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Abstract: For two impulsive generalised fractional order systems (IGFrOSs),
we consider their conditions of fractional derivative and fractional integral
by two new fractional order properties of piecewise function to find that the
equivalent integral equations (EIEs) of the IGFrOSs are a combination of
two integral equations (ϕ(t) and Φj(t)) with an arbitrary constant to reveal
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1 Introduction

Fractional calculus was widely used in the modelling to characterise various materials
and processes with the hereditary properties in many fields of science and engineering
(see Bachraoui et al., 2022; Liu, 2023; Khalid et al., 2023; Yalcinkaya, 2023;
Oliva-Gonzalez et al., 2023; Selvam et al., 2023; Tayebi, 2024; Raja et al., 2024; etc.).
And recently, the subject of impulsive fractional order system (IFrOS) has been gaining
much attention and several hundreds articles are found by searching the topic of IFrOS
from the Web of Science. For the IFrOS, its equivalent integral equation (EIE) is an
important tool to discuss numerical solution (Zhou et al., 2020; Cao et al., 2020),
existence of solution (Gou and Li, 2020a, 2020b; Kucche et al., 2020; Heidarkhani
and Salari, 2020; You and Sun, 2020; Ravichandran et al., 2020; Min and Chen, 2020;
Agarwal et al., 2020), oscillation behaviour (Feng et al., 2020; Feng and Han, 2020),
periodic motion (Zhang and Xiong, 2020), solvability (Xu et al., 2020), asymptotic
behaviour of solution (Cheng et al., 2021), stability (Liu and Xu, 2021; Kucche et al.,
2020) and non-uniqueness of solution (Zhang, 2022; Zhang et al., 2023), etc.

However, in the mainstream research regarding the IFrOS with the Caputo fractional
derivative, the fractional derivative in the IFrOS was respectively considered from three
aspects (including the whole interval, each subinterval and the combination of the whole
interval and subintervals), which caused that there appeared three conflicting EIEs for
the same IFrOS (for more details see Agarwal et al., 2016; Wang et al., 2014; Feckan
et al., 2012, 2014; Wang et al., 2012; Liu, 2016, 2019; Wang et al., 2016; Zhang et al.,
2014).
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The above case of some controversial EIEs also appears in the study regarding the
impulsive non-Caputo type fractional order system. Therefore, we will re-explore the
EIE of two impulsive generalised fractional order systems (IGFrOSs):

K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ]/{t1, t2, ..., tB},

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

j = 1, 2, ..., B,

= Qj(w(t
−
j )),

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0,

(1)

and 

K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ]/{t1, t2, ..., tB},

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

− K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

= Pj(w(t
−
j )), j = 1, 2, ..., B,

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0,

(2)

where K
t0D

b,κ
t (t0, κ > 0 and b ∈ (0, 1)) and K

t0I
1−b,κ
t are respectively the left

Katugampola fractional derivative and fractional integral, +∞ > T = tB+1 > tB >
... > t1 > t0 > 0, g : [t0, T ]× R → R, and Pj , Qj : R → R (j = 1, 2, ..., B).

To show the connection between equations (2) and (1), we transform equation (1)
into

system (1)

=



K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ]/{t1, t2, ..., tB},

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

− K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

= Qj(w(t
−
j ))

− K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

, j = 1, 2, ..., B,

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0.

(3)

We arrange the rest of this paper as follows. We present some definitions and
conclusions of the generalised fractional calculus and two fractional order properties of
piecewise function in Section 2. In Section 3, we will use the fractional order properties
of piecewise function to explore the EIE of equation (2) and combine the EIE of
equation (2) with the relation (3) to seek the EIE of equation (1). In Section 4, we use
two numerical examples to show two IGFrOSs’ EIEs and discuss the non-uniqueness of
solution for the two IGFrOSs.
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2 Preliminaries

For the basic definitions and conclusions of fractional calculus, we can refer to two
monographs (Kilbas et al., 2006; Baleanu et al., 2012), and we mainly recall several
definitions and properties of the Katugampola fractional derivative and integral in this
section.

Let +∞ > T > t0 > 0 and q ≥ 1, and two notations C[t0, T ] and Lq(t0, T ) denote
respectively the continuous function space on [t0, T ] and the Lebesgue integrable
function spaces on (t0, T ). And let

W q
a (t0, T ) =

{
w : [t0, T ] → R : ∥w∥W q

a
< ∞

}
(a ∈ R),

here ∥w∥W∞
a

= ess sup
t∈[t0,T ]

|taw(t)| and ∥w∥W q
a
=

(∫ T

t0
|taw(t)|q dt

t

)1/q

(1 ≤ q < ∞).

Definition 2.1 (Katugampola, 2011): Let c > 0, κ > 0 and w ∈ W q
a (t0, T ). The integral

K
t0I

c,κ
t w(t) =

∫ t

t0

( t
κ−rκ

κ )c−1

Γ(c)

w(r)dr

r1−κ
(t > t0),

is the definition of the left Katugampola fractional integral of order c.

Definition 2.2 (Katugampola, 2014): Let b ∈ (0, 1), κ > 0 and w ∈ W q
a (t0, T ). The

derivative

K
t0D

b,κ
t w(t) =

t1−κd

dt

(
K
t0I

1−b,κ
t w(t)

)
=

t1−κd

dt

∫ t

t0

( t
κ−rκ

κ )−b

Γ(1− b)

w(r)dr

r1−κ
(t > t0),

is the definition of the left Katugampola fractional derivative of order b.

Remark 1: The generalised fractional operator with κ → 0+ and κ = 1 are respectively
the Hadamard fractional operator and the Riemann-Liouville fractional operator.

Let 0 ≤ b < 1 and define

Cb,κ[t0, T ]

=
{
w : (t0, T ] → R, [tκ − (t0)

κ]bw(t) ∈ C[t0, T ]
}
,

Cb,0[t0, T ]

=

{
w : (t0, T ] → R,

(
ln

t

t0

)b

w(t) ∈ C[t0, T ]

}

with ∥w∥Cb,κ
=

∥∥[tκ − (t0)
κ]bw(t)

∥∥
C
and ∥w∥Cb,0

=
∥∥∥(ln t

t0
)bw(t)

∥∥∥
C
, and

Cb
1−b,κ[t0, T ]

=
{
w ∈ C1−b,κ[t0, T ] and K

t0D
b,κ
t w ∈ C1−b,κ[t0, T ]

}
.
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Lemma 1: Let b ∈ (0, 1) and κ > 0, and let g : [t0, T ]× R → R satisfy g(·, w(·)) ∈
C1−b,κ[t0, T ] for any w(·) ∈ C1−b,κ[t0, T ].

Let w(t) ∈ Cb
1−b,κ[t0, T ], then w(t) satisfies{

K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ],

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0,
(4)

iff w(t) satisfies the following integral equation

w(t) =
w0

Γ(b)

[
tκ − (t0)

κ

κ

]b−1

+

∫ t

t0

( t
κ−rκ

κ )b−1

Γ(b)

g(r, w(r))dr

r1−κ
, t ∈ (t0, T ]. (5)

For a piecewise function

y(t) =


y0(t), t ∈ [t0, t1],
y1(t), t ∈ (t1, t2],
...
yB(t), t ∈ (tB , T ],

=

{
y0(t), t ∈ [t0, t1],
0, t ∈ (t1, T ],

+

0, t ∈ [t0, t1],
y1(t), t ∈ (t1, t2],
0, t ∈ (t2, T ],

+...+

{
0, t ∈ [t0, tB ],
yB(t), t ∈ (tB, T ],

(6)

its generalised fractional derivative and integral have two different expressions
respectively.

Lemma 2: Let b ∈ (0, 1), κ > 0 and yi(t) ∈ C[ti, ti+1] (i = 0, 1, ..., B), then the left
Katugampola fractional derivative of equation (6) can be computed by

K
t0D

b,κ
t y(t)

∣∣∣
t∈[t0,t1]

=
t1−κd

dt

∫ t

t0

( t
κ−rκ

κ )−b

Γ(1− b)

y0(r)dr

r1−κ
, t ∈ [t0, t1],

K
t0D

b,κ
t y(t)

∣∣∣
t∈(tj ,tj+1]

=
t1−κd

dt

∫ t

t0

( t
κ−rκ

κ )−b

Γ(1− b)

y(r)dr

r1−κ
, t ∈ (tj , tj+1]

=
t1−κd

dt

[∫ t1

t0

( t
κ−rκ

κ )−b

Γ(1− b)

y0(r)dr

r1−κ
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+

∫ t2

t1

( t
κ−rκ

κ )−b

Γ(1− b)

y1(r)dr

r1−κ

+...+

∫ t

tj

( t
κ−rκ

κ )−b

Γ(1− b)

yj(r)dr

r1−κ

]
(j = 1, 2, ..., B); (7)

and

K
t0D

b,κ
t y(t)

=

{
K
t0D

b,κ
t y0(t), t ∈ [t0, t1],

t1−κd
dt

∫ t1
t0

( tκ−rκ

κ )−b

Γ(1−b)
y0(r)dr
r1−κ , t ∈ (t1, T ],

+


0, t ∈ [t0, t1],
K
t1D

b,κ
t y1(t), t ∈ (t1, t2],

t1−κd
dt

∫ t2
t1

( tκ−rκ

κ )−b

Γ(1−b)
y1(r)dr
r1−κ , t ∈ (t2, T ],

+...+

{
0, t ∈ [t0, tB ],
K
tBD

b,κ
t yB(t), t ∈ (tB , T ].

(8)

Lemma 3: Let c > 0, κ > 0 and yi(t) ∈ C[ti, ti+1] (i = 0, 1, ..., B), then the left
Katugampola fractional integral of equation (6) can be computed by

K
t0I

c,κ
t y(t)

∣∣
t∈[t0,t1]

=

∫ t

t0

( t
κ−rκ

κ )c−1

Γ(c)

y0(r)dr

r1−κ
, t ∈ [t0, t1],

K
t0I

c,κ
t y(t)

∣∣
t∈(tj ,tj+1]

=

∫ t

t0

( t
κ−rκ

κ )c−1

Γ(c)

y(r)dr

r1−κ
, t ∈ (tj , tj+1]

=

∫ t1

t0

( t
κ−rκ

κ )c−1

Γ(c)

y0(r)dr

r1−κ
+

∫ t2

t1

( t
κ−rκ

κ )c−1

Γ(c)

y1(r)dr

r1−κ

+...+

∫ t

tj

( t
κ−rκ

κ )c−1

Γ(c)

yj(r)dr

r1−κ
(j = 1, 2, ..., B); (9)

and

K
t0I

c,κ
t y(t) =

{
K
t0I

c,κ
t y0(t), t ∈ [t0, t1],∫ t1

t0

( tκ−rκ

κ )c−1

Γ(c)
y0(r)dr
r1−κ , t ∈ (t1, T ],

+


0, t ∈ [t0, t1],
K
t1I

c,κ
t y1(t), t ∈ (t1, t2],∫ t2

t1

( tκ−rκ

κ )c−1

Γ(c)
y1(r)dr
r1−κ , t ∈ (t2, T ],

+...+

{
0, t ∈ [t0, tB],
K
tBI

c,κ
t yB(t), t ∈ (tB , T ].

(10)
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3 The EIEs of equations (2) and (1)

To simplify some formulas, let gdr = g(r, w(r))dr

ϕ(t) =
w0

Γ(b)

[
tκ − (t0)

κ

κ

]b−1

+

∫ t

t0

( t
κ−rκ

κ )b−1

Γ(b)

gdr

r1−κ
, (11)

and

Φj(t) =
w0 +

∫ tj
t0

gdr
r1−κ

Γ(b)

[
tκ − (tj)

κ

κ

]b−1

+

∫ t

tj

( t
κ−rκ

κ )b−1

Γ(b)

gdr

r1−κ
, j = 1, 2, ..., B. (12)

And we define some function spaces:

C̃1−b,κ[t0, T ]

=
{
w : (t0, T ] → R : [tκ − (ti)

κ]
1−b

w(t) ∈ C[ti, ti+1],

i = 0, 1, ..., B} (κ ̸= 0),

C̃1−b,0[t0, T ]

=

{
w : (t0, T ] → R :

[
ln

t

ti

]1−b

w(t) ∈ C[ti, ti+1],

i = 0, 1, ..., B} ,
C̃b

1−b,κ[t0, T ]

=
{
w ∈ C̃1−b,κ[t0, T ],

K
t0D

b,κ
t w ∈ C̃1−b,κ[t0, T ]

}
,

Ig([t0, T ],R)

=
{
w ∈ C̃b

1−b,κ[t0, T ] and K
t0I

1−b,κ
t w(t)

∈ C1
(
[t0, t1] ∪ ∪B

j=1(tj , tj+1]
)
,

lim
t→t−j

[
d

dt
K
t0I

1−b,κ
t w(t)

]
=

d

dt
K
t0I

1−b,κ
t w(t)

∣∣∣∣
t=tj

< ∞

and lim
t→t+j

[
d

dt
K
t0I

1−b,κ
t w(t)

]
< ∞, here j = 1, 2, ..., B

}
.

3.1 Three limit properties of equation (1) and (2)

Some basic limit properties of equations (1) and (2) are the necessary conditions that
an integral equation become the integral solution of equations (1) and (2).
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lim
Pi(w(t−i ))→0 here i∈{1,2,...,B}

{system (2)}

=



K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ] and

t ̸= tj
(j ∈ {1, ..., B}/{i}),

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

− K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

= Pj(w(t
−
j )), j ∈ {1, 2, ..., B}/{i},

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0;

(13)

lim
tj→tl for ∀j∈{1,2,...,B} and l∈{1,2,...,B}

{system (2)}

=



K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ] and t ̸= tl,

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+l

− K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−l

=
B∑

j=1

Pj(w(t
−
l )),

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0;

(14)

lim
Qj(w(t−j ))−w0−

∫ tj
t0

gdr

r1−κ →0 for ∀j=1,2,...,B

{system (1)}

=



K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ]/{t1, t2, ..., tB},

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

= w0 +
∫ tj
t0

gdr
r1−κ , j = 1, 2, ..., B,

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0,

⇔ w(t) =
w0

Γ(b)

[
tκ − (t0)

κ

κ

]b−1

+

∫ t

t0

( t
κ−rκ

κ )b−1

Γ(b)

gdr

r1−κ
, t ∈ (t0, T ]. (15)

Remark 2: From equations (13) and (14), it shows that the impulsive effects in
equation (2) have the linear additivity.

3.2 The particular solution of equations (1) and (2)

Because ϕ(t) satisfies K
t0D

b,κ
t w(t) = g(t, w(t)) on (t0, T ], we use equations (8) and (10)

to construct the particular solutions of equations (2) and (1):
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w(t) =


ϕ(t), t ∈ (t0, t1],
...
ϕ(t), t ∈ (tB, T ],

+

B∑
j=1

{
0, t ∈ (t0, tj ],
Pj(w(t−j ))

Γ(b)

[
tκ−(tj)

κ

κ

]b−1

, t ∈ (tj , T ],
(16)

and

w(t) =


ϕ(t), t ∈ (t0, t1],
...
ϕ(t), t ∈ (tB, T ],

+

{
0, t ∈ (t0, t1],
Q1(w(t−1 ))−w0−

∫ t1
t0

gdr

r1−κ

Γ(b)

[
tκ−(t1)

κ

κ

]b−1

, t ∈ (t1, T ],

+

B∑
j=2


0, t ∈ (t0, tj ],
Qj(w(t−j ))−Qj−1(w(t−j−1))−

∫ tj
tj−1

gdr

r1−κ

Γ(b)[
tκ−(tj)

κ

κ

]b−1

, t ∈ (tj , T ].

(17)

Remark 3: Equations (16) and (17) are only the particular solution of equations (2)
and (1) respectively, because they do not include

∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)
gdr
r1−κ (j = 1, 2, ..., B)

that can be used to construct another piecewise function satisfying the conditions
in equation (1) [or equation (2)] [about the constructing details, we can refer to
equation (23)].

3.3 The EIEs of equations (2) and (1)

We will first consider the EIE of equation (2) by applying equation (8), equation (10)
and the particular solution (16) in this subsection.

Theorem 4: Let η be an arbitrary constant, and let g : (t0, T ]× R → R satisfy
g(·, w(·)) ∈ C̃1−b,κ[t0, T ] for any w(·) ∈ C̃1−b,κ[t0, T ].

Let w(t) ∈ Ig([t0, T ],R), then w(t) satisfies (2) iff w(t) satisfies

w(t) =



w0

Γ(b)

[
tκ−(t0)

κ

κ

]b−1

+
∫ t

t0

( tκ−rκ

κ )b−1

Γ(b)
gdr
r1−κ ,

t ∈ (t0, t1],

w0

Γ(b)

[
tκ−(t0)

κ

κ

]b−1

+
∫ t

t0

( tκ−rκ

κ )b−1

Γ(b)
gdr
r1−κ

+
j∑

i=1

Pi(w(t−i ))

Γ(b)

[
tκ−(ti)

κ

κ

]b−1

+η
j∑

i=1

Pi(w(t
−
i ))

{
w0+

∫ ti
t0

gdr

r1−κ

Γ(b)

[
tκ−(ti)

κ

κ

]b−1

+
∫ t

ti

( tκ−rκ

κ )b−1

Γ(b)
gdr
r1−κ − w0

Γ(b)

[
tκ−(t0)

κ

κ

]b−1

−
∫ t

t0

( tκ−rκ

κ )b−1

Γ(b)
gdr
r1−κ − [

tκ−(ti)
κ

κ ]b−1

Γ(b)

∫ ti
t0

[
(ti)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

−
∫ t

ti

( tκ−rκ

κ )b−1

Γ(b)

[
r1−κd
dr

∫ ti
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

}
,

t ∈ (tj , tj+1], j = 1, 2, ..., B.

(18)
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Remark 4: For easy verification that equation (18) satisfies the conditions of the
fractional derivative and integral in equation (2), we give another expression of
equation (18):

x(t) =


ϕ(t), t ∈ (t0, t1],
...
ϕ(t), t ∈ (tB , T ],

+
B∑

j=1

{
0, t ∈ (t0, tj ],
Pj(w(t−j ))

Γ(b)

[
tκ−(tj)

κ

κ

]b−1

, t ∈ (tj , T ],

+
B∑

j=1



0,
t ∈ (t0, tj ],
ηPj(w(t

−
j )) {Φj(t)− ϕ(t)

−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

− [
tκ−(tj)

κ

κ ]b−1

Γ(b)

∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s−κ

}
,

t ∈ (tj , T ].

(19)

Proof: We first prove the necessity. Consider equation (2) with an impulse: For ∀j ∈
{1, 2, ..., B},

K
t0D

b,κ
t w(t) = g(t, w(t)), t ∈ (t0, T ] and t ̸= tj ,

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

− K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

= Pj(w(t
−
j )),

K
t0I

1−b,κ
t w(t)

∣∣∣
t→t0+

= w0.

(20)

By equation (13) and Lemma 1, the solution of equation (20) satisfies

lim
Pj(w(t−j ))→0

{w(t)} = ϕ(t) =
w0

Γ(b)

[
tκ − (t0)

κ

κ

]b−1

+

∫ t

t0

( t
κ−rκ

κ )b−1

Γ(b)

gdr

r1−κ
, t ∈ (t0, T ], (21)

and

w(t) = ϕ(t) =
w0

Γ(b)

[
tκ − (t0)

κ

κ

]b−1

+

∫ t

t0

( t
κ−rκ

κ )b−1

Γ(b)

gdr

r1−κ
, t ∈ (t0, tj ], (22)



The appropriate expression and non-uniqueness of solution 379

with K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

= w0 +
∫ tj
t0

gdr
r1−κ . And then, we use Lemmas 1–3 to construct

an approximate EIE of equation (20):

w̃(t) =


ϕ(t), t ∈ (t0, tj ],
K
t0

I1−b,κ
t w(t)|

t=t
+
j

Γ(b)

[
tκ−(tj)

κ

κ

]b−1

+
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)
gdr
r1−κ , t ∈ (tj , T ],

−



0, t ∈ (t0, tj ],∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ ,

+
[
tκ−(tj)

κ

κ ]b−1

Γ(b)

∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ , t ∈ (tj , T ].

(23)

Equation (23) meets the conditions of the fractional derivative, the impulsive condition
and the initial value in equation (20) to be only the approximate EIE of equation (20)
because equation (23) dissatisfies equation (21).

Substituting K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

= w0 +
∫ tj
t0

gdr
r1−κ + Pj(w(t

−
j )) into (23), we have

w̃(t) =

{
ϕ(t), t ∈ (t0, tj ],
0, t ∈ (tj , T ],

+

{
0, t ∈ (t0, tj ],
Pj(w(t−j ))

Γ(b)

[
tκ−(tj)

κ

κ

]b−1

, t ∈ (tj , T ],

+



0, t ∈ (t0, tj ],

Φj(t)−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

− [
tκ−(tj)

κ

κ ]b−1

Γ(b)

∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ , t ∈ (tj , T ].

(24)

Let e(t) = w(t)− w̃(t) for t ∈ (t0, T ] denote the error between w̃(t) and the EIE of
equation (20).

By equations (21) and (24), we get

lim
Pj(w(t−j ))→0

e(t) = lim
Pj(w(t−j ))→0

{w(t)}

− lim
Pj(w(t−j ))→0

{w̃(t)}

=



0, t ∈ (t0, tj ],

ϕ(t)− Φj(t) +
[
tκ−(tj)

κ

κ ]b−1

Γ(b)∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

+
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ , t ∈ (tj , T ].

(25)
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From equation (25), we suppose

e(t) = f(Pj(w(t
−
j ))) lim

Pj(w(t−j ))→0
e(t),

here f is an undetermined function

= −



0, t ∈ (t0, tj ],
f(Pj(w(t

−
j ))) {Φj(t)− ϕ(t)

−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

− [
tκ−(tj)

κ

κ ]b−1

Γ(b)

∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

}
, t ∈ (tj , T ].

(26)

By plugging equations (24) and (26) into w(t) = w̃(t) + e(t), the EIE of equation (20)
is

w(t) =

{
ϕ(t), t ∈ (t0, tj ],
ϕ(t), t ∈ (tj , T ],

+

{
0, t ∈ (t0, tj ],
Pj(w(t−j ))

Γ(b)

[
tκ−(tj)

κ

κ

]b−1

, t ∈ (tj , T ],

+



0, t ∈ (t0, tj ],[
1− f(Pj(w(t

−
j )))

]
{Φj(t)− ϕ(t)

−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

− [
tκ−(tj)

κ

κ ]b−1

Γ(b)∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

}
, t ∈ (tj , T ].

(27)

Because equation (20) is a special case of equation (2), equation (27) is a special case
of the EIE of equation (2). And moreover, the impulsive effects in equation (2) have the
linear additivity by equations (13) and (14). Thus, by combining equation (27) and the
linear additivity of impulsive effects with equation (16), we give the EIE of equation (2):

x(t) =


ϕ(t), t ∈ (t0, t1],
...
ϕ(t), t ∈ (tB , T ],

+
B∑

j=1

{
0, t ∈ (t0, tj ],
Pj(w(t−j ))

Γ(b)

[
tκ−(tj)

κ

κ

]b−1

, t ∈ (tj , T ],
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+
B∑

j=1



0, t ∈ (t0, tj ],[
1− f(Pj(w(t

−
j )))

]
[Φj(t)− ϕ(t)

−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

− [
tκ−(tj)

κ

κ ]b−1

Γ(b)∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
, t ∈ (tj , T ].

(28)

Because equation (28) must meet equation (14), we have[
1− f(Pi(w(t

−
i )))

]
+
[
1− f(Pj(w(t

−
j )))

]
= 1− f

(
Pi(w(t

−
i )) + Pj(w(t

−
j ))

)
for ∀Pi(w(t

−
i )), Pj(w(t

−
j )) ∈ R, (29)

then 1− f(Pj(w(t
−
j ))) = ηPj(w(t

−
j )) where η is an arbitrary real, and equation (28) is

equation (19).
‘Sufficiency’. We use two equations (8) and (10) to compute the fractional integral

and derivative for a part of equation (19):

K
t0D

b,κ
t



0, t ∈ (t0, tj ],

Φj(t)−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

−ϕ(t)− [
tκ−(ti)

κ

κ ]b−1

Γ(b)∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ , t ∈ (tj , T ],

=



0, t ∈ (t0, tj ],

g(t, w(t))− t1−κd
dt[∫ tj

t0

( tκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

+
∫ t

tj

( tκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
,

t ∈ (tj , T ],

=

{
0, t ∈ (t0, tj ],

g(t, w(t))− K
t0D

b,κ
t ϕ(t), t ∈ (tj , T ],

(by using Lemma 1)
= 0, here j = 1, 2, ..., B, (30)

and
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K
t0I

1−b,κ
t



0, t ∈ (t0, tj ],

Φj(t)−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ − ϕ(t)− [
tκ−(tj)

κ

κ ]b−1

Γ(b)∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ , t ∈ (tj , T ],

=



0, t ∈ (t0, tj ],

w0 +
∫ t

t0

gdr
r1−κ −

∫ t

tj[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ

−
∫ t

tj

( tκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

−
∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ , t ∈ (tj , T ],

=



0, t ∈ (t0, tj ],

w0 +
∫ t

t0

gdr
r1−κ −

∫ t

t0

( tκ−sκ

κ )−b

Γ(1−b)[
w0

Γ(b)

(
sκ−(t0)

κ

κ

)b−1

+
∫ s

t0

( sκ−rκ

κ )b−1

Γ(b)
gdr
r1−κ

]
ds

s1−κ , t ∈ (tj , T ],

=


0, t ∈ (t0, tj ],∫ t

t0

gdr
r1−κ

−
∫ t

t0

[∫ t

r

( tκ−sκ

κ )−b( sκ−rκ

κ )b−1

Γ(1−b)Γ(b)
ds

s1−κ

]
gdr
r1−κ , t ∈ (tj , T ],

= 0, here j = 1, 2, ..., B. (31)

By equations (30) and (31), equation (19) satisfies K
t0D

b,κ
t w(t) = g(t, w(t)) for t ∈

∪B
i=0(ti, ti+1] [that is, equation (19) satisfies the fractional derivative] and

K
t0I

1−b,κ
t w(t) =


w0 +

∫ t

t0

gdr
r1−κ , t ∈ (t0, t1],

...
w0 +

∫ t

t0

gdr
r1−κ , t ∈ (tB, T ],

+
B∑

j=1

{
0, t ∈ (t0, tj ],
Pj(w(t

−
j )), t ∈ (tj , T ].

(32)

By equation (32), we deduce that equation (19) satisfies the impulsive conditions
and initial value in (2). And it is easily verified that equation (19) also satisfies
equations (13) and (14). The proof is completed. �

Theorem 5: Let η be an arbitrary constant, and let g : (t0, T ]× R → R satisfy
g(·, w(·)) ∈ C̃1−b,κ[t0, T ] for any w(·) ∈ C̃1−b,κ[t0, T ].
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Let w(t) ∈ Ig([t0, T ],R), then w(t) satisfies (1) iff w(t) satisfies

w(t) = w(t) + η

[
Q1(w(t

−
1 ))− w0 −

∫ t1

t0

gdr

r1−κ

]

×



0, t ∈ (t0, t1],

Φ1(t)− ϕ(t)− [
tκ−(t1)κ

κ ]b−1

Γ(b)∫ t1
t0

[
(t1)κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

−
∫ t

t1

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ t1
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ , t ∈ (t1, T ],

+η
B∑

j=2

[
Qj(w(t

−
j ))−Qj−1(w(t

−
j−1))−

∫ tj

tj−1

gdr

r1−κ

]

×



0, t ∈ (t0, tj ],

Φj(t)− ϕ(t)− [
tκ−(tj)

κ

κ ]b−1

Γ(b)∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ , t ∈ (tj , T ],

(33)

where w(t) is the particular solution (17).

Proof: ‘Necessity’. By (3) and the particular solution (17) and Theorem 4, the solution
of equation (1) satisfies

w(t) = w(t)

+η

B∑
j=1

[
Qj(w(t

−
j ))−

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

]

×



0, t ∈ (t0, tj ],

Φj(t)− ϕ(t)− [
tκ−(tj)

κ

κ ]b−1

Γ(b)∫ tj
t0

[
(tj)

κ−sκ

κ ]−b

Γ(1−b)
ϕ(s)ds
s1−κ

−
∫ t

tj

( tκ−rκ

κ )b−1

Γ(b)[
r1−κd
dr

∫ tj
t0

( rκ−sκ

κ )−b

Γ(1−b)
ϕ(s)ds
s1−κ

]
dr

r1−κ , t ∈ (tj , T ],

(34)

with K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

= Qj(w(t
−
j )) (j = 1, 2, ..., B).

By using equation (31), the fractional integral of equation (34) is

K
t0I

1−b,κ
t w(t) = K

t0I
1−b,κ
t w(t)
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=


w0 +

∫ t

t0

gdr
r1−κ , t ∈ (t0, t1],

...
w0 +

∫ t

t0

gdr
r1−κ , t ∈ (tB , T ],

+

{
0, t ∈ (t0, t1],

Q1(w(t
−
1 ))− w0 −

∫ t1
t0

gdr
r1−κ , t ∈ (t1, T ],

+

N∑
k=2


0, t ∈ (t0, tj ],
Qj(w(t

−
j ))−Qj−1(w(t

−
j−1))

−
∫ tj
tj−1

gdr
r1−κ , t ∈ (tj , T ].

(35)

By equation (35) and the conditions K
t0I

1−b,κ
t w(t)

∣∣∣
t=t+j

= Qj(w(t
−
j )) (j = 1, 2, ..., B),

we have

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−1

= w0 +

∫ t1

t0

gdr

r1−κ
,

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

= Qj−1(w(t
−
j−1))

+

∫ tj

tj−1

gdr

r1−κ
, j = 2, ..., B. (36)

Then we plug equation (36) into equation (34) to obtain that the EIE of equation (1) is
equation (33).

‘Sufficiency’. By using equations (30) and (31), we easily verify that equation (33)
satisfies the conditions of fractional derivative and integral, impulsive conditions
and initial value in equation (1). And we easily verify that equation (33) satisfies
equation (15). The proof is completed. �

4 Applications

For two IGFrOSs, two numerical models are given to show their EIEs and the
non-uniqueness of solution of two IGFrOSs in this section.

Example: Consider two IGFrOSs:

K
1 D

1
2 ,κ
t x(t) = t, κ > 0, t ∈ (1, 5] and t ̸= 3,

K
1 I

1
2 ,κ
t x(t)

∣∣∣
t=3+

− K
1 I

1
2 ,κ
t x(t)

∣∣∣
t=3−

= 1,

K
1 I

1
2 ,κ
t x(t)

∣∣∣
t→1+

= 1,

(37)

and 
K
1 D

1
2 ,κ
t x(t) = t, κ > 0, t ∈ (1, 5] and t ̸= 3,

K
1 I

1
2 ,κ
t x(t)

∣∣∣
t=3+

= 1,

K
1 I

1
2 ,κ
t x(t)

∣∣∣
t→1+

= 1.

(38)
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By Theorems 4–5, the EIEs of equations (37) and (38) are respectively given by

x(t) =

{
ϕ(t), t ∈ (1, 3],
ϕ(t), t ∈ (3, 5],

+

{
0, t ∈ (1, 3],

1
Γ( 1

2 )

[
tκ−3κ

κ

]− 1
2 , t ∈ (3, 5],

+η



0, t ∈ (1, 3],

Φ(t)−
∫ t

3

( tκ−rκ

κ )−
1
2

Γ( 1
2 )[

r1−κd
dr

∫ 3

1

( rκ−sκ

κ )−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ

]
dr

r1−κ

−ϕ(t)− [ t
κ−3κ

κ ]−
1
2

Γ( 1
2 )∫ 3

1

[ 3
κ−sκ

κ ]−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ , t ∈ (3, 5],

(39)

and

x(t) =

{
ϕ(t), t ∈ (1, 3],
ϕ(t), t ∈ (3, 5],

−

{
0, t ∈ (1, 3],
3κ+1−1

(κ+1)Γ( 1
2 )

[
tκ−3κ

κ

]− 1
2 , t ∈ (3, 5],

+η
3κ+1 − 1

κ+ 1



0, t ∈ (1, 3],∫ t

3

( tκ−rκ

κ )−
1
2

Γ( 1
2 )[

r1−κd
dr

∫ 3

1

( rκ−sκ

κ )−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ

]
dr

r1−κ

−Φ(t) + ϕ(t)

+
[ t

κ−3κ

κ ]−
1
2

Γ( 1
2 )∫ 3

1

[ 3
κ−sκ

κ ]−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ , t ∈ (3, 5],

(40)

where η is an arbitrary constant,

ϕ(t) =
1

Γ(12 )

[
tκ − 1

κ

]− 1
2

+

∫ t

1

( t
κ−sκ

κ )−
1
2 sκ

Γ( 12 )
ds, (41)

and

Φ(t) =
3κ+1 + κ

(κ+ 1)Γ( 12 )

[
tκ − 3κ

κ

]− 1
2

+

∫ t

3

( t
κ−sκ

κ )−
1
2 sκ

Γ( 12 )
ds. (42)
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Figure 1 Three solution trajectories of equation (37) with κ = 0.1 (see online version
for colours)
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Figure 2 Three solution trajectories of equation (37) with κ = 0.5 (see online version
for colours)
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Plugging b = 1
2 and g(t, w(t)) = t into equations (30) and (31) respectively, we have

K
1 D

1
2 ,κ
t



0, t ∈ (1, 3],

Φ(t)−
∫ t

3

( tκ−rκ

κ )−
1
2

Γ( 1
2 )[

r1−κd
dr

∫ 3

1

( rκ−sκ

κ )−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ

]
dr

r1−κ

−ϕ(t)− [ t
κ−3κ

κ ]−
1
2

Γ( 1
2 )∫ 3

1

[ 3
κ−sκ

κ ]−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ , t ∈ (3, 5],

= 0, (43)

and
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K
1 I

1
2 ,κ
t



0, t ∈ (1, 3],

Φ(t)−
∫ t

3

( tκ−rκ

κ )−
1
2

Γ( 1
2 )[

r1−κd
dr

∫ 3

1

( rκ−sκ

κ )−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ

]
dr

r1−κ

−ϕ(t)− [ t
κ−3κ

κ ]−
1
2

Γ( 1
2 )∫ 3

1

[ 3
κ−sκ

κ ]−
1
2

Γ( 1
2 )

ϕ(s)ds
s1−κ , t ∈ (3, 5],

= 0. (44)

Thus, by equations (43) and (44), we easily verify that equations (39) and (40) satisfy
all conditions in equations (37) and (38) respectively.

Figure 3 Three solution trajectories of equation (37) with κ = 0.9 (see online version
for colours)
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Figure 4 Three solution trajectories of equation (37) with κ = 1.5 (see online version
for colours)
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Figure 5 Three solution trajectories of equation (38) with κ = 0.1 (see online version
for colours)
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Figure 6 Three solution trajectories of equation (38) with κ = 0.5 (see online version
for colours)
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To show the non-uniqueness of solution of equations (37) and (38), we use the numerical
simulation to draw the solution trajectories of four cases (κ = 0.1, 0.5, 0.9 and 1.5) of
equations (37) and (38) in Figures 1–8 respectively, which three curves of solution in
each figure represent equations (39) and (40) with the corresponding κ and η = 0, 1, –1,
respectively. And the numerical simulation is based on the Euler’s method of numerical
approximation of definite integral with the step size l = 0.005.

5 Conclusions

The EIEs of equations (1) and (2) are two integral equations with an arbitrary constant,
which reveal the non-uniqueness of solution of equations (1) and (2). And moreover,
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equations (1) and (2) have the relation

system (1) = system (2) with Pj(w(t
−
j ))

= Qj(w(t
−
j ))−

K
t0I

1−b,κ
t w(t)

∣∣∣
t=t−j

j = 1, 2, ..., B.

Figure 7 Three solution trajectories of equation (38) with κ = 0.9 (see online version
for colours)
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Figure 8 Three solution trajectories of equation (38) with κ = 1.5 (see online version
for colours)
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