x1,x2)∈R2

[
g

(
F̂ (x1, x2)

F̂1(x1)F̂2(x2)

)]
. (1)

4 An ICA algorithm based on ĜDCg (GDCICA)

In this section, the estimator denoted as ĜDCg for GDCg in equation (1) has
been utilised in the development of several new algorithms for ICA. Let X be a
d-dimensional random vector. ICA aims to find a matrix denoted as W ∈ Rd×d such
that the components Y1, Y2, . . . , Yd of the new random vector Y = XW exhibit minimal
statistical dependency. A contrast function within an ICA algorithm is typically based
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on a measure of dependency, represented as f , and is defined as φX(.), satisfying
φX(W ) = f(XW ). Consequently, the core challenge in ICA involves determining Ŵ ∈
Rd×d that minimises the contrast function φX(W ).

For statistical independence in ICA problem, pairwise independence refers to a
sufficient measure (Comon, 1994). Thus a d-dimensional ICA problem solution defines
as a generalised successively solution for a 2-dimensional ICA problems. In other words,
a d-dimensional linear transformation described by a d× d orthogonal matrix R defines
as equivalent to a composition of 2-dimensional rotations. Furthermore, the idea for
searching a rotation angle such that the corresponding demixed dataset has its GICAg

minimised, is similar to the RADICAL algorithm (Learned-Miller and Fisher, 2003).
Based on previous definitions, the general process of the algorithm for the

d-dimensional case is summarised as follows:

Algorithm 4.1:

Input: A matrix Xn×d where rows are mixed signals (centred).

Procedure for calculate GDCICA:

1 Whiten the matrix X of the form Y = X ×Q′, where Q is a whitening matrix;

2 Define the matrices Ŵ and Ŝ with all entries zero, as the initial matrices for
unmixing and source signals, respectively.

3 Set Rij(θ), a rotation matrix of elements (i, j), of the form

Rij(θ) =



1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · cos(θ) 0 · · · 0 − sin(θ) · · · 0
0 · · · 0 1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 1 0 · · · 0
0 · · · sin(θ) 0 · · · 0 cos(θ) · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 1


, (2)

For all 1 ⩽ i < j ⩽ d, repeat the following steps:

4 Define ĜDCg(Si(θ), Sj(θ)) as a function of θ, where it is assumed that S(i,j)(θ)
which denotes the (i, j)th columns of Y ×Ri,j(θ), is a sample from
(Si(θ), Sj(θ)).

5 Minimise the function ĜDCg(Si(θ), Sj(θ)) over θ ∈ [−π

2
,
π

2
] and set

θ
(i,j)
0 = argmin

θ
ĜDDCg(Si(θ), Sj(θ)).
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6 Update (i, j)th columns of Ŵ as R′

i,j(θ
(i,j)
0 )×Q, and (i, j)th columns of Ŝ as

Y ×R(θ
(i,j)
0 ).

Output: The unmixing matrix Ŵ and the matrix of source signal estimates Ŝ.

5 Simulation study

To conduct a simulation study, the Monte Carlo simulation method has employed
to measure the performance of GDCICA using various algorithms such as FastICA
(Hyvärinen, 1999), Infomax (Lee et al., 1999), JADE (Cardoso, 1999), RADICAL
(Learned-Miller and Fisher, 2003), HICA (Rahmanishamsi et al., 2018) and RLICA
(Rahmanishamsi and Dolati, 2018) within the R software environment.

The data generation process followed these steps:

• Generate a matrix Sn×d, where n denoted the number of observations and d
denoted the number of variables (n ≥ d), also each column comprises a random
sample of size n drawn from a specific distribution. Those incorporated 18
distinct one-dimensional densities recommended by Bach and Jordan (2002),
encompassing distributions such as student-t, uniform, exponential, a mixture of
two Laplace densities, symmetric and non-symmetric Gaussian mixtures. Figure 1
illustrates the density plots of these 18 distributions.

• Generate a random matrix

Ad×d =

U11 U12 · · · U1d

...
...

...
...

Ud1 Ud2 · · · Udd

 ,

where Uij , i, j = 1, 2, · · · , d, independently follows a arbitrary random
distribution.

• Construct a data matrix Xn×d using the formula X = SA.

• Whiten the matrix X of the form Y = X ×Q′. It can be whitened by multiplying
X by the inverse of the square root of the sample covariance matrix, resulting in
a matrix of whitened data Xn×d. This whitened data matrix (Q) is the input for
the GDCICA algorithms.

Subsequently, all ICA algorithms generated an unmixing matrix W , which was applied
to matrix X to recover estimations of the independent components. The Amari error,
initially proposed by Amari et al. (1996), serves as a robust method for error assessment
in this context. Let A represent the mixing matrix, while the unmixing matrix is defined
through the equation W = A−1 using Ŵ estimator. The Amari error computation is
based on the following expression:

Amari error =
1

2d(d− 1)

d∑
i,j=1

(
|aij |

maxi |aij |
+

|aij |
maxj |aij |

)
− 1

d− 1
.
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Here, the symbol aij = [ŴA]ij represents an estimated unmixing matrix Ŵ . Under
these assumptions, the following conditions hold true within this expression: the metric
[0, d− 1] consistently resides within the range of Amari error, also equating to zero
solely if Ŵ and W denote similar components. Furthermore, this metric remains
invariant to the permutation and scaling of columns within A and Ŵ .

Figure 1 Density plots of 18 different distribution of sources, (a) student with 3 degrees of
freedom (b) double exponential (c) uniform (d) student with 5 degrees of freedom
(e) exponential (f) mixture of two double exponentials (g, h, i) symmetric mixtures
of two Gaussians: multimodal, transitional and unimodal (j, k, l) non-symmetric
mixtures of two Gaussians, multimodal, transitional and unimodal
(m, n, o) symmetric mixtures of four Gaussians: multimodal, transitional and
unimodal (p, q, r) non-symmetric mixtures of four Gaussians: multimodal,
transitional and unimodal
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Within GDCICA, certain functions are regarded as special cases of the function g
outlined in equations below:

g1(x) =
(xc1 − 1)2

x2c1 + 1
, g2(x) = − ln(xc2) + xc2 − 1,

g3(x) = xc3 ln(xc3)− xc3 + 1, g4(x) = ec4(x
c∗4−1) − c4(x

c∗4 − 1)− 1,

g5(x) = ln(x)2c5 ,

where c1, c2, c3, c4, c∗4 and c5 are some real values.
In GDCICA, a comprehensive exploration of various constants c1, c2, c3, c4, c∗4

and c5 has been conducted. The findings reveal that employing specific functions g1,
g2, g3, g4, g5 with corresponding c1 = −0.5, c2 = 0.5, c3 = 0.5, c4 = −0.5, c∗4 = 0.5,
and c5 = 1 values yields commendable performance. Specifically, denoting GDCICAg

with c1 = −0.5 is denoted by GDCICAg1 , with c2 = 0.5 is denoted by GDCICAg2 ,
with c3 = 0.5 is denoted by GDCICAg3 , with (c4, c

∗
4) = (−0.5, 0.5) is denoted by

GDCICAg4 , with c5 = 1 is denoted by GDCICAg5 . The selected functions are visually
presented in Figure 2.

Figure 2 Plots of five different functions in this research (see online version for colours)
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In generating 2-dimensional and 4-dimensional datasets of size n = 250, n = 500, n =
1,000, and n = 1,500, governed by the mixing matrix

A2×2 =

(
U11 U12

U21 U22

)
and A4×4 =

U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44

,
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where Uij , i = 1, 2, 3, 4 independently follows a uniform distribution over (0, 2), a
simulation was conducted. Subsequently, the average Amari errors of methods such as
FastICA, Infomax, JADE, RADICAL, HICA, RLICA and GDCICAg , and others were
computed over 120 replications of their respective algorithms.

The outcomes are presented in Tables 1 and 4, illustrating the average errors
across various samples. The findings indicate that across 18 cases, each distinct type
of GDCICAg method consistently outperforms its competitors in seven instances,
collectively excelling in distributions c, f and j in both 2-dimensional and 4-dimensional
situations.

Further elucidation on this investigation is provided below:

• When n = 250, d = 2, the GDCICAg2 , GDCICAg3 and GDCICAg4 methods
exhibited the lowest Amari errors, that this methods applied to data cases with
distributions labelled as a, c, e, f, g, j and m have yielded the best performance,
also for n = 250, d = 4, the GDCICAg2 , GDCICAg3 and GDCICAg4 methods
exhibited the lowest Amari errors, that this methods applied to data cases with
distributions labelled as a, c, e, f, j, m and n have yielded the best performance.

• When n = 500, d = 2, the GDCICAg2 and GDCICAg4 demonstrated the most
favourable Amari errors, that this methods applied to data cases with distributions
labelled as a, c, f, g, j and m have yielded the best performance, also for
n = 500, d = 4, the GDCICAg2 and GDCICAg4 demonstrated the most favourable
Amari errors, that this methods applied to data cases with distributions labelled as
a, c, e, f, j and n have yielded the best performance.

• When n = 1,000, d = 2, the GDCICAg2 and GDCICAg3 showcased the best
Amari errors, that this methods applied to data cases with distributions labelled as
a, c, e, f, g, j and m have yielded the best performance, also for n = 1,000, d = 4,
the GDCICAg2 and GDCICAg3 showcased the best Amari errors, that this
methods applied to data cases with distributions labelled as a, c, e, f, g, j, n and r
have yielded the best performance.

• When n = 1,500, d = 2, the GDCICAg2 , GDCICAg3 and GDCICAg4 again
emerged with the most optimal Amari errors, that this methods applied to data
cases with distributions labelled as c, f, h, i, j and n have yielded the best
performance, also for n = 1,500, d = 4, the GDCICAg2 , GDCICAg3 and
GDCICAg4 again emerged with the most optimal Amari errors, that this methods
applied to data cases with distributions labelled as c, f, i, j, m and n have yielded
the best performance.

Further, two distributions were selected from among all distributions labelled (a) to (r).
The average Amari errors regarding these selections were computed and discussed in the
final row of Tables 1 and 4. The results have revealed that when a stochastic distribution
is chosen, the Amari error for the GDCICAg2 and GDCICAg4 methods yields better
performance than other methods.
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Table 1 Averages of Amari errors for d = 2, d = 4, and n = 250 sample with
120 replications for each distribution (a) to (r), the smallest (best) entry of our
functions in each row is boldfaced
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Table 2 Averages of Amari errors for d = 2, d = 4, and n = 500 sample with
120 replications for each distribution (a) to (r), the smallest (best) entry of our
functions in each row is boldfaced
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Table 3 Averages of Amari errors for d = 2, d = 4, and n = 1,000 sample with
120 replications for each distribution (a) to (r), the smallest (best) entry of our
functions in each row is boldfaced
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Table 4 Averages of Amari errors for d = 2, d = 4, and n = 1,500 sample with
120 replications for each distribution (a) to (r), the smallest (best) entry of our
functions in each row is boldfaced
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Table 5 Averages of Amari errors for d = 2, d = 4 and n = 250, n = 500, n = 1,000,
n = 1,500 samples in each class of distributions, the smallest entry of our functions
in each row is boldfaced
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Table 5 Averages of Amari errors for d = 2, d = 4 and n = 250, n = 500, n = 1,000,
n = 1,500 samples in each class of distributions, the smallest entry of our functions
in each row is boldfaced (continued)
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Table 5 Averages of Amari errors for d = 2, d = 4 and n = 250, n = 500, n = 1,000,
n = 1,500 samples in each class of distributions, the smallest entry of our functions
in each row is boldfaced (continued)
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Certainly, the average Amari errors were computed for performance evaluation across
all methods in various distributions, categorised into different classes. Initially, the
classifications were divided into unimodal distributions (a, b, d, e, i, l, o, r), multimodal
distributions (f, g, j, m, p), and transitional distributions (c, h, k, n, q) for the first
analysis. Subsequently, the perspective shifted to symmetric distributions (a, b, c, d,
f, g, h, i, m, n, o) and non-symmetric distributions (e, j, k, l, p, q, r). Finally, the
third perspective involved positively kurtosis distributions (a, b, d, e, f) and negatively
kurtosis distributions (c, g, h, i, j, k, l, m, n, o, p, q, r). Each of these classes formed a
partition within the set comprising all distributions. The detailed results of this analysis
are presented in Table 5.

According to Table 5, the optimal performance in terms of Amari errors was
observed in two specific scenarios:

• For d = 2, the GDCICAg3 and GDCICAg5 methods have demonstrated superior
results in the transitional distributions and positively kurtosis class. Also for
d = 4, the GDCICAg3 method has demonstrated superior results in the transitional
distributions and positively kurtosis class.

• For d = 2, 4, the GDCICAg1 , GDCICAg2 and GDCICAg4 methods have
demonstrated superior results in the non-symmetric distributions, transitional
distributions and positively kurtosis class.

Overall, there was a consistent trend of achieving commendable results in terms of
Amari errors across transitional distributions and the positively kurtosis class, indicating
a notably favourable performance level.

6 Real data

The application of ICA within statistics involves transforming raw time series data into
a set of independent variable values. Its utility extends to cluster analysis, aiding in the
identification of datasets exhibiting similar temporal patterns. Moreover, ICA serves as
an effective data pre-processing step, enhancing temporal data clustering.

ICA’s significance lies in its ability to facilitate clustering for small, distribution-free
data series while considering dependencies between successive time points (Nascimento
et al., 2017). By inherently addressing temporal dependencies during variable
decomposition, ICA swiftly generates independent components. These components are
subsequently grouped based on the temporal relationships among them (Calhoun and
Adali, 2012). This inherent capacity to account for temporal dependency within its
model distinguishes ICA’s effectiveness in swiftly generating and clustering independent
components, bolstering its relevance in diverse statistical applications.

Based on Guo et al. (2008), Zanghaei et al. (2013) and Rahmanishamsi et al.
(2018), instead of applying clustering algorithms on data, it is better that a suitable
transformation being used before clustering process to strengthen clustering results. In
this article, the ICA algorithm was first implemented on the data and then clustering
was done.

Absolutely, GDCICA algorithms offer substantial value in the realm of time series
data pre-processing. Their efficacy lies in identifying homogeneous structures within
the data, thereby maximising within-group similarities while emphasising distinctions
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between different groups. This approach enhances the effectiveness of time series
clustering, rendering it an attractive and potent method for extracting valuable insights
across diverse domains.

Figure 3 Trend plots of standardised GDP per capita time series in five clusters
(see online version for colours)
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ICA’s applications extend beyond time series clustering; it provides valuable insights
into common characteristics of datasets. This method involves a multi-stage process
utilising the GDCICA algorithm as a pre-processing step in time series clustering when
applied to real data. Statistically independent components can be obtained through
GDCICA, leveraging dependency implications to reduce data dimensionality. This
method effectively detects dependencies within time series data. By generating new
components from sources containing ample information about time series trends, this
pre-processing technique enhances data representation. Consequently, the coefficients
of the mixing matrix derived from GDCICA can serve as input variables in clustering
methods.

Let X be a time series matrix and Ŝ and Â be estimates of the source signal matrix
and the mixing coefficients matrix obtained by an ICA algorithm on X , respectively.
Thus, time series matrix X can be predicted by ŜÂ; i.e., X ≈ ŜÂ, which it means that
matrix X is approximately equal to ŜÂ. We know that the columns of Ŝ including the
independent time series and the their dependencies are converted to the weight matrix
Â. On the other hand, i-th column of X is constructed as multiplication of matrix Ŝ
and the i-th column of Â. Thus, the same columns in Â construct the same trends in
the original time series. Therefore, detecting the similar columns of Â, imply to detect
the similar columns of X . Hence, for clustering the time series matrix X , we can apply
a clustering algorithm on Â.

Table 6 Clustering of standardised GDP per capita time series.

Method Suggested Average Method Suggested Average
number of clusters silhouette number of clusters silhouette

GDCICAg1 5 0.092 JADE 7 0.069
GDCICAg2 3 0.118 Infomax 6 0.049
GDCICAg3 5 0.129 FastICA 8 0.059
GDCICAg4 3 0.104 RADICAL 6 0.055
GDCICAg5 3 0.110 HICA 7 0.080

RLICA 4 0.090

Then, the GDP per capita time series data for 25 countries: Australia, Austria,
Belgium, Burkina Faso, Canada, Chile, China, Denmark, Finland, France, Germany,
Ghana, India, Indonesia, Italy, Japan, South Korea, Malaysia, Pakistan, Qatar, Saudi
Arabia, Singapore, Sweden, Turkey, and the USA, was sourced from the World Bank’s
repository (https://data.worldbank.org) spanning the period 1975 to 2020.

In this study, time series clustering employed suggested algorithms as a
pre-processing step. Subsequently, the PAM algorithm (k-medoids), introduced by
Rdusseeun and Kaufman (1987), was applied for final clustering.

Furthermore, after estimating the mixing matrix using multiple algorithms, including
GDCICA with FastICA, Infomax, JADE, RADICAL, HICA and RLICA, the PAM
clustering algorithm was employed on the unmixing matrix. This step aimed to
determine the appropriate number of clusters and declare the best clustering method
based on the silhouette criterion, utilising the NbClust R package (Rdusseeun and
Kaufman, 1987). The detailed results are reported in Table 6. Based on the results,
the function exhibiting the highest average silhouette score has been selected as the
best-performing result.
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This dataset was subjected to clustering using the GDCICAg3 function. The primary
objective of this experiment was to cluster countries based on the patterns observed in
their GDP per capita time series spanning the past 46 years. To the study objective
satisfaction, the primary GDP per capita data has standardised. Then, the GDCICA
algorithm has applied on the principal components and the coefficients of the mixing
matrix in GDP per capita. The extracted data has utilised as input to PAM clustering
algorithm. The clustering results illustrated in Table 7.

Table 7 Clustering of standardised GDP per capita time series.

Cluster 1 Australia, Austria, Belgium.
Cluster 2 Burkina Faso, Canada, Chile, China, Denmark.
Cluster 3 Finland, France, Ghana, South Korea, Pakistan.
Cluster 4 Germany, India, Indonesia, Japan.
Cluster 5 Italy, Malaysia, Qatar, Saudi Arabia, Singapore, Sweden, Turkey, USA.

Although these time series data adhere to various distributions, the proposed generalised
density contrast independent component analysis (GDCICA) algorithms are capable of
effectively extracting the sources necessary for clustering. To evaluate the method’s
efficiency, time series plots within five distinct clusters have been generated, as depicted
in Figure 3. The trend plots derived from all clusters, based on the standardised gross
domestic product (GDP) per capita, indicate that the preprocessing technique employed
by the proposed algorithm for clustering countries is highly effective. This is evidenced
by the clear observation that countries within the same cluster exhibit similar trends in
their standardised GDP per capita.

7 Conclusions

The objective function of many common ICA algorithms is defined based on density
functions, which estimate marginal and joint density functions. This can lead to longer
and time-consuming algorithm execution. As a result, this is a challenging problem. In
this study, a class of dependence criteria of two continues random variables X1 and X2

based on the cumulative distribution function, called GDC has proposed to solve the
challenging problem. The criterion of this class remains unchanged despite increasing
transformations of random variables, and it only disappears when the random variables
X1 and X2 are independent.

Then, some algorithms for ICA problem based on this dependence criterion has
presented called GDCICA. To suggested algorithms performance evaluation, these has
compared to some exiting algorithms using by the Monte-Carlo simulation studies, when
the source signals follow the 18 different distributions. The simulation results argued
that the suggested algorithms estimate the unmixing matrix very well. So, it obtained
better performance than the usual ICA algorithms in various classes of distributions
bas on average of the Amari errors. Usually, various types of GDCICAg have good
performance in term of the average of the Amari errors in the transitional distributions
and positively kurtosis class.

So, one batch of GDP per capita for 25 countries during 1975 to 2020 has utilised as
time series samples to clustering. At first, all data standardised. Then, the GDCICA has
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utilised on principal components as a pre-processing stage. As a result of this stage, the
coefficients of the matrix have extracted. Then, they were applied as input to the PAM
clustering algorithm. The clustering results concluded from a time series data argued
which the pre-processing technique using proposed algorithm are fantastic in results of
suitable clustering of different data that follow different distributions.
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