
 
International Journal of Dynamical Systems and
Differential Equations
 
ISSN online: 1752-3591 - ISSN print: 1752-3583
https://www.inderscience.com/ijdsde

 
Null controllability of semilinear delay control systems
 
Suman Kumar
 
DOI: 10.1504/IJDSDE.2024.10069251
 
Article History:
Received: 16 July 2024
Last revised: 19 November 2024
Accepted: 13 December 2024
Published online: 06 March 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijdsde
https://dx.doi.org/10.1504/IJDSDE.2024.10069251
http://www.tcpdf.org


412      Int. J. Dynamical Systems and Differential Equations, Vol. 13, No. 4, 2024

Null controllability of semilinear delay control
systems

Suman Kumar
Department of Mathematics,
IGNTU Amarkantak,
Madhya Pradesh, India
Email: suman@igntu.ac.in
Email: ksumanrm@gmail.com

Abstract: In this paper, the null controllability results for a class of
semilinear delay control systems have been established. The fundamental
semigroup is generated by using the perturbation due to the linear delay
operator, which defines the fundamental solution of the system. Then, the null
controllability of the associated linear delay control system has been deduced
assuming that the linear non-delay control system is null controllable. The
sufficient conditions have been introduced to establish the null controllability
of semilinear delay control systems. The main result is proved by applying
the Krasnoselskii fixed point theorem. The application of the derived result is
demonstrated by a parabolic partial differential equation of diffusion process.
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1 Introduction

Many real life processes observe delay in their evolution. The mathematical models 
of such phenomena are better represented by delay differential equations (DDEs) in 
which the present dynamics depends upon the historical information that incorporate 
delayed state function. The delayed state function acts as a feedback controller which 
helps in further evolution process. Therefore, the theory of DDEs has achieved 
diverse field of applications including biology, physics, engineering, finance, etc.

Copyright © 2024 Inderscience Enterprises Ltd.
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However, the modes of application of DDEs in practical systems depend upon the
objectives and requirements of researchers. There are different ways to incorporate
DDEs depending upon the feedback effect of the historical information, such as constant
delay, state-dependent delay, time-varying delay and neutral delay. The importance of
delay is observed in differential equations of integer orders and fractional orders both.
Also, DDEs have significant applications in deterministic and stochastic both types of
modelling of real life phenomena. Looking at the wide range of applications, several
mathematicians have contributed on the existence and uniqueness of solutions of DDEs,
see Driver (2012), Hale and Lunel (2013), Azbelev and Rakhmatullina (2007) and Hino
et al. (1991) and references therein. The birth of control theory of DDEs was a mile
stone which broadened the applications of DDEs covering physical-chemical-biological
sciences, medical science, population models and network dynamics (Erneux, 2009;
Smith, 2010; Piazzera, 2004; Rihan, 2021; Guo and Luo, 2002). The results presented
in this paper generalises many previous controllability properties of delay systems.

DDEs are infinite-dimensional problems and there are many forms of controllability
in infinite dimension control systems, viz., exact controllability (Bashirov, 2021),
approximate controllability (Kumar et al., 2022a, 2022b; Raja et al., 2022; Kumar, 2023;
Johnson et al., 2024), null controllability, trajectory controllability (Chalishajar et al.,
2010), complete controllability (Shukla et al., 2015), constrained controllability (Sikora
and Klamka, 2017), relative controllability (Wang et al., 2017), etc. This work will
present the null controllability of linear and semilinear delay control systems. The null
controllability is a special case of exact controllability in which the trajectory of control
systems traverses from the given initial state to the zero or null state in the state space.
In respect of applications to the exactly controllable systems, the arbitrary desired state
can be achieved by the composition of trajectories from the given initial state to the
zero state and then from the zero state to the desired state. Mathematical developments
of null controllability briefly discussed in the below literature survey have motivated to
explore the analysis of null controllability for delay differential systems.

There have been pioneering studies in the null controllability of delay systems
since decades of seventies (Underwood and Young, 1979; Chukwu, 1980, 1984, 1987;
Balachandran and Dauer, 1990, 1996; Dauer et al., 1998; Vieru, 2005; Chen, 2015,
2016; Davies and Haas, 2015; Du and Xu, 2018; Sathiyaraj and Balasubramaniam, 2019;
Xu et al., 2020; Boujallal and Kassara, 2021; Azamov et al., 2023). Underwood and
Young (1979) established null controllability for various types of linear and nonlinear
functional differential equations under unlimited and square summable controls on
finite intervals. They have described through an example that the null controllability
of linear approximation of a nonlinear system implies the local null controllability
of the main nonlinear system. Chukwu (1980, 1984) proved that if the control-free
system is uniformly asymptotically stable and the linear control system is controllable
with only square integrable controls in finite intervals, then the nonlinear delay system
is Euclidean null controllable. Dauer with co-researchers (Balachandran and Dauer,
1996; Dauer et al., 1998) discussed the results for nonlinear neutral system with
distributed and time-varying delays in control variables by using the Schauder fixed
point theorem. Vieru (2005) presented characterisations for the null controllability of
linear systems in Banach spaces and reflexive Banach spaces which was a problem left
open by Chen and Qin (2002). Chen (2015, 2016) established null controllability for the
Korteweg-de Vries equation with finite number of constraints on the state and the control
variables by using an adapted Carleman inequality. Davies and Haas (2015) developed
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the null controllability of neutral control systems with infinite delays for controls
lying in m-dimensional unit cube. Du and Xu (2018) derived the null controllability
of the coupled degenerate systems with two controls, and then for one control by
using the Carleman estimate and the observability inequality for the adjoint system.
Sathiyaraj and Balasubramaniam (2019) applied the Schauder fixed point theorem
to prove the null controllability of nonlinear fractional stochastic large-scale neutral
systems in finite-dimensional space. Xu et al. (2020) established the well-posedness and
the approximate null controllability of the linearised system of degenerate semilinear
parabolic control system. Boujallal and Kassara (2021) presented a unified approach to
investigate the asymptotic null controllability of semilinear partial differential equations
with mixed input-state constraints. Azamov et al. (2023) established the stability and
the null controllability for the infinite linear systems in l2-space.

The study on controllability is influenced by the fixed point theory. There are
many fixed point theorems with various applications in the nonlinear analysis. In the
discussion of controllability of semilinear systems, the fixed point theorems used at large
are due to Banach, Schauder, Schaefer, Brouwer and Browder. In the recent research,
mathematicians have explored Bohnenblust-Karlin fixed point theorem (Raja et al.,
2022) and Krasnoselskii fixed point theorem (Johnson et al., 2024) for approximate
controllability results.

In this work, the null controllability of semilinear delay control systems has been
established by using the Krasnoselskii fixed point theorem. The motivation of analytical
discussion comes from the pioneer works of Chukwu (1980, 1984, 1987), Balachandran
and Dauer (1990, 1996) and Engel and Nagel (1995). The problem formulation and
solution description are presented in Section 2. The results on null controllability have
been established in Section 3. The application of the obtained results is demonstrated in
Section 4 by an example of parabolic control system.

2 System description and fundamental solution

Let us consider the Hilbert spaces X and U with norms || · || and || · ||U ,
respectively. The norm ||x||C([−τ,t];X) = sups∈[−τ,t] ||x(s)||, τ > 0, is defined on the set
C([−τ, t];X) of all continuous functions from [−τ, t] into X . Consider the semilinear
delay control system as follows

ẋ(t) = A0x(t) +A1xt +Bu(t) + f(t, xt, u(t)), t ∈ (0, T ],

x0 = µ on [−τ, 0], (2.1)

where x(t) ∈ X , u(t) ∈ U , τ > 0 is maximum delay, xt ∈ C([−τ, 0];X) defined by
xt(θ) = x(t+ θ), A0 : D(A0) ⊂ X → X is densely defined closed linear operator, A1 :
C([−τ, 0];X) → X and B : U → X are linear bounded operators, µ ∈ C([−τ, 0];X),
and f : [0, T ]× C([−τ, 0];X)× U → X is a nonlinear map.

Denote the operator norm || · ||L (X,Y ) in the space L (X,Y ) of all bounded linear
operators from space X into an space Y , and || · ||L (X) for X = Y . Let us impose the
following assumptions:

A1 A0 generates a strongly continuous semigroup {S(t)}t≥0, and there exists
M0 ≥ 1 such that ||S(t)||L (X) ≤ M0.
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A2 There exists M1 > 0 such that ||A1||L (C([−τ,0];X),X) ≤ M1.

A3 There exists LB > 0 such that ||Bu(t)|| ≤ LB ||u(t)||U for all u ∈ L2([0, T ];U).

A4 f is continuous in [0, T ] and Lipschitz in C([−τ, 0];X)× U with constant
Lf > 0 satisfying

||f(t, xt, u(t))− f(t, yt, v(t))|| ≤ Lf (||xt − yt||C([−τ,0];X) + ||u(t)− v(t)||U )

and f(t, 0, 0) = 0 for all t.

A5 There exists Cµ > 0 such that ||µ||C([−τ,0];X) ≤ Cµ.

Let us consider the control-free linear delay system associated to equation (2.1) given
by

ẋ(t) = A0x(t) +A1xt,

x0 = µ on [−τ, 0]. (2.2)

Define an operator A : C([−τ, 0];X) → X by Ax = ẋ with domain

D(A) := {x ∈ C1([−τ, 0];X) : x(0) ∈ D(A0) and ẋ(0) = A0x(0) +A1x0},

where A0 and A1 satisfy assumptions A1 and A2, respectively.
By using the Desch-Schappacher perturbation theorem [Engel and Nagel (1995),

Theorem 6.1], A generates a C0−semigroup {P (t)}t≥0 on C([−τ, 0];X) given by

[P (t)µ](0) =

{
µ(t), if t ≤ 0,

S(t)µ(0) +
∫ t

0
S(t− s)A1P (s)µds, if t > 0.

(2.3)

It is called the fundamental semigroup. Clearly, P (0) = I , and it satisfies the translation
property as follows

[P (t)µ](s) =

{
µ(t+ s), for t+ s ≤ 0,

[P (t+ s)µ](0), for t+ s > 0.
(2.4)

We get from equations (2.3) and (2.4) that

||P (t)µ||C([−τ,0];X) ≤ M0||µ||C([−τ,0];X) +M0M1

∫ t

0

||P (r)µ||C([−τ,0];X)dr.

By Gronwall’s inequality, this implies

||P (t)µ||C([−τ,0];X) ≤ eM0M1M0||µ||C([−τ,0];X) ∀ µ ∈ C([−τ, 0];X).

Thus,

||P (t)||L (C([−τ,0];X)) ≤ eM0M1M0 = MP . (2.5)

The last equality eM0M1M0 = MP implies that M0 ≤ MP .
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Definition 2.1: A continuous function x ∈ C([−τ, T ];X) given by

x(t) =


µ(t), if t ≤ 0,

S(t)µ(0) +
∫ t

0
S(t− s)

[
A1xs +Bu(s)

]
ds

+
∫ t

0
S(t− s)f(s, xs, u(s))ds, if t > 0

(2.6)

is called a mild solution of equation (2.1).

From assumptions A1–A4, the unique mild solution of equation (2.1) exists (Hale and
Lunel, 2013; Engel and Nagel, 1995; Sukavanam and Tafesse, 2011) and is given by
equation (2.6). The mild solution is also defined in terms of the fundamental semigroup
as below (Sukavanam and Tafesse, 2011; Wang, 2005).

Definition 2.2: The mild solution (2.6) with the fundamental semigroup {P (t)}t≥0

written as

x(t) =


µ(t), if t ≤ 0,

[P (t)µ](0) +
∫ t

0
S(t− s)Bu(s)ds

+
∫ t

0
S(t− s)f(s, xs, u(s))ds, if t > 0

(2.7)

is called the fundamental solution of equation (2.1).

The linear delay control system corresponding to equation (2.1) is

ẏ(t) = A0y(t) +A1yt +Bu(t),

y0 = µ on [−τ, 0]. (2.8)

The mild solution of equation (2.8) is

y(t;u) =


µ(t), if t ≤ 0,

S(t)µ(0) +
∫ t

0
S(t− s)A1ysds

+
∫ t

0
S(t− s)Bu(s)ds, if t > 0,

(2.9)

and its fundamental solution is given by

y(t;u) = [P (t)µ](0) +

∫ t

0

S(t− s)Bu(s)ds. (2.10)

The linear non-delay control system is

ż(t) = A0z(t) +Bu(t), t > 0,

z(0) = µ(0), (2.11)

and its mild solution is

z(t;u) = S(t)µ(0) +

∫ t

0

S(t− s)Bu(s)ds. (2.12)
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3 Null controllability

Let us denote the solution of the semilinear system (2.1) as x(t, µ, u, f), the solution
of equation (2.8) as x(t, µ, u, 0) = y(t;u) and the solution of equation (2.2) as
x(t, µ, 0, 0) = y(t; 0).

Definition 3.1 (null controllability): The semilinear control system (2.1) is said to be null
controllable on [0, T ] if for each µ ∈ C([−τ, 0];X) there is a control u ∈ L2([0, T ];U)
such that x(0, µ, u, f) = µ(0) and x(T, µ, u, f) = 0.

Define the controllability operator BT : L2([0, T ];U) → X as

BTu =

∫ T

0

S(T − s)Bu(s)ds (3.1)

and denote the nonlinear part of x(T, µ, u, f) as

FT (f) =

∫ T

0

S(T − s)f(s, xs, u(s))ds. (3.2)

Definition 3.2 (reachable set): The reachable set of equation (2.8) is defined as

RT =
{
BTu | u ∈ L2([0, T ];U)

}
.

Theorem 3.3: If the non-delay linear control system (2.11) is null controllable on [0, T ],
then the linear delay control system (2.8) is null controllable.

Proof: From the fundamental solution (2.10), we have y(t; 0) = [P (t)µ](0), where P (t)
is bounded linear operator from C([−τ, 0];X) into itself. Since equation (2.11) is null
controllable on [0, T ], we get u ∈ L2([0, T ];U) satisfying

z(T ;u) = S(T )µ(0) + BTu = 0.

Then, S(T )µ(0) = −BTu and it implies S(T )X ⊂ BT (L2([0, T ];U)).
Now, for each µ ∈ C([−τ, 0];X), we want to find a bounded linear operator

H : C([−τ, 0];X) → L2([0, T ];U) such that u = Hµ satisfies y(0, Hµ) = µ(0) and
y(T,Hµ) = 0.

Let the null space of BT be N and its orthogonal complement in L2([0, T ];U) be
N⊥. Then, the operator B0 : N⊥ → XB is bijective linear operator, where B0 ≡ BT |N⊥

and XB = BT (L2([0, T ];U)). So, B−1
0 exists.

Let us define an operator H : C([−τ, 0];X) → L2([0, T ];U) by

Hµ = −B−1
0 ([P (T )µ](0)).

Then,

y(T,Hµ) = [P (T )µ](0) + BT (Hµ)

= [P (T )µ](0) + BT (−B−1
0 [P (T )µ](0)) = 0.
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Next, we prove that H is bounded. Suppose that {µn} is a convergent sequence in
C([−τ, 0];X) such that {Hµn} converges in L2([0, T ];U), and let µ = limn→∞ µn,
u = limn→∞ Hµn, un = Hµn.

Since N⊥ is closed in L2([0, T ];U), u ∈ N⊥ and

[P (T )µ](0) + BTu = [P (T )µ](0) + lim
n→∞

BT (Hµn)

= lim
n→∞

(
[P (T )µn](0) + BT (Hµn)

)
= 0,

we get, u = −B−1
0 ([P (t)µ](0)) = Hµ. Hence, by the closed graph theorem, H is

bounded. This completes the proof. �

The adjoint operator (BT )∗ : X → L2([0, T ];U) of BT is given by

((BT )∗x)(t) = B∗S∗(T − t)x.

Let us define the controllability grammian GT : X → X by

GTx = BT (BT )∗x =

∫ T

0

S(T − s)BB∗S∗(T − s)xds. (3.3)

Definition 3.4 (complete): The linear delay control system is called complete on [0, T ]
if ∃ δ > 0 such that Nδ(0) ⊂ RT , where Nδ(0) is open ball of radius δ and centre 0.
In other words, 0 ∈ Int RT .

Krasnoselskii fixed point theorem (Smart, 1974): Let Ω be a closed convex nonempty
subset of a Banach space X . Suppose that Q1 and Q2 map Ω into X , Q1x+Q2y ∈ Ω
for all x, y ∈ Ω, Q1 is contraction map, and Q2 is compact continuous map. Then there
exists x ∈ Ω such that Q1x+Q2x = x.

Theorem 3.5: Let us put the following assumptions:

a The linear delay control system is complete, i.e., 0 ∈ IntRT .

b ||f(t, xt, u(t))|| ≤ e−βt, t ≥ 0 for some β > 0.

c eM
2
PLBMGLfM3

PL
2
BMGLfT

2 < 1.

Then the semilinear delay control system (2.1) is null controllable.

Proof: From assumption a, the linear delay control system is complete. So, 0 ∈ Int RT

and GT z = 0 ⇒ z = 0. Then, GT is invertible and the inverse operator (GT )−1 is
bounded. So, there exists MG > 0 such that ||(GT )−1|| ≤ MG.

The adjoint operator of BT is the operator (BT )∗ : X → L2([0, T ];U) given by
(BT )∗ = B∗S∗(T − ·) with ((BT )∗x)(s) = B∗S∗(T − s)x on [0, T ] and x ∈ X .

For the solution pair (x, u), let us take a control

u(t) = −B∗S∗(T − t)(GT )−1g(t), t ∈ [0, T ], (3.4)
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and

xt(0, µ, u, f) = [P (t)µ](0) +

∫ t

0

S(t− s)Bu(s)ds

+

∫ t

0

S(t− s)f(s, xs, u(s))ds, (3.5)

where

g(t) = [P (t)µ](0) +

∫ t

0

S(t− s)f(s, xs, u(s))ds.

Then, equation (3.5) is a solution of equation (2.1) corresponding to u and satisfies
x(T ) = 0. We wish to verify that u is admissible control. First, we have

||g(t)|| ≤ ||P (t)µ||C([−τ,0];X) +

∫ t

0

||S(t− s)f(s, xs, u(s))||ds

≤ MP ||µ||C([−τ,0];X) +M0

∫ t

0

||f(s, xs, u(s))||ds

≤ MPCµ +MP

∫ t

0

e−βsds

≤ MP

(
Cµ +

1− e−βT

β

)
.

Then, from equation (3.4), we get

||u||2 ≤ LBMGM
2
P

√
T
(
Cµ +

1− e−βT

β

)
.

Let us define an operator Q : C([−τ, T ];X) → C([−τ, T ];X) by

(Qx)(t) = [P (t)µ](0) +

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)f(s, xs, u(s))ds.

Take operators Q1, Q2 : C([−τ, T ];X) → C([−τ, T ];X) as follows

(Q1x)(t) = [P (t)µ](0) +

∫ t

0

S(t− s)Bu(s)ds

and

(Q2x)(t) =

∫ t

0

S(t− s)f(s, xs, u(s))ds

so that Qx = Q1x+Q2x. Consider a ball Ω = {x ∈ C([−τ, T ];X) : ||x||C([−τ,T ];X) ≤
R} ⊂ C([−τ, T ];X). Now, we claim that Q : Ω → C([−τ, T ];X) has a fixed point in
Ω. For the Krasnoselskii fixed point theorem, we verify that: Q1x+Q2y ∈ Ω for x, y ∈
Ω, Q1 is contraction map, and Q2 is compact continuous map.
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1 Let x, y ∈ Ω be two trajectories corresponding to controls u1, u2 ∈ L2([0, T ];U).
Then

||Q1x+Q2y|| ≤ MPCµ +MPLB

√
TLBMGM

2
P

√
T
(
Cµ +

1− e−βT

β

)
+ MP

1− e−βT

β
≤ MP

(
Cµ +

1− e−βT

β

)
+ M3

PL
2
BMGT

(
Cµ +

1− e−βT

β

)
≤ MP

(
Cµ +

1− e−βT

β

)
(1 +M2

PL
2
BMGT ) ≤ R.

2 For x, y ∈ Ω as in 1, we have

||Q1x−Q1y|| ≤
∫ t

0

||S(t− s)B(u1(s)− u2(s))||ds

≤ MPLB

∫ t

0

||u1(s)− u2(s)||ds. (3.6)

Since u1(t) = −B∗S∗(T − t)(GT )−1g1(t) and
u2(t) = −B∗S∗(T − t)(GT )−1g2(t), where

g1(t) = [P (t)µ](0) +

∫ t

0

S(t− s)f(s, xs, u1(s))ds

and

g2(t) = [P (t)µ](0) +

∫ t

0

S(t− s)f(s, ys, u2(s))ds,

therefore

u1(t)− u2(t) = −B∗S∗(T − t)(GT )−1(g1(t)− g2(t))

= −B∗S∗(T − t)(GT )−1

∫ t

0

S(t− s)
(
f(s, xs, u1(s))

− f(s, ys, u2(s))
)
ds.

This gives

||u1(t)− u2(t)|| ≤ MPLBMG

∫ t

0

||S(t− s)
(
f(s, xs, u1(s))− f(s, ys, u2(s))

)
||ds

≤ M2
PLBMG

∫ t

0

||f(s, xs, u1(s))− f(s, ys, u2(s))||ds

≤ M2
PLBMGLf

∫ t

0

(||xs − ys||C([−τ,0];X) + ||u1(s)− u2(s)||)ds

≤ M2
PLBMGLf

∫ t

0

||xs − ys||C([−τ,0];X)ds
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+ M2
PLBMGLf

∫ t

0

||u1(s)− u2(s)||ds

≤ M2
PLBMGLfT ||x− y||C([−τ,T ];X)

+ M2
PLBMGLf

∫ t

0

||u1(s)− u2(s)||ds.

By Gronwall’s inequality,

||u1(t)− u2(t)||U ≤ eM
2
PLBMGLfM2

PLBMGLfT ||x− y||C([−τ,T ];X). (3.7)

Then, from equation (3.6), we get

||Q1x−Q1y|| ≤ eM
2
PLBMGLfM3

PL
2
BMGLfT

2||x− y||C([−τ,T ];X).

Since eM
2
PLBMGLfM3

PL
2
BMGLfT

2 < 1, therefore Q1 is a contraction map.

3 For x, y ∈ Ω as in 1, we have

||Q2x−Q2y|| ≤
∫ t

0

||S(t− s)(f(s, xs, u1(s))− f(s, ys, u2(s)))||ds

≤ MPLf

∫ t

0

(||xs − ys||C([−τ,0];X) + ||u1(s)− u2(s)||U )ds

≤ MPLf

∫ t

0

(
||x− y||C([−τ,T ];X)

+ eM
2
PLBMGLfM2

PLBMGLfT ||x− y||C([−τ,T ];X)

)
ds

≤ MPLfT (1 + eM
2
PLBMGLfM2

PLBMGLfT )||x− y||C([−τ,T ];X).

This shows that Q2 is Lipschitz, and hence continuous. To show the compactness,
we shall verify that Q2(Ω) is uniformly bounded and equicontinuous. For any
x ∈ Ω corresponding to some control u ∈ L2([0, T ];U), we get

||(Q2x)(t)|| ≤ MP

∫ t

0

||f(s, xs, u(s))||ds

≤ MP
1− e−βt

β
for all t > 0.

This implies that ||Q2x||C([−τ,T ];X) ≤ MP
1−e−βT

β . Hence, Q2(Ω) is uniformly
bounded. Next, for t1, t2 ∈ [0, T ], we have

||(Q2x)(t2)− (Q2x)(t1)|| ≤
∫ t2

t1

||S(t− s)f(s, xs, u(s))||ds

≤ MP

∣∣∣ ∫ t2

t1

||f(s, xs, u(s))||ds
∣∣∣

≤ MP

∣∣∣e−βt1 − e−βt2

β

∣∣∣
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≤ MP

β

|eβt2 − eβt1 |
eβ(t1+t2)

≤ MP

β
|βt2 − βt1|

≤ MP |t2 − t1|.

This shows that Q2(Ω) is equicontinuous. By the Arzela-Ascoli theorem Nair
(2001), Q2(Ω) is relatively compact in C([−τ, T ];X), which renders Q2 is a
compact operator. Hence, the operator Q = Q1 +Q2 has a fixed point in Ω by the
Krasnoselskii fixed point theorem. It is the solution of equation (2.1) under
control (3.4) satisfying x(T, µ, u, f) = 0. This completes the proof of theorem. �

4 Application

Example 4.1: Consider a diffusion process given by the parabolic control system as
follows

∂y

∂t
(x, t) =

∂2y

∂x2
(x, t) + y(x, t− τ) + b(x)

∫ t

0

u(s, x)ds

+ f(t, yt(x, ·), u(x, t)), t ∈ [0, T ], x ∈ [0, π], (4.1a)
y(0, t) = y(π, t) = 0, t ∈ [0, T ], (4.1b)

y0(x, θ) = µ(x, θ), θ ∈ [−τ, 0], x ∈ [0, π], (4.1c)

where y(x, t) is density at point x and time t; b ∈ L∞([0, π];R+) is weight function
for control u.

Let X = L2[0, π] = U represent the state and control space both. Let y(·, t) ∈ X be
state and u(·, t) ∈ U be control. Define operator A0 by A0y = d2y

dx2 with

D(A0) = {y ∈ L2[0, π] : y,
dy

dx
are absolutely continuous,

d2y

dx2
∈ L2[0, π] and y(0) = 0 = y(π)}.

Then, {ξn(x) =
√

2
π sin(nx) : 0 ≤ x ≤ π} is an orthonormal basis for L2[0, π]

associated to the eigenspectrum {λn = −n2}, n ∈ N, of operator A0. Further, A0

generates the strongly continuous semigroup {S(t)}t≥0. For y =
∑∞

n=0⟨y, ξn⟩ξn, the
semigroup is given as

S(t)y =
∞∑

n=0

e−n2t⟨y, ξn⟩ξn,

satisfying ||S(t)||op ≤ 1 = M0.
Take A1 : C([−τ, 0];X) → X defined by A1yt = y(t− τ). Clearly A1 is bounded

linear operator with M1 = 1.
Define B as Bu(x, t) = b(x)

∫ t

0
u(s, x)ds. Thus, B is bounded linear operator with

LB = ess supx∈[0,π]b(x)
√
T .
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Let the nonlinear function f be given by

f(t, yt(·), u(t)) =
1

n2

||y(t− τ)||
1 + ||y(t− τ)||

ξn(x) +
1

(n+ k)2
||u(t)||

1 + ||u(t)||
ξn+k(x)

for chosen n, k ∈ N. For yt, zt ∈ C([−τ, 0];X) and controls u, v ∈ L2([0, T ];U), we
have

||f(t, yt, u(t))− f(t, zt, v(t))||X

≤ 1

n2

(
||yt(·)− zt(·)||C([−τ,0];X) + ||u(t)− v(t)||

)
.

This implies that the Lipschitz condition holds with Lf≥ 1
n2 . Moreover, we have

||f(t, yt, u(t))|| ≤
1

n2
(||ξn(x)||+ ||ξn+k(x)||) ≤

2

n2

√
2

π
.

For sufficiently large n, we get 2
n2

√
2
π ≤ e−βt for t ∈ [0, T ]. Hence, the semilinear

parabolic control system (4.1) is null controllable by Theorem 3.5.

5 Conclusions

The fundamental solution for the semilinear control system with delay has been
described. The null controllability of the retarded linear and the semilinear control
systems have been established under natural assumptions on the operators and the
nonlinear term. The delay term is considered in linear and nonlinear forms. The
linear form of delay generates the perturbed semgigroup, which gives the fundamental
solution of the system. By using the fundamental solution, the null controllability of
the semilinear delay system has been established with the help of Krasnoselskii fixed
point theorem. There is future option to extend this analysis for stochastic delay control
systems.
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