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1 Introduction

Bollerslev’s (1990) proposed a constant conditional correlation (CC) generalised
autoregressive conditional heteroscedastic (CCC-GARCH) model, a multivariate
extension, maintains a constant correlation between series of returns over time. The
extension of CCC-GARCH model known as dynamic conditional correlation GARCH
(DCC-GARCH), proposed by Engle (2002) and Tsay (2014), is a widely used model that
considers the correlation between variant volatilities over time. Recently, the Bayesian
approach, gaining popularity due to its improved interpretation and incorporation of
prior information into parameters, has experienced significant growth in recent years
(Nascimento et al., 2019). The DCC-GARCH becomes more popular to use the Bayesian
methods of analysis, since the parameter estimates are generated from the distributions
that give a lot of information about the estimate than the point estimate in classical
methods (Haddad and Heidari, 2020). Moreover, the proportionality and positivity of the
estimates can be easily handled based on the restrictions of the priors with out further
assumptions. This procedure is usually considered to analyse macroeconomic time series
assuming stochastic volatility models.

Corresponding to the proposal by Fioruci et al. (2014a), sampled priors from
truncated normal distributions, the newly proposed prior is from the beta distribution
as alternative that are assumed to be a priori independent and beta distributed intervals.
Accordingly, the use of likelihood function, prior and posterior distribution in solving
the standard problems of statistical inference, that is, point and interval estimation are
compared. A simulation study is conducted to access the finite sample performance of
the procedure proposed here, under the presence of long-memory in the volatility. The
multivariate skewed normal, skewed student-t and skewed generalised error distribution
(GED) models are considered in the comparison, so as to accommodate asymmetry and
heavy tails in the distribution of the innovation process from the fitted DCC-MGARCH
processes.

The choice of the sampling algorithm is the first issue when dealing with MCMC
methods and it depends on the nature of the problem under study. To generate samples
from the joint posterior distribution for the parameters and to conducting computational
posterior inference in the context of the multivariate skew distributions of interest,
MCMC Metropolis-Hastings (M-H) algorithm was applied. These samples are generated
from all conditional posterior distributions for each parameter given all the other
parameters and the data.

The sampling algorithm involves draws from standard distributions, and can be
implemented fairly and easily. Bayes factors of the multivariate GED was computed
against skew normality and student-t distribution assumptions of the error terms. Based
on the computational techniques developed in this paper, it is possible to perform
full Bayesian inference on all parameters of the model, derive marginal posterior
distributions, and compute Bayes factors. Further, the DCC-GARCH model has a
clear computational advantages in that the number of parameters to be estimated
in the correlation process is independent of the number of series to be correlated.
Thus potentially very large correlation matrices can be estimated. The Monte Carlo
simulation techniques on the estimation of the DCC-GARCH model parameters is used.
This procedure can be considered to analyse financial time series assuming stochastic
volatility exists among residual series (Meyer and Yu, 2000).
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A sensitivity analysis is performed by considering different prior density functions
and by integrating (or not) the knowledge on the true parameter values to select
the hyper parameter values. Sensitivity analysis entails checks on the model settings
to see if one choose several priors to study the sensitivity of the analysis to prior
specification changes in posterior inferences. This may take the form of comparing
models with plausible but different priors, whether different parameter values for the
same distribution or different distributions to give more confidence in the final selection.

The remaining sections are organised as follows. Section 2 review some related
literature to the Bayesian method in the analysis of DCC-MGARCH. In Section 3,
as the methodology part, source of data and definition of some terms are presented
in Subsection 3.1; the main properties of DCC-MGARCH processes, definitions of
multivariate skewed densities and the Bayesian inference scheme and techniques of
sampling by M-H algorithm are described in Subsections 3.2, 3.3 and 3.4, respectively.
In Section 4 tests of existence of time varying correlation from the preDCC-MGARCH
model fitted to the dataset, MCMC simulation results from the posterior distribution
based on prior parameters from the fitted preDCC-MGARCH model and some
sensitivity analysis are presented wit their respective Subsections 4.1, 4.2 and 4.3. Lastly
some concluding remarks and possible directions for future work are given in Section 5.

2 Review of literature

Multivariate GARCH (MGARCH) models are frequently used in the analysis of
dynamic covariance structure for multiple asset returns of financial time series (Bauwens
et al., 2006; Silvennoinen and Terasvirta, 2009). More recently, interest has focused on
Bayesian GARCH models. Bollerslev (1990) introduced a MGARCH model, referred as
the CCC-GARCH model, in which univariate GARCH models are related to one another
with a constant correlation matrix. A major drawback of the assumption of constant CC
in volatility modelling is that the correlation coefficient tends to change over-time in a
real application.

Advances in computing facilities and computational methods have dramatically
increased the ability to solve complicated problems. Engle (2002) relaxed the
assumption of constant correlation to a DCC. The advances have also extended the
applicability of many existing econometric and statistical methods. Such achievements
include the MCMC method and data augmentation. Ardia and Lennart (2010) outline
the MCMC method for GARCH models. Jun (2015), Fioruci et al. (2014a) and Takaishi
(2007) employed the Hamilton Monte Carlo algorithm and Ardia (2008) used Metropolis
Hasting scheme in DCC-MGARCH with student-t innovations. They all demonstrated
the MCMC methods as very useful in estimating parameters in the DCC-MGARCH
models in conditional volatilities that accommodate asymmetry as well as heavy tailed
distribution.

Oyeleke et al. (2022) extended their examination of the policy regime’s dominance
(fiscal versus monetary) to include the calculation of inflation in Nigeria between
1981 and 2016. The research uses MCMC sample drawing and Bayesian time-varying
parameter vector auto regression (TVP-VAR) with stochastic volatility to produce
impulse response functions. The findings indicate that Nigeria’s economy lacks a clear
dominant policy framework. Similary, Semuel and Nurina (2014) employed interest
rates, currency rates, and inflation as GDP’s supporting variables and concluded that the
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GDP is significantly correlated with interest rates in a negative way and with exchange
rates in a positive way. However, the GDP is not significantly impacted by inflation.
Dickson (2021) study on Ghana’s economic growth from 2006–2019 found a strong
positive correlation between interest rates and inflation, significantly influencing the
country’s economic growth. Rodrik (2008), also evaluated the link between exchange
rate and growth on a database of 188 countries. Based on their findings, there is a
positive correlation between growth and real exchange rate.

Asai (2006) compared different MCMC methods, and found that the best method is
the so-called ‘tailored’ approach based on the acceptance-rejection Metropolis-Hastings
(ARM-H) algorithm, with respect to the mixing, efficiency and computational
requirement. Similarly, Vrontos et al. (2000, 2003) also used the M-H algorithm in the
application MGARCH models at different time.

Prass et al. (2016) used Bayesian inference for fractionally integrated exponential
generalised autoregressive conditional heteroskedastic (FIEGARCH) models using
MCMC methods, by considering the GED for the innovation process with different prior
density functions: Gaussian, beta and uniform prior for sensitivity analysis and conclude
that the absolute percentage error of estimation for parameters only became smaller than
10% when the beta prior was considered and the true value of the parameter was used
to select the hyperparameter.

The main focus of applying sensitivity analysis in the Bayesian framework is to
address the problem of describing the acceptable parameter structure. Ardia (2008)
modelled the errors as Gaussian distributed with zero mean and unit variance while the
priors are chosen as Gaussian and a M-H algorithm is used to draw samples from the
joint posterior distribution and has also performed a sensitivity analysis of the prior
means and scale parameters and concluded that the initial priors in this case are vague
enough. Ausin and Lopes (2010) modeled the errors of a GARCH model with a mixture
of two Gaussian distributions. The Gaussian and Student-t distributions are common
choices while more sophisticated parameterisations such as the skewed student-t or
the mixture of Gaussian distributions allow to model skewness and fat tails in the
conditional distribution of returns (Ausin and Galeano, 2007).

Some of the contribution of Bayesian inference in the analysis of dynamic
relationships between volatility processes of multiple macroeconomic time series
observations to the existing literature is that it simplify some practical difficulties faced
when dealing with the maximum likelihood estimation (MLE) of GARCH-type models
are the following. First, the complicated nonlinear inequality constraints in maximisation
of the likelihood function must be achieved since all model parameters must be positive
to ensure a positive conditional variance and the covariance stationarity condition holds.
This leads to the optimisation procedure cumbersome. Second, since optimisation results
are often sensitive to the choice of starting values, the convergence of the optimisation
is hard to achieve if the true parameter values are close to the boundary of the parameter
space and if the GARCH process is nearly non-stationary. Third, if inference is needed
for the parameters using the MLE, one worries about the use of the Hessian matrix for
standard errors, and the asymptotic normality assumption. Fourth, the MLE estimates
the volatilities σ2

t at the MLE point estimate of the parameters. This is another more
important issue for the difference in inference on in-sample and future volatilities
(Geweke, 1989). Lastly, since the standard applications of GARCH-type models are
highly complicated nonlinear functions of the parameters, the asymptotic argument
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would require a very large number of data to hold by simulation (Fileccia and Sgarra,
2015).

Fortunately, the Bayesian simulation methods solve those problems and difficulties.
First, any constraints on the model parameters can be incorporated in the modelling
through appropriate prior specifications that produce the expected non-normal posterior
distributions. Second, appropriate Markov chain Monte Carlo (MCMC) procedures can
explore the joint posterior distribution of the model parameters (Haddad and Heidari,
2020). These techniques avoid local maxima (i.e., non-convergence or convergence
to the wrong values) encountered via ML estimation of sophisticated GARCH-type
models. Third, exact distributions of nonlinear functions of the model parameters can
be obtained at low cost by simulating from the joint posterior distribution. Fourth, the
Bayes methods delivers, by simulation, the entire posterior density of each σ2

t as well
as of the parameters in GARCH models (Berger, 2006).

In certain situations, the practical application of Bayesian approaches may be
restricted due to their computing complexity, particularly when dealing with huge
datasets and sophisticated models. In situations where prior knowledge is scarce or
nonexistent, the method may also be more difficult to comprehend and implement than
frequentist methods (Louis and Carlin, 2000; Robert, 2001; Wasserman, 2004). Further,
even though they provide new insights but they also require large amounts of data.

3 Methodology

3.1 Definition of macroeconomic variables under study and source of data

3.1.1 The annual GDP growth rate

The annual GDP growth rate is the average change in GDP at market prices for a
national economy over a specified period, expressed as a proportion of the previous
period’s GDP. The real GDP growth rate measures economic growth, adjusted for
inflation or deflation, by analysing changes in the value of goods and services produced
by a country. It can also be measured as a dollar or a percentage by calculating changes
in real GDP in a selected interval in time, often a year (Leamer, 2009; Semuel and
Nurina, 2014). Accordingly, the annual percentage growth rate of Ethiopian GDP at
market prices is based on a constant local currency, Ethiopian Birr, with aggregates
based on a constant 2010 US dollar.

3.1.2 Exchange rate

The value of one currency relative to another is known as the exchange rate (Krugman,
1993; Semuel and Nurina, 2014). The difference in the rates of inflation in domestic and
foreign countries drives changes in exchange rates, according to the purchasing power
parity (PPP) theory. The exchange rate will increase and vice versa when changes in
foreign prices are outpaced by local inflation. Based on the nominal exchange rate, the
real exchange rate can be defined as the ratio of foreign prices to local prices (Ethiopian
Birr per unit of USD). The National Bank of Ethiopia (central bank), follows a managed
floating exchange rate regime where the local currency Birr is pegged to the US Dollar.
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3.1.3 Inflation rate

Inflation is the increase in the Consumer Price Index (CPI) over a year, indicating the
cost of goods and services. It is a broad measure, encompassing both the overall increase
in prices and the cost of living in a country. According to Brue and McConnell (2014)
and Semuel and Nurina (2014), inflation is best defined as a general price increase that
reduces the purchasing power of a currency. A few factors lead to inflation, whereby
the cost of goods and services rises when aggregate demand grows more quickly than
aggregate supply.

3.1.4 Interest rate

An interest rate is the annual cost of borrowing or lending money, determining the
percentage paid for its use over a period. Real interest rates, adjusted for inflation,
are financial rates used in monetary policy setting, while nominal interest rates are
unadjusted rates used by central banks to target specific rates. These rates will reflect
the interaction between exchanges of money (Harswari and Hamza, 2017; Patterson and
Lygnerud, 1999). The terms and conditions attached to lending rates differ by country,
however, limiting their comparability.

3.1.5 Data

Data on gross domestic product growth rate (GDPGR), inflation rates (INFR), exchange
rate (EXR) and interest rate (INTR) were obtained from National Bank of Ethiopia
on a yearly level for the period 1990 to 2015. While the first three variables are well
known in business cycle literature the exchange rate is included because it plays a
prominent role in more open economies so that National Bank find it useful to target it.
The unavailability of high frequency macroeconomic time series data, like GDP growth
is a common problem in some countries that makes it difficult for end users of the
data to analyse short-term movements in output. One way to overcome this problem is
temporal disaggregation method that involves the conversion of low frequency data (like
an annual data series) into high frequency data (namely quarterly or monthly series) and
often aim to solve the common problems of distribution and interpolation.

Table 1 Comparison of the observed yearly level and disaggregated quarterly data series

Variable Yearly Quarterly

Mean St. deviation Mean St. deviation

GDPR 7.062 5.363 6.946 5.53
INFR 10.408 10.965 10.207 11.32
EXR 9.604 5.084 9.315 5.018
INTR 0.059 0.027 0.059 0.026
T 26 104

Accordingly, a total of 26 yearly level data set of each variable is disaggregated in
to 104 quarterly data for the period 1990(1) to 2015(4) following average temporal
disaggregation method by Sax and Steiner (2013). The method of averaging of the
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resulting high frequency, quarterly, series is consistent with low frequency, yearly, series
using the optimise function td, under package stats in R, to solve the one-dimensional
optimisation problem at the core of the Chow-Lin and Litterman methods (Silva and
Cardoso, 2001). In this methods, either the sum, the average, the first or the last value of
the resulting high frequency series is consistent with the low frequency series, as shown
in Figure 1 and have almost the same mean and standard deviations when approximated
in one or two decimal place as shown in Table 1. It performs a simple interpolation
that meets the temporal additivity constraint and uses an efficient and numerically stable
algorithm that is based on the qr-decomposition (Paige, 1979).

Figure 1 Time series plot of yearly data (vertical lines) and disaggregated quarterly data
(doted points) for the study variables (see online version for colours)

Analysing and forecasting economic growth indicating macroeconomic variables has
always been an issue for economic researchers and policymakers (Ammouri et al.,
2021). The long-run equilibrium interrelationship between real economic growth rate,
inflation rate, interest rate and exchange rate in case of Ethiopia was analysed by fitting
a vector error correction (VEC) model by adopted Johansen’s trace and max-eigenvalue
co-integration tests. The VEC model was applied due to the fact that the variables were
found to be co-integrated. For model checking, we apply the Ljung-Box test statistics for
the residuals of the fitted VEC model. Volatility clustering is a phenomenon where large
changes in asset prices cluster together, with large changes likely to follow large changes
and small changes expected to follow small changes. This serial dependency occurs
when periods of high and low volatility persist (Ruey, 2005). Figure 7, in Appendix
part, shows the time plots of the corresponding residuals. It is clearly shows that the
time varying nature of the residuals series observed and there is also some evidence
of volatility clustering over time, that is there are period of high volatility followed by
periods of low volatility and vis versa.

Moreover, it is shows stationary and evolves in time in a continuous manner, that
is no volatility jumps exists in the residual series. In other words, the residuals have
conditional heteroscedasticity, which can be handled by multivariate volatility models.
Such empirical regularities suggest the behaviour of financial time series that may
captured by MGARCH models which provide a convenient framework for modelling
correlations (Tsay, 2005). Therefore, fitting DCC-MGARCH(1, 1) model seem to
be adequate to capture the heteroskedastic effect of time varying CC. Accordingly,
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the application of Bayesian DCC-MGARCH model analysis is proposed based on
the existing literature and properties of these marginally distributed standardised
series of estimated residual using multivariate skew-normal, skew-GED and student-t
distributions.

3.2 DCC-MGARCH model

In the DCC-MGARCH model specification and estimation, consider the stochastic
vector of a k-dimensional time series macroeconomic process Yt = (y1t, ..., ykt)

′, the
model is given by

εt|Ωt−1 = Σ
1/2
t η̂t, (1)

where the vector η̂t = (η̂1t, ..., η̂kt)
′ iid∼ f (η̂; 0, Ik) is a T × 1 element random vector

of white noise residuals of the GARCH process, such that expectation E [εt|Ωt−j ] =
0 and E (εtε

′
t|Ωt−j) = Σt = [σijt] is positive definite conditional covariance matrix;

where Ik is the identity matrix and both matrices have dimension k × k (Tsay, 2005).
With correlation matrix, ρt, each conditional covariance is then given by the time

evolution of σij,t = ρij
√
σii,tσjj,t is governed by that of the conditional variances

σij,t and the elements ρij,t of ρt, where 1 ≤ j < i ≤ k (Engle, 2002; Fioruci et al.,
2014a; Tsay, 2005). Therefore, to model the volatility of εt, it suffices to consider the
conditional variances and correlation coefficients of each εi,t for i = 1, ..., k.

The process {ηt}t∈Z is called a DCC-GARCH process, proposed by Engle (2002),
with conditional covariance matrix of the form Σt = DtρtDt and the diagonal volatility
matrix ρt and Dt satisfies

ρt = JtQtJt (2)

Qt = (1− θ1 − θ2) Q̄+ θ1Qt−1 + θ2η̂t−1η̂
′

t−1, (3)

where Jt = diag
{
q
−1/2
11 , ..., q

−1/2
kk

}
with qii,t being the (i, i)

th element of Qt and Q
is the estimated sample unconditional covariance matrix of

(
D−1

t η̂t

)
t∈Z. The DCC

parameters θ1 ≥ 0 and θ2 ≥ 0 satisfying θ1 + θ2 < 1, to capture the effects of previous
standardised shocks and DCCs on current DCCs, respectively. where ρt is the CC
matrix of εt, and Dt is a k × k diagonal matrix consisting of the conditional standard
deviations of elements of εt (i.e., Dt = diag

{√
σ11,t, ...,

√
σkk,t

}
.

σ2
k,t = ωk +

q∑
i=1

αkiε
2
k,t−i +

p∑
j=1

βkjσ
2
k,t−j , (4)

where ωk > 0, αki ≥ 0, βkj ≥ 0 and αki + βkj < 1 for i = 1, ..., q and j = 1, ..., p. It
is clear that Σt is positive definite if and only if σ2

i,t > 0, i = 1, ..., k and ρt is positive
definite matrix. Qt is a positive-definite matrix and Jt is simply a normalisation matrix.

The dynamic dependence of the correlations is governed by equation (3) with two
parameters θ1 and θ2 (see Engle, 2002; Tsay, 2005 for details). Three distributions
namely multivariate skew normal, skew student-t and skewed GED for innovations are
described here below.
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3.3 Multivariate skewed densities

Now, defining the standardised white noise processes from the VEC model as:

ηit = (εit − µγi)/σγi ,

then the general method of describing as multivariate skew distribution from a
symmetric one indexed by a skewness parameter γi > 0 for i = 1, ..., k, which describes
the degree of asymmetry, is given by

p (ηt|γi) = 2K

(
k∏

i=1

σγi

γi + 1/γi

)
f∗(ηt), (5)

where

f∗(ηt) = f

(
ηt

γi

)
I

(
ηt ≥

−µγi

σγi

)
+ f(γiηt)I

(
ηt <

−µγi

σγi

)
,

where I stands for the indicator function over the given interval. The parameters
γi control the degree of skewness on each margin, right (left) marginal skewness
corresponding to γi > 1(γi < 1) and the allocation of probability mass to each side of
the mode is also determined just by γi. This can also be seen from γ2

i = Pr(ηit >
0)/Pr(ηit < 0) (Fernandez and Steel, 1998; Bauwens et al., 2006).

Fernandez and Steel (1998) showed that the rth order moment of equation (5) can
be computed as:

E (ηr
t |γi) = mr

γr+1
i + −1r

γr+1
i

γi + γ−1
i

. (6)

Thus the mean and variance of p(ηt|γi) depend on γi and are given by

µγi = m1

(
γi −

1

γi

)
and σ2

γi
= (m1 −m2

1)(γ
2
i + 1/γ2

i ) + 2m2
1 −m2, (7)

where

mr = 2

∞∫
0

ηr
t f(ηt)dηt.

3.3.1 Multivariate skewed normal distribution

The stochastic vector of a k-dimensional innovation process ηt, defined in equation (1),
is assumed to be distributed as standardised multivariate normal with E(ηt) = 0 and
cov(ηt) = Ik, that is, with probability density function (pdf):

f (ηt|Ωt−1) =
1

(2π)k/2
exp

[
−1

2
η′
tηt

]
. (8)

Accordingly, the skewed version the multivariate normal distribution indexed by a
skewness parameter γi > 0 for i = 1, ..., k, that describes the degree of asymmetry for
each of the ith marginally distributed standardised error, ηt defined in equation (1), is
given by
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f (ηt|γi) = 2k

(
k∏

i=1

γiσγi

1 + γ2
i

)
1

(2π)k/2
exp

[
−1

2
η′
tηt

]
, (9)

where ηit = (σγiεit + µγi)/σγi if εit ≥ −µγi/σγi and ηit = (σγiεit + µγi)σγi if εit ≤
−µγi/σγi (Fernandez and Steel, 1998; Fioruci et al., 2014a; Bauwens et al., 2006). This
is then the standardised multivariate skew skew normal density, which allows for a tail
behaviour heavier than a multivariate symmetric normal distribution.

In the univariate case, the excess of (unconditional) kurtosis has been most
commonly accommodated with student-t distributed errors (Baillie and Bollerslev,
1989). A natural alternative in the multivariate case is then the multivariate student-t
distribution which has the extra degrees of freedom parameter ν to be estimated
Fiorentini et al. (2003) discussed in the next subsection.

3.3.2 Multivariate skewed student-t distribution

When a k-dimensional stochastic vector of innovation process ηt, defined in
equation (1), is assumed to be distributed as multivariate student-t distribution, with
estimated extra degrees of freedom parameter, ν > 2, the univariate skew densities has
a pdf

f (ηt|ν,Ση) =
Γ ((ν + k)/2)

π(ν − 2)k/2Γ(ν/2)

[
1 + (ν − 2)

−1
η′
tηt

]−(ν+k)/2

. (10)

We assume that the degree of freedom ν > 2 so that Ση can always be interpreted as a
conditional covariance matrix.

The skewed multivariate student-t distribution version with the same index of a
skewness parameter γi > 0 for i = 1, ..., k is given in the form:

f (ηt|γi)

= 2k

(
k∏

i=1

γiσγi

1 + γ2
i

)
Γ ((ν + k)/2)

[π(ν − 2)]
k/2

Γ(ν/2)

[
1 + (ν − 2)

−1
η′
tηt

]−(ν+k)/2

. (11)

We notice that ν → ∞ would be equivalent to assuming a standard multivariate normal
density. The moment for the multivariate skewed student-t density is given by

mi =
Γ ((ν − 1)/2)

√
ν − 2√

πΓ(ν/2)

(
γi −

1

γi

)
, (12)

and

σ2
γi

=

(
γ2
i +

1

γ2
i

− 1

)
−m2

i , (13)

(Fioruci et al., 2014a).
And we may also notice that γi = 1 yields the symmetric distribution as f(ηt|γi =

1) = f(ηt), and values of γi > 1(< 1) indicate right (left) skewness (Fioruci et al.,
2014a). Also, the mode of this density remains at zero irrespective of the particular
value of γi.
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3.3.3 Multivariate skewed GED distribution

Another heavy tailed multivariate distribution considered is the multivariate GED
also known as multivariate exponential power distribution. Box and Tiao (1973)
and Nadarajah (2005) The joint distribution of k independent random variables with
additional shape parameter δ > 0 is then given by,

f (ηt|δ) =
[
Γ (3/δ)

Γ (1/δ)

]k/2
1[

2Γ ((δ + 1)/δ)
k
]

exp

{
−
[
Γ (3/δ)

Γ (1/δ)

]δ/2 k∑
i=1

|ηt|δ
}
, (14)

is standardised skewed GED distribution as ηt defined under equation (9) is standardised
and thus it follows that E(ηt) = 0 and V ar(ηt) = Ik and we can use the method
proposed in Bauwens and Laurent (2005) to introduce asymmetry in the multivariate
distribution. We refer to this multivariate distribution as GED(0, Ik, δ).

The multivariate skewed GED distribution version is the case where distributions
defined in equation (14) indexed by similar skewness parameter γi > 0 for i = 1, ..., k,
which describes the degree of asymmetry for each of the ith marginal distribution and
for standardised error, ηt. The density of this standardised skewed version of the GED,
denoted SSGED(0, Ik, γ, δ), is given by:

f (ηt|δ) = 2k

(
k∏

i=1

γiσγi

1 + γ2
i

)[
Γ (3/δ)

Γ (1/δ)

]k/2

exp

−
[
Γ (3/δ)

Γ (1/δ)

]δ/2 k∑
i=1

|ηt|δ

(2/δ)k [Γ(1/δ)]
k

 . (15)

We note that this approach entirely separates the effects of the skewness and shape
parameters thus making prior independence between the two a plausible assumption,
and hence facilitates the choice of their prior distributions.

3.4 Bayesian inference using MCMC simulation

3.4.1 Basics of Bayesian inference

Let Θ be the vector of the unknown parameters of the DCC-MGARCH model. Any
knowledge about these parameters can be expressed as prior distributions, which is
denoted by P (Θ). According to Haddad and Heidari (2020), the prior knowledge is
important in the parameter estimation together with the likelihood of the data. Bayesian
inference is known to combine these two sources of information. With the likelihood
function of the data given by f (Y|Θ), the posterior distribution f (Θ|Y) is defined as:

f (Θ|Y) = f (Θ,Y)
f (Y)

=
f (Y|Θ)P (Θ)

f (Y)
, (16)

where f (Y) is the marginal distribution which can be obtained by
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f (Y) =
∫

f (Θ,Y) dΘ =

∫
f (Y|Θ)P (Θ) dΘ. (17)

The marginal distribution f (Y) in equation (17) serves as the normalisation constant
(Asai, 2016; Greenberg, 1995; Gamerman, 2006).

The posterior distribution in equation (16) can also be expressed as proportion:

f (Θ|Y) ∝ f (Y|Θ)P (Θ) . (18)

Thus it is an unnormalised posterior density that can be interpreted as the updated
knowledge about Θ after having observed Y.

3.4.2 Likelihood function

Considering the three most typically elliptical standardised multivariate skewed
distributions that have been applied so far, the conditional likelihood function of model
in equation (1), for a sample of observations εt = (ε1t, ..., εkt)

′ can be written as:

L(θ) =
T∏

t=1

|Σt|−1/2fη

(
|Σt|−1/2εt

)
=

T∏
t=1

[
k∏

i=1

σ
−1/2
ii

]
|ρt|−1/2fη

(
(DtρtDt)

−1/2
εt

)
, (19)

where fη is the joint density function for ηt (Fioruci et al., 2014a).

3.4.3 Prior and posterior distributions

The Bayesian estimation of the model parameters of DCC-MGARCH model is applied
by sampling from the joint posterior distribution using a M-H algorithm discussed in
the previous subsection. The list of parameters in DCC-MGARCH models is θ1 =
{ωi, γi, αi, βi, θ1, θ2, ρi−1,i} for skew normal case, θ2 = {ωi, γi, αi, βi, θ1, θ2, ρi−1,i, ν}
for skew student-t and θ3 = {ωi, γi, αi, βi, θ1, θ2, ρi−1,i, δ} for GED case for each i =
1, ..., k, where ωi’s, αi’s and βi’s are parameters of the constant variances, coefficient for
lags of the squares of residuals and for lags of variances in GARCH model in equation
(4), respectively. γi’s are the skewness parameters, θ1 and θ2 are DCC parameters in
equation (3), ρi−1,i’s are correlation coefficients and ν and δ are the degree of freedom
and the shape parameters in equations (10) and (11), respectively.

In order to move forward towards the Bayesian estimation, we need to establish the
prior distributions for all of the model parameters. We consider prior distributions that
are non-informative and have known forms that can be understood intuitively, also we
assume independence between the set of all model parameters. Here, completing the
model specification by specifying the prior distributions of all parameters of interest is
required. The prior distribution allows us to include any information that a researcher
has about the parameters being studied in a systematic way and thus plays a great
role in determining the posterior distribution specifically for small samples. Since 0 ≤
α,β, θ1, θ2 ≤ 1, the prior should allow these parameters to take on any value in that
interval and not allow it to fall outside that interval.

Fioruci et al. (2014a) proposed truncated normal distributions. The truncated normal
density function, defined as:
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f (x;µ, σ, a, b) =

{
1
σ

ϕ( x−µ
σ )

Φ( b−µ
σ )−Φ( a−µ

σ )
, if a ≤ x ≤ b

0, otherwise

}
,

where ϕ(.) and Φ(.) are, respectively, the probability density and cumulative distribution
functions of the standard normal distribution; a, b ∈ R are, respectively, the lower and
upper limits of the distribution’s support; µ and σ denote, respectively, the mean and
variance of the distribution’s (non-truncated version) (Prass et al., 2016). However, the
newly proposed prior is the beta distribution as alternative that is assumed to be a priori
independent and beta distributed intervals.

The reason why beta distribution was chosen is that first, it is defined in the
relevant range of intervals. Second, it is capable of producing a wide varieties of shapes
based on the values of a and b in sampling from the Beta(a, b) distribution. Third,
better results of this distribution were obtained provided that the parameters a > 1 and
b > 1 since the beta distribution can be completely enveloped by the truncated normal
distribution in the interval (0, 1) as shown by Ahrens and Dieter (1974) in the following
proposition including its proof.

Proposition: If a > 1, b > 1 and 0 ≤ x ≤ 1, then(
x

a− 1

)a−1(
1− x

b− 1

)b−1

(a+ b− 2)
a+b−2

≤ exp

{
−
(
x− a− 1

a+ b− 2

)2

2(a+ b− 2)

}
. (20)

The left hand side of equation (20) is proportional to the density function of Beta(a, b)
distribution and the right hand side is proportional to the density of normal distribution
with mean a−1

a+b−2 and standard deviation of 1
2
√
a+b−2

. The inequality in equation (20)
is valid for all x ∈ (0, 1). Thus the assertion that the beta distribution can be completely
enveloped by a normal distribution is true.

Depending on the choice of a and b, the Beta(a, b) can capture beliefs that indicate
x is symmetric if a = b > 3

2 , in case where the inequality in equation (20) becomes

(4x(1− x))
a−1 ≤ exp

{
−
(
x− 1

2

)2

4(a− 1)

}
. (21)

The beta-prior distribution θi’s of θ is:

f(θi) =
Γ (α0 + β0)

Γ (α0) Γ (β0)θ
α0−1
i (1− θi)

β0−1
,

where α0 > 0, β0 > 0 are are hyper parameters such that 0 ≤ θi ≤ 1, for each
parameter θi.

The shape of a beta distribution can be understood by examining its mean and
variance:

E(θi) =
α0

α0 + β0
and var(θi) =

α0β0

(α0 + β0)
2
(α0 + β0 + 1)

.
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From these expressions it can be observed that the mean is 1/2 if α0 = β0, a larger
α0(β0) shades the mean toward 1(0), and the variance decreases as α0 or β0 increases.
Further more if α0 = β0 → ∞, then Beta(α0, β0) approaches to normal (Casella and
Berger, 2001).

A third reason for choosing this distribution is that the beta prior in combination
with the likelihood function of equation (19) yields a posterior distribution that has a
standard form, which is convenient for analysing the properties of the posterior.

A random variable θ has a Gamma distribution with positive parameters a and b if
its probability density function is

f(θi|a, b) =
b−a

Γ (a)
θa−1
i eθib

where Γ (a) is a gamma function. For this distribution, E(θ) = a/b and E(θi) = a/b2.
A random variable θ has an inverse Gamma distribution if its probability density

function is

f(θi|a, b) =
ba

Γ (a)

1

θa+1
i

eθi/b.

For this distribution, E(θ) = b
a−1 if a > 1 and E(θi) =

b2

(a−1)2(a−2) if a > 2.
The posterior distribution f(θ|Y) is proportional to the product of likelihood

function L(θ) and the prior distribution f(θ), when independent uninformative priors
are selected (Jun, 2015).

3.4.4 M-H algorithm

The M-H algorithm is a popular MCMC algorithms used to obtain a sequence of random
samples from a target distribution, typically a posterior distribution, for which direct
sampling is difficult. The algorithm is first proposed by Metropolis et al. (1953) and
extended by Hastings (1970). The approach constructs a Markov chain by generating
draws from the target distribution f(θ|Yt); the candidate draw is then accepted (or
rejected) based on an acceptance probability. If the candidate is accepted, the chain
moves to the new value, otherwise the chain stays in the current state. After a burn-in
period, which is required to make the influence of initial values negligible, draws
from the Markov chain are considered as (correlated) draws from the joint posterior
distribution of interest. M-H algorithm is easy to implement since it does not require
knowing the normalisation constant described in equation (17) and is also easy to apply
since it does not require the fine tuning of a proposal density and effectively generates
the posterior probabilities of the models, as well as the parameter draws of each model
(Greenberg, 1995). In addition to the parameter draws, the algorithm jumps to another
candidate model with a certain probability.

In the M-H algorithm, we need a proposed distribution q(.|θ) defined on the
parameter space of θ. Assuming the current state θ = θ(i), we propose a new value θ′

for the next state from the proposed distribution q(θ′|θ) and accept it with a probability

p = min
{
1,

f (θ′|Y) q(θ|θ′)

f (θ|Y) q(θ′|θ)
)

}
. (22)
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We sample a random variable u from a standard uniform distribution, and accept θ′

if u < p and set θi+1 = θ′. Otherwise, we reject θ′ and stay at current state θi+1 =
θi. We repeat these steps until a sufficient number of samples are obtained. The
M-Hs sampling procedure consists if the following steps (Gamerman, 2006; Givens and
Hoeting, 2013; Jun, 2015).

Algorithm 1 M-H algorithm

Input: An initial value θ(0) such that f(θ(0)) > 0 and the number of iterations N .
for i = 1 : (N − 1) do
current state θi;
propose q(θ|·);
sample u from uniform distribution: u ∼ U(0, 1);

if u < p = min

{
1,

f(θ
′
|Y).q

(
θi|θ

′)
f(θi|Y).q(θ′ |θi)

}
then

θi+1 = θ
′
;

else θi+1 = θi;
end

end
Return the simulations θ1,θ2, ...,θN

4 Results and discussion

4.1 Fitting DCC-MGARCH model

In fitting the class of MGARCH models based on the decomposition of the conditional
covariance matrix into conditional standard deviations and correlations, the correct order
selection can be identified using AIC values of the GARCH(p, q) process. Too large
values of the ARCH and GARCH orders p and q, respectively lead to an identification
problem because several parameterisations yield the same representation of the model
and also in most empirical applications it turns out that the simple specification p = q =
1 is able to reproduce the volatility dynamics of financial data (Engle and Sheppard,
2001; Tsay, 2015). To overcome these numerical difficulties GARCH(1, 1) model was
fitted to vector residual series. Moreover, we check for a couple of misspecification tests
proposed by Nakatani and Teräsvirta (2010). The null and alternative hypothesis are
stated as follows: H0 : αki and βkj in equation (4) are jointly diagonal elements against
H1: at least one of off-diagonal elements of αki and βkj is non-zero. We proceed to
apply the proposed test to our data series. Since the number of dimensions of series is k
= 4, the value of the test statistic under the null of no causality in conditional variance,
is a χ2

24 = 28.17 with 2k(k − 1) = 24 degrees of freedom and associated p-value of
0.253 for NT test. Thus the null hypothesis is not rejected at 5% of significance levels
in the tests. Therefore, it is recommended to use the diagonal version of the conditional
variance in estimating the parameters in DCC-MGARCH model fitting.
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4.1.1 Testing existence of dynamic and time-varying correlation in volatility models

Although due to its computational simplicity, the assumption of constant correlation
volatility model is widely used in empirical research, its major drawback is that the
correlation coefficient tends to change over time in a real application (Bauwens et al.,
2006). Thus, we applied Engle and Sheppard (2001) method to test the null hypothesis
of ‘constant probability’ of the correlation of standard residuals series estimated by
constant CC-MGARCH model. The test results rejected the null hypothesis with a
test statistic of 21.584 and p-value of (0.000). This is a strong evidence for existence
of time-varying correlations between the four series variables under study at any
significance level and against the assumption of constant CCs. Thus, further insights of
CC can be gained by allowing the correlation matrix to vary over time as discussed
above.

Following the procedure to build DCC models by Tsay (2005), first we apply
preDCC-MGARCH(1, 1) to obtain estimates of the condition mean, µ̂t, for the Box-Cox
transformed data series, Yt, and the estimated residuals ε̂t = Yt − µ̂t. The estimated
volatility series of a univariate GARCH, Σ̂it = {σ̂ij,t} models to each component series
ε̂it is 

σ2
GDPGR,t

σ2
INFR,t

σ2
EXR,t

σ2
INTR,t

 =


0.0014
0.0013
0.000002
0.000

+


0.734
0.519
0.455
0.549


′ 

ε2GDPGR,t−1

ε2INFR,t−1

ε2EXR,t−1

ε2INTR,t−1



+


0.00087
0.462
0.516
0.402


′ 

σ2
GDPGR,t−1

σ2
INFR,t−1

σ2
EXR,t−1

σ2
INTR,t−1

 . (23)

From the volatility series of the prior four models shown in rquation (23) obtained
by fitting the preDCC-MGARCH(1, 1) model, we obtain the marginally standardised
residual series η̂t shown in Figure 8 in Appendix.

In order to fit Engle’s (2002) DCC-MGARCH model of the volatilities, further
insights of the correlation matrix, ρt, can be gained by allowing it to vary with time so
that the dynamic nature of the correlation can be captured. In this case, following Tse
and Tsui (2002), Tsay (2005) and Engle (2002) a two-stage estimation procedure: first,
a conventional univariate GARCH parameter estimation was made for each zero mean
series by fitting a preDCC-MGARCH model discussed above, and the next stage is
using estimates of a marginally standardised innovation vector, η̂it from the first stage
the DCC parameters, θ̂1 and θ̂2 are estimated as shown in Table 6 in Appendix.

To handle heavy tails behaviour of macroeconomic time series variables, we used
multivariate Student-t distribution for the innovations and the fitted model as given in
equations (24) and (25).

Qt = (1− 0.670− 0.080)Q̄+ 0.670Qt−1 + 0.080η̂t−1η̂
′
t−1, (24)

ρt = JtQtJt, (25)
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where Jt = diag
{
q
−1/2
11,t , q

−1/2
22,t , q

−1/2
33,t , q

−1/2
44,t

}
with qii,t being the (i, i)th element of Qt,

and Q is the estimated sample unconditional covariance matrix of η̂t given by:

Q =


1.000 −0.149 0.148 0.236
−0.149 1.000 0.028 0.010
0.148 0.028 1.000 0.362
0.236 0.010 0.362 1.000

 .

As stated, in the theoretical description of the DCC-MGARCH model, the estimates of
both scalar parameters θ̂1 = 0.670 and θ̂2 = 0.080, shown in Table 6, and as fitted in
equation (24), are to capture the effects of previous DCCs and previous standardised
shocks on current DCCs, Qt and are significant at 5% level with t-ratios of 4.743 and
2.134, respectively. The assumptions θ̂1 and θ̂2 have to be individually larger than zero
and their sum θ̂1 + θ̂2 = 0.750 has to be strictly less than a unity are both satisfied.
Accordingly, the results of estimates of the DCC-parameters have high persistence that
directly enforces both the necessary and sufficient conditions for positive definiteness
and covariance stationarity assumption of Σ̂t and ρ̂t matrices. Thus, it is necessary to
apply the DCC-MGARCH model to the existing dataset understudy.

From the fitted DCC-MGARCH in equation (24) the θ̂1 estimates are typically
much higher than θ̂2 estimates, which implies that a higher long-run persistence in the
CC contributed from the re-normalised CC, Qt, component at each time index t than
CC contributed from η̂t−1η̂

′
t−1. Additionally, the estimated degrees of freedom for a

multivariate student-t distribution, ν̂ = 13.86, is greater than 2 and is also significant
with t-ratio of 2.007.

A visual representation of the estimated dynamic and time-varying CCs models in
equations (24) and (25) were fitted to the estimated standardised residuals series of
preDCC-GARCH model, η̂t. The interdependency of inflation rate and GDP growth
rate are most negative throughout the study period, which is strong indications of the
unstable relationship between the two macroeconomic variables. A negative correlation
implies that long-run costs due to a period of low inflation rates will tend to be slightly
offset by a period of high GDP growth rate. Conversely, long-run benefits during a
period of high inflation rates will be offset by low economic growth rate. The estimates
of dynamic and time-varying CC, between real GDP growth with both exchange and
interest rates are positive. The correlation structure of the DCC(1, 1) MGARCH model
has a clear interpretation: there is a non-constant interaction of the past CC that has
a significant impact on current CC with a lag of 1. This interaction effect would be
neglected if the time-series of macro-variables under consideration were modeled in
isolation, using a univariate GARCH models.

4.2 Fitting the Bayesian DCC-MGARCH model

The Bayesian framework inference is based on computationally intensive methods,
MCMC, to obtain the joint posterior distribution of the parameters of high dimensional
volatility modelling, such as the class of DCCs. The MCMC sampler implemented in the
package bayesGARCH (Fioruci et al., 2014b) is based on the approach of Ardia (2008).
A sample obtained by the method being described will probably present significant
correlation. However, due to the ergodicity property of the Markov chain, the estimation
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of the mean is not affected by the correlation in the sample. Therefore, to avoid
unnecessary computational work, which ultimately would not lead to improvement in
terms of parameter estimation, thinning is not implemented. The R-package ‘MTS’
implemented by Tsay (2015) was adopted with modified priors from standardised
distributions.

The prior is specified with the help of parameters called hyperparameters which
are initially assumed to be known and constant. For the GARCH(1, 1) coefficients in
equation (4), we have the prior distributions proposed for ωi for i = 1, 2, 3, 4 and ν
in simulation are both the same in all cases. The priors for the lag coefficients αi ∼
Be (2, 2) and βi ∼ 0.1 ∗Be (2, 2), i = 1, 2, ..., k assigned so that it can be elicited by
controlling the priors βi, αi > 0 and (βi + αi) on the interval (0, 1). Similarly, the DCC
parameters, θ1 ∼ Be (2, 2) and θ2 ∼ 0.1 ∗Be (2, 2), i = 1, 2, ..., k assigned so that it
can be elicited by controlling the priors θ1, θ2 > 0 and (θ1 + θ2) on the interval (0, 1).
For the skewed-t distribution the prior for the degree of freedom parameter assigned as
ν = 8 was considered to ensures the conditional variance to be finite. In the case of the
skewness parameters, we use beta distributions on positive values, i.e., γi ∼ Be (2, 2)
for i = 1, ..., k. Using a beta distribution as prior facilitates the insertion of information
in certain regions of the parameter space that satisfies the assumptions in the model since
the hyper-parameters no longer represent the mean and variance but still control the
region of higher probability mass. We emphasise the fact that only positivity constraints
are implemented in the M-H algorithm, no stationarity conditions are imposed in the
simulation procedure.

As of the variance parameters, we find it reasonable to choose a prior that is centered
around the symmetric version of the skewed distribution and gives approximately equal
weights to left and right skewness. If we choose the hyper-parameters a = 2 and b
= 1 such that controlling the prior variance so small is a reasonable choice, since
positivity of the variance is also mandatory that can be satisfied by the distribution
chosen. Thus, the priors σ2

ωi
= σ2

αi
= σ2

βi
= σ2

δ = σ2
θ1

= σ2
θ2

= 0.1 ∗Gamma(2, 1) are
randomly chosen. Optionally, the inverse Gamma is was also checked in the sensitivity
test.

Tables 2, 3 and 4 present the summary statistics for the samples obtained from
the posterior distribution for each parameter of the DCC-MGARCH(1, 1) model by
MCMC simulations for the model with multivariate skew normal, student-t and GED
errors, respectively. The statistics reported in each table are the sample mean, the sample
standard deviation and the 95% credibility interval for the parameter of the transition
kernel density considered at N = 100,000 simulated realisations of the process and
10,000 burn in with out thinning in each case using M-H sampling steps. A large
number of iterations is chosen because of the complexity of the model. As shown in
Figure 2 (see also Tables 2, 3 and 4), mean estimates of the posterior distribution, ωi,
are nearly zero and do not change significantly when the entire sample is considered for
skew normal, skew-t and skew-GED distributions. Figure 2 also reinforces the idea that
the entire chain gives better estimates for the density function. That means, the greater
efficiency is achieved through a prior belief in the curves smoothness of the kernel
density of the posterior joint distribution of the model parameters. The means of the
marginal posterior distributions are very similar to the estimates obtained by classical
method discussed earlier. Note that the distribution of the MGARCH parameters αi and
βi for each variables appear to be almost symmetric, as their means almost equal to
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the median (50%) summarises it well. They are clearly positive in view of the 95%
credibility intervals.

Empirical results for the error terms, including the symmetric version of the
distribution, were then compared according to the deviance information criterion (DIC).
The bottom row of each Tables 2, 3 and 4 present the fitted MLE computed values of
DIC and log-likelihood. The values signify the GED distribution is much better in fitting
the data considered in the study. Since the DIC is subject to Monte Carlo sampling error
(it is a function of stochastically simulated quantities), this might cast doubt whether the
inclusion of the shape and skewness parameters δ and γ, respectively, is substantially
improving model fit. Figure 2 illustrates the three fitted density curves to the simulated
data from posterior densities of the skewness parameters γ̂i for the multivariate skew
normal, skew-t and skew-GED distributions. Graphically, it also confirms clearly that
the density curve of the GED distribution provides the best fit to the data compared to
the other two densities.

Table 2 Summary of the simulated Bayesian DCC-MGARCH model using M-H sampling for
multivariate skewed-normal distribution

Variable Parameters Mean Std. dev. 2.5% 50% 97.5%

GDPGR γ1 1.09 0.146 0.797 1.087 1.383
ω1 0.050 0.022 0.017 0.046 0.104
α1 0.173 0.558 0.056 0.175 0.274
β1 0.723 0.235 0.677 0.723 0.769

α1 + β1 0.896 0.055 0.779 0.899 0.989
INFR γ2 0.767 0.158 0.516 0.749 1.122

ω2 0.037 0.014 0.016 0.035 0.070
α2 0.353 0.109 0.166 0.346 0.577
β2 0.487 0.106 0.260 0.494 0.674

α2 + β2 0.840 0.091 0.624 0.848 0.984
EXR γ3 1.416 0.277 1.008 1.366 2.082

ω3 0.000 0.000 0.000 0.000 0.000
α3 0.217 0.043 0.142 0.217 0.300
β3 0.666 0.087 0.462 0.682 0.783

α3 + β3 0.883 0.087 0.683 0.901 0.989
INTR γ4 0.760 0.097 0.576 0.756 0.959

ω4 0.007 0.002 0.004 0.007 0.011
α4 0.117 0.044 0.037 0.115 0.207
β4 0.532 0.137 0.198 0.548 0.751

α4 + β4 0.649 0.137 0.330 0.665 0.861
θ1 0.107 0.027 0.055 0.106 0.162
θ2 0.657 0.105 0.438 0.672 0.805

θ1 + θ2 0.764 0.105 0.553 0.782 0.888

Log-likelihood = –352.611; DIC = –469.830

Thus, we focus on the interpretation of parameter estimation results from GED model.
From Table 4 one observes that the skewness parameter γi is well estimated. That is,
inclusion of the shape parameters δ and γi is substantially improving model fit. Posterior
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means, medians and 95% credible intervals of the skewness parameter γi indicate high
asymmetry (right skewed) for the GDP growth rate and exchange rate, while for the
inflation rate and interest rates there is a slight skewness to the left.

Table 3 Summary of the simulated Bayesian DCC-MGARCH model using M-H sampling for
multivariate skewed student-t distribution

Variable Parameters Mean Std. dev. 2.5% 50% 97.5%

GDPGR γ1 1.028 0.123 0.792 1.024 1.287
ω1 0.025 0.009 0.242 1.164 1.432
α1 0.185 0.053 0.077 0.188 0.277
β1 0.731 0.026 0.679 0.730 0.780

α1 + β1 0.916 0.053 0.800 0.921 0.994
INFR γ2 0.754 0.141 0.511 0.745 1.046

ω2 0.063 0.019 0.033 0.061 0.106
α2 0.336 0.109 0.141 0.329 0.563
β2 0.530 0.103 0.317 0.533 0.720

α2 + β2 0.866 0.086 0.662 0.887 0.990
EXR γ3 1.128 0.153 0.888 1.107 1.472

ω3 0.000 0.000 0.000 0.000 0.000
α3 0.209 0.047 0.118 0.209 0.302
β3 0.645 0.103 0.363 0.666 0.779

α3 + β3 0.854 0.107 0.562 0.878 0.983
INTR γ4 0.849 0.101 0.654 0.848 1.054

ω4 0.015 0.0035 0.009 0.015 0.022
α4 0.105 0.043 0.024 0.103 0.195
β4 0.543 0.133 0.249 0.554 0.770

α4 + β4 0.648 0.133 0.347 0.659 0.874
θ1 0.103 0.030 0.046 0.102 0.164
θ2 0.655 0.103 0.432 0.664 0.825

θ1 + θ2 0.532 0.0.095 0.546 0.769 0.904
ν 7.760 0.196 7.366 7.762 8.141

Log-likelihood = –257.469; DIC = –464.277

Lag coefficients for ARCH and GARCH parameters αi and βi, respectively, are all
significant. The ARCH parameter is highest for inflation rate and lowest for interest
rate while the GARCH parameter is highest for GDP growth rate and lowest for
inflation rate. This indicates that inflation rate is more affected by the squares of lagged
innovations while GDP growth rate is more affected by the lagged variances. In general,
the hypothesis ARCH and GARCH parameters αi and βi for i = 1, ..., 4, respectively,
are all zero is rejected, and that indicates the assumptions of positive definiteness of the
correlation as well as covariance matrices are met since αi + βi < 1 for ∀i = 1, ..., 4.
High persistence αi + βi = 0.915 is observed for GDP growth rate and less persistent,
0.621 for interest rate.

The estimates of θ1 and θ2 in the bottom of Table 4 are significant and these
indicate that a constant CC model hypothesis (θ1 = θ2 = 0) can be rejected on the
basis of the marginal posterior distributions of θ1 and θ2. The posterior distribution of
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θ1 + θ2 = 0.780 indicates more strong persistence in equation (3) with more load to
θ2, that is, higher persistence to CC contributed from η̂t−1η̂

′
t−1 than the re-normalised

CC, Qt, component at each time index t. Lastly, the estimates of the shape parameter
δ = 1.568 last row of Table 4 for Skew-GED distribution is significant indicating
that an asymmetric distribution is appropriate for modelling the error terms under this
distribution. The length of 95% credible interval for δ is 0.775. This signifies the shape
parameter for GED is more preferable for modelling fat tail behaviour heavier of the
macroeconomic time series data set under study.

Table 4 Summary of the simulated Bayesian DCC-MGARCH model using M-H sampling for
multivariate skewed GED distribution

Variable Parameters Mean Std. dev. 2.5% 50% 97.5%

GDPGR γ1 1.157 0.124 0.925 1.151 1.419
ω1 0.041 0.022 0.009 0.037 0.096
α1 0.186 0.048 0.089 0.188 0.274
β1 0.729 0.025 0.680 0.729 0.779

α1 + β1 0.915 0.048 0.810 0.920 0.993
INFR γ2 0.746 0.167 0.477 0.723 1.110

ω2 0.039 0.016 0.014 0.036 0.077
α2 0.352 0.110 0.159 0.346 0.590
β2 0.508 0.108 0.283 0.513 0.708

α2 + β2 0.860 0.088 0.657 0.872 0.989
EXR γ3 1.293 0.206 0.953 1.267 1.788

ω3 0.000 0.000 0.000 0.000 0.000
α3 0.213 0.046 0.125 0.212 0.304
β3 0.650 0.102 0.406 0.669 0.775

α3 + β3 0.863 0.112 0.623 0.885 0.985
INTR γ4 0.767 0.099 0.591 0.761 0.982

ω4 0.007 0.002 0.004 0.007 1.011
α4 0.101 0.043 0.031 0.108 0.199
β4 0.520 0.129 0.226 0.533 0.741

α4 + β4 0.621 0.128 0.344 0.644 0.843
θ1 0.102 0.029 0.049 0.100 0.160
θ2 0.678 0.089 0.472 0.690 0.821

θ1 + θ2 0.780 0.080 0.584 0.794 0.896
δ 1.568 0.169 1.257 1.559 1.929

Log-likelihood = –416.871; DIC = –472.746

4.3 Sensitivity analysis

Sensitivity analysis is concerned with understanding how changes in the model inputs,
priors, influence the outputs, the posterior distribution. This may be motivated simply
by a wish to understand the implications of a complex model but often arises because
there is uncertainty about the true values of the priors that should be used for a
particular application. To evaluate the robustness of the Bayesian model in the presence
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of uncertainty, the key assumptions of the model fitted to multivariate skewed normal,
student-t and GED, four different sensitive assumptions for the prior parameters, θ3 =
{γi, αi, βi, θ1, θ2, ρi−1,i, δ} under each model are computed and compared.

The different prior distribution assumptions for set of parameters θ3 includes:
Beta(2, 2), Truncated Normal(0, 1), Uniform(0, 1), and Beta(0.5, 0.5) were considered
under three cases and the results displayed in Figures 3–5 and the summary statistics is
given in Table 5 below for each case.

Case 1

Following Fioruci et al. (2014a) method the prior distribution for set of parameters θ3
to be randomly generated from a truncated normal distribution in the interval (0, 1),
but with the same variance to the reference model [previously randomly generated from
Gamma(1, 2)]. The estimated posterior distribution of γi is given in Figure 3.

Figure 2 Posterior densities of skewness parameters for the, (a) GDPGR (b) INFR (c) EXR
(d) INTR using the skew multivariate normal (solid red line), student-t (dotted blue
points) and GED (dashed green line) distributions

The result shows that the prior parameters from truncated Gaussian are with almost
the same mean value and standard deviation but with higher kurtosis and more skewed
than Beta(2, 2) prior for the set of parameters θ3. The Beta(2, 2) prior improves and
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degrades the estimation performance for γi as observed for each variable in Figure 3
and the summary statistics in Table 5.

Case 2

The prior distribution for set of parameters θ3 to be randomly generated from a uniform
distribution in the interval (0, 1), but with the same variance to the reference model.
Sampling posterior distributions of γi under GED using different prior distribution for
set of parameters θ3 is given in Figure 4.

Figure 3 Sampling distributions of γi under GED using different priors: Beta(2, 2) (solid
line), Truncated Normal(0, 1) (dashed line) for, (a) GDPGR (b) INFR (c) EXR
(d) INFR (see online version for colours)

The result shows the sensitivity test in case of GED model, the prior parameters from
Beta(2, 2) and Uniform(0, 1) are with almost the same mean, kurtosis and skewness but
with smaller standard deviation for the later, see Figure 4 and Table 5. This indicates
that the beta prior for parameter set θ3 neither improves nor degrades the estimation
performance in uniform priors.

Case 3

θ3 to be generated from the Beta(0.5, 0.5) again with the same variance to the reference
model to observe the effect of the beta prior parameters in the interval (0, 1). As for the
Beta(a, b) prior taking a = b is reasonable to choose a prior that gives approximately
symmetric distribution with equal weights to left and right skewness. Sampling posterior
distributions of γi under GED using different prior distribution is given in Figure 5.

The results of case 3 also shows that the beta prior for parameter set θ3 does
not affected by the beta prior parameters (a, b) restricted to the interval (0, 1). Beta
prior for the set of parameters θ3 improves the estimation performance, compared
to either the truncated Gaussian prior or the uniform prior for γi in the Bayesian



Application of Bayesian methods in the analysis of DCC-MGARCH 139

DCC-MGARCH model fitted to multivariate skewed distributional models. Almost all of
Bayesian analysis considered are insensitive to the priors change. Posterior distributions
of scale and shape parameters, ν and δ for the multivariate skewed student-t and GED
distributions, respectively, under different priors are reported in Figures 6 and ??. The
result shows the estimated posterior distributions are all quite close except some slight
shift of the shape parameter δ to the left in case of the truncated normal prior. It is
to be noted that posterior results for the multivariate skewed student-t model were not
extremely sensitive with respect to the prior parameter ν. However, more sensitive with
respect to the prior parameter δ for the multivariate skewed GED model.

Figure 4 Sampling distributions of γi GED using different priors: Beta(2, 2) (solid line) and
Uniform(0, 1) (dashed line) for, (a) GDPGR (b) INFR (c) EXR (d) INFR
(see online version for colours)

4.4 Discussion

The estimates of dynamic and time-varying CC, between real GDP growth with both
exchange and interest rates are positive, which are in line with Rodrik (2008) and
Bader and Malawi (2010) the study conducted in Jordan and also by Dickson (2021) in
Ghana’s economic growth.

There is strong evidence of high volatility both in magnitude and persistence of
co-movements between macroeconomic variables under study. The estimates for DCC
parameters are statistically significant. This makes it clear that the assumption of
constant CC is not supported empirically. The correlation structure of the fitted models
have a clear interpretation that there is a non-constant interaction of the past CC that
has a significant dynamic and time-varying impact on current CC. Thus, ignoring the
extension of the CC-MGARCH model to the DCC-MGARCH models have an impact
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that would induce model misspecification. This confirms the recent empirical evidences
by Engle (2002), Tse and Tsui (2002), Tsay (2005) and Greenberg (1995). Furthermore,
by inclusion of local correlations to update the CC matrices and the smoothing parameter
the time-varying CC fits the data better.

Figure 5 Sampling distributions of γi under multivariate skewed GED distribution using
different priors: Beta(2, 2) (solid line) and Beta(0.5, 0.5) (dashed line) for,
(a) GDPGR (b) INFR (c) EXR (d) INFR (see online version for colours)

Figure 6 Sampling distributions of, (a) ν (b) δ under multivariate skewed GED distribution
using different priors: Beta(2, 2) (black), Truncated Normal(0, 1) (red), Uniform(0,
1) (blue) and Beta(0.5, 0.5) (see online version for colours)

(a) (b)

Empirical results concerning the distribution of conditionally volatile error terms that
accommodate asymmetry as well as heavy tailed distribution, the Metropolis Hastings
algorithm in MCMC methods are very useful in estimating parameters fitting Bayesian
DCC-MGARCH models, that confirm with the existing literature Fiorentini et al. (2003),
Meyer and Yu (2000), Ardia (2008) and Asai (2006).

In summary, since the DIC is subject to Monte Carlo sampling error in Bayesian
methods, it select the beta prior, that is; the inclusion of the shape and skewness
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parameters δ and γ, respectively, which substantially improving model fit. Further, the
results signify that the GED distribution is much better when beta prior density functions
was considered in the selection of the true value of the hyper-parameters in Bayesian
DCC-MGARCH model fitting, which is consistent with the conclusion made by Prass
et al. (2016) in the literature.

Table 5 Summary statistics of γi in the sensitivity analysis for different prior distributions
assumptions

Skewed mult. Assumed prior distribution Mean Standard deviation Skewness Kurtosis
distribution

Normal Tranc. N(0, 1) 1.143 0.240 0.711 0.354
Unif(0, 1) 1.152 0.241 0.724 0.357

Beta(0.5, 0.5) 1.160 0.242 0.678 0.288
Beta(2, 2) 1.162 0.247 0.746 0.423

Student-t Tranc. N(0, 1) 0.911 0.084 -0.168 0.707
Unif(0, 1) 0.887 0.116 0.695 2.816

Beta(0.5, 0.5) 0.892 0.105 0.185 0.980
Beta(2, 2) 0.884 0.101 0.104 1.378

GED Tranc. N(0, 1) 0.949 0.221 1.826 5.270
Unif(0, 1) 0.972 0.013 1.395 2.865

Beta(0.5, 0.5) 0.991 0.231 1.466 2.843
Beta(2, 2) 0.998 0.241 1.497 2.782

5 Concluding remarks

This paper explores the technical challenges faced by Bayesian econometricians in
enhancing forecasting models for macroeconomic variables using Bayesian inference.
Recent Bayesian study on GARCH model, promising for stochastic simulation
techniques to explore multivariate skewed distributions and heavy-tailed error properties.
The study enhances MGARCH model usage and performance by incorporating Bayesian
frame work and efficient sampling methods for modelling asymmetric error terms.
The DCC-GARCH model is proposed to incorporate new priors, scale parameters, and
shape parameters using a Bayesian approach and an efficient sampling method from
non-normal posterior distributions. They come together to form a versatile family of
distributions that can handle heavy-tailed, asymmetric data, which is commonly seen in
financial time series.

The analysis results shows the posterior estimations of the parameters are found
to be reliable under the beta prior distribution. There are some right skewness for the
posterior distributions of errors of both GDP growth and exchange rates. However, for
the inflation and interest rates, slight skewness to the left are signified. Thus, asymmetric
distribution is appropriate for modelling the error terms of such macroeconomic data.
Both log-likelihood and DIC method suggest that the multivariate GED model fits best
to the data. The sensitivity test under GED model shows that the Bayesian analyses are
insensitive to the prior choices of uniform and beta distributions. The truncated normal
provides slightly different results than the two priors. The Bayesian GED model is
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promising as analysing such economic data considered in this study. The new approach
is more flexible and can better describe the uncertainties in volatilities than the classical
methods.

Further research could compare other uni- and MGARCH models, such as the
models that directly model the conditional covariance matrix like VEC and the Baba,
Engle, Kraft and Kroner (BEKK) MGARCH models. One may still looking into using
skewed distributions with fat tails in addition to the multivariate student-t and GED in
their ongoing research.
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Appendix

Figure 7 Time plots of residuals series of the fitted VEC model (see online version
for colours)

Table 6 The estimation of DCC-MGARCH model parameters

Variable Parameters Estimate Std. error t-value Significance
GDPGR ϖ̂1 0.0014 0.000316 4.391 0.000***

α̂1 0.734 0.187 3.917 0.000***
β̂1 0.00087 0.005 0.174 0.431

INFR ϖ̂2 0.0013 0.00068 1.98 0.024***
α̂2 0.519 0.175 2.917 0.002***
β̂2 0.462 0.099 4.633 0.000***

EXR ϖ̂3 0.000002 0.000001 1.303 0.096
α̂3 0.455 0.199 2.280 0.011***
β̂3 0.516 0.169 3.038 0.001***

INTR ϖ̂4 0.000 0.000 1.142 0.126
α̂4 0.549 0.180 3.043 0.001***
β̂4 0.402 0.191 2.103 0.017***
θ̂1 0.670 0.141 4.743 0.000***
θ̂2 0.080 0.0374 2.134 0.016***
ν̂ 13.86 6.672 2.077 0.018***

Log-likelihood = –16.95
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Figure 8 Estimated standardised residual plot of fitted preDCC-MGARCH(1, 1) models for,
(a) GDPGR (b) INFR (c) EXR (d) INTR (see online version for colours)


