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Abstract: The determination of the maximum number of limit cycles and
their possible positions in the plane is one of the most difficult problems in
the qualitative theory of planar differential systems. This problem is related
to the second part of the unsolved 16th Hilbert’s problem. Due to their
applications in modelling many natural phenomena, piecewise differential
systems have recently attracted big attention. The upper bound number of
limit cycles that a class of differential systems may exhibit is typically very
difficult to determine. In this work we extend the second part of the 16th
Hilbert’s problem to the planar discontinuous piecewise differential systems
separated by a straight line and formed by an arbitrary linear centre and
an arbitrary cubic uniform isochronous centre. We provide for this class of
piecewise differential systems an upper bound on its maximal number of limit
cycles, and we prove that such an upper bound is reached.
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1 Introduction and statement of the main results

Limit cycles are one of the main remarkable and important solutions of differential
equations. The notion of a limit cycle appeared first at the end of the 19th century
with Poincaré (1891). Later on Hilbert stated a list of 23 problems for the advancement
of mathematical science, and from then it started intensive research on these problems
throughout the 20th century. From the 23 problems only the so-called 16th Hilbert’s
problem and the Riemann conjecture remain open until now. The second part of the
16th Hilbert problem, which has two parts, asks for an upper bound on the number
of possible limit cycles, but only for planar polynomial differential systems of a given
degree. For a differential system a limit cycle is an isolated periodic orbit in the set of
all periodic orbits of this differential system.

Recently the second part of the 16th Hilbert’s problem has become an interesting
topic of research for many scientists because of the main role of limit cycles in
understanding and explaining the dynamics of many natural phenomena, for example,
the Sel’kov model of glycolysis (Sel’kov, 1968), that showed the existence of a stable
limit cycle which represent the normal physiological behaviour in the human body,
also some nonlinear electrical circuits exhibit limit cycle oscillations, which inspired
the original Van der Pol model (van der Pol, 1920, 1926), or one of the Belousov
Zhavotinskii model (Belousov, 1959), etc.

Numerous domains of applied mathematics including electronics, mechanics,
neuroscience, economics, etc., commonly use the dynamics of piecewise differential
systems, see for instance Bernardo et al. (2008), Makarenkov and Lamb (2012) and
Simpson (2010), these systems become a very interesting topic. In 1920, Andronov
et al. published their first research on piecewise linear discontinuous differential systems
(Andronov et al., 1996). Many studies on piecewise linear differential systems come
from applications, for instance control theory and electric circuit design. We can
distinguish between two kinds of limit cycles for discontinuous piecewise differential
systems: sliding and crossing. A sliding limit cycle is a limit cycle that contains some
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arc of the lines of discontinuity that separate the different differential systems that form
the piecewise differential system. The crossing limit cycle is the one that contains only
isolated points of the discontinuity lines. Here we focus only on the crossing limit cycles
(see Pi and Zhang, 2013) for a more precise definition.

In recent years many publications appeared where the authors provided examples
with at most three limit cycles concerning the simplest family of planar discontinuous
piecewise differential systems formed by two linear differential systems separated by
a straight line, see Euzébio and Llibre (2015), Freire et al. (2012, 2014, 2015), Llibre
et al. (2013, 2015), Llibre and Teixeira (2017) and Llibre and Zhang (2018). Until now
the solution of the extension of the second part of the 16th Hilbert’s problem for this
class of differential systems remains open.

Nowadays many papers consider piecewise differential systems where there is a
nonlinear differential system in some pieces. However keep the straight line as the
separation curve and study the maximum number of limit cycles of such piecewise
differential systems. In Esteban et al. (2021), the authors solved the extension of
the second part of the 16th Hilbert problem for discontinuous piecewise isochronous
polynomial centres of degrees one and two separated by a straight line. Next Benterki
and Llibre (2020) studied the same problem but for some classes of discontinuous
piecewise isochronous polynomial centres of degrees one and three. In Benabdallah
et al. (2023), the authors studied the second part of the 16th Hilbert problem for a class
of discontinuous piecewise differential systems separated by a straight line and formed
by linear and quadratic centres where they proved that the maximum number of limit
cycles of this class of systems is at most four. In Buzzi et al. (2022), the authors study
the maximum number of limit cycles of some classes of planar discontinuous piecewise
differential systems separated by a straight line and formed by combinations of linear
centres (consequently isochronous) and cubic isochronous centres with homogeneous
nonlinearities.

Studying the maximum number of limit cycles for discontinuous piecewise
differential systems of the form

(ẋ, ẏ) =


F−(x, y) =

(
F−
1 (x, y), F−

2 (x, y)
)T

if (x, y) ∈ Γ−,

F+(x, y) =
(
F+
1 (x, y), F+

2 (x, y)
)T

if (x, y) ∈ Γ+,

(1)

is the main objective of this paper, where the straight line Γ = {(x, y) : x = 0} is the
separation curve of the plane, that separates it on the two half-planes

Γ− = {(x, y) : x ≤ 0}, Γ+ = {(x, y) : x ≥ 0},

and formed by a linear centre and a cubic uniform isochronous centre. On the straight
line of discontinuity the flow of the piecewise differential system is defined following
the rules of Filippov (1988).

In the next lemma we give the normal form of an arbitrary linear differential centre.
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Lemma 1: Any linear differential centre can be written as

ẋ = d1 − βx−
y
(
4β2 + ω2

)
4α

, ẏ = c1 + αx+ βy,

with α > 0, ω > 0,

(2)

with its first integral

H(x, y) = 8α(c1x− d1y) + 4(αx+ βy)2 + y2ω2. (3)

For the proof of Lemma 1 see Llibre and Teixeira (2018).

Figure 1 (a) The unique limit cycle of the discontinuous piecewise differential system
(21)–(22) (b) The three limit cycles of the discontinuous piecewise differential
system (30)–(31) (see online version for colours)
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The next result is due to Collins (1997), who classified the cubic polynomial uniform
isochronous centres.

Lemma 2: A cubic polynomial differential system has a uniform isochronous centre
at the origin if and only if after an affine change of variables and a rescaling of the
independent variable it can be written as

ẋ = −y + xf(x, y), ẏ = x+ yf(x, y), (4)

where f(x, y) = a1x+ a2y + a4xy, and satisfies a1a2 = 0 and a4 ̸= 0.

For other proof of Lemma 2 see Section 2 of Artés et al. (2017).
The normal form of the first integrals of the uniform cubic polynomial isochronous

centres (4) is given in the following theorem:
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Theorem 3: The first integrals of system (4) are described in what follows:

Case 1: a21 + a22 = 0, the corresponding first integral of system (4) is

H1(x, y) =
x2 + y2

1− a4x2
. (5)

Case 2: a21 + a22 ̸= 0, the first integral of system (4)

• Subcase 2.1: If 4a4 − a21 < 0 and a2 = 0 is

H
(1)
2 (x, y)

=
(a1 + 2a4y + S)1−S/a1

(
x2 + y2

)S/a1

(−a1 − 2a4y + S)S/a1+1
,

(6)

with S =
√
a21 − 4a4.

• Subcase 2.2: If 4a4 + a22 > 0 and a1 = 0 is

H
(2)
2 (x, y)

=
(a2 + 2a4x+ S)1−S/a2

(
x2 + y2

)S/a2

(−a2 − 2a4x+ S)S/a2+1
,

(7)

with S =
√
a22 + 4a4.

• Subcase 2.3: If 4a4 − a21 > 0 and a2 = 0 is

H
(3)
2 (x, y) =

(
x2 + y2

a1y + a4y2 + 1

)S/a1

× e−2 arctan((a1+2a4y)/S),

(8)

with S =
√
4a4 − a21.

• Subcase 2.4: If 4a4 + a22 < 0 and a1 = 0 is

H
(4)
2 (x, y) =

(
x2 + y2

a2x+ a4x2 − 1

)S/a2

× e−2 arctan((a2+2a4x)/S).

(9)

• Subcase 2.5: If 4a4 − a21 = 0 and a2 = 0 is

H
(5)
2 (x, y) =

(
x2 + y2

)
e(4/(a1y+2))

(a1y + 2)2
. (10)

• Subcase 2.6: If 4a4 + a22 = 0 and a1 = 0 is

H
(6)
2 (x, y) =

(
x2 + y2

)
e(4/(2−a2x))

(2− a2x)2
. (11)
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Theorem 3 is proved in Section 2 of Artés et al. (2017).

Our main result is given in the following theorem:

Theorem 4: For a piecewise smooth differential system with two zones, separated by
the straight line x = 0, and formed by an arbitrary linear centre and an arbitrary cubic
uniform isochronous centre the maximum number of limit cycles is at most

1 One if a21 + a22 = 0, and there are systems of this type with exactly one limit
cycle, see Figure 1(a).

2 Three if 4a4 − a21 < 0 and a2 = 0, or 4a4 + a22 > 0 and a1 = 0; four if
4a4 − a21 > 0 and a2 = 0, or 4a4 + a22 < 0 and a1 = 0; two if 4a4 − a21 = 0 and
a2 = 0, or 4a4 + a22 = 0 and a1 = 0. There are systems of these types with
exactly three limit cycles shown in Figure 1(b), three limit cycles shown in
Figure 2(a), and two limit cycles shown in Figure 2(b),

Where a1, a2 and a4 are the parameters of the cubic differential system when
transformed into its normal form (4).

Figure 2 (a) The three limit cycles of the discontinuous piecewise differential system
(32)–(33) (b) The two limit cycles of the discontinuous piecewise differential
system (34)–(35) (see online version for colours)
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Theorem 4 is proved in Section 3.

2 The arbitrary cubic uniform isochronous centres

Now we give the expression of the cubic uniform isochronous centres (4) with
its corresponding first integrals after doing an arbitrary affine change of variables
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{x → α1x+ β1y + γ1, y → α2x+ β2y + γ2}, with α2β1 − α1β2 ̸= 0. In this way we
obtain the expression of all cubic uniform isochronous centres.

System (4) becomes

ẋ =
1

α2β1 − α1β2
(γ2(a1β1γ1

− β2γ1(a2 + a4γ1) + β2)

+ x2(a1α1(α2β1 − α1β2)

+ a2α2(α2β1 − α1β2)

+ a4(α2γ1(α2β1 − 2α1β2)

+ α1γ2(2α2β1 − α1β2)

+ y(α1β2 + α2β1)(α2β1 − α1β2)))

+ x(α2(a1β1(γ1 + β1y)

+ (a2 + a4(γ1 + β1y))(2β1γ2 − β2γ1

(12)

+ β1β2y) + β2)− α1(β1(β2y

− γ2)(a1 + a4(γ2 + β2y))

+ 2a1β2γ1 + β2(a2 + 2a4γ1)(γ2 + β2y)− β1))

+ y(β1β2(a2γ2 − a1γ1)

+ β2
1γ2(a1 + a4γ2)− β2

2γ1(a2 + a4γ1)

+ β2
1 + β2

2) + γ1(β1 − a1β2γ1)

+ β1γ
2
2(a2 + a4γ1) + α1α2a4x

3(α2β1 − α1β2)

+ a4β1β2y
2(β1γ2 − β2γ1)),

ẏ =
1

α2β1 − α1β2
(γ1(a1α2γ1 − α1)− a1α1γ1γ2

− x(α2
1 + α1α2(a2(γ2 + β2y)− a1(γ1

+ β1y)) + α2
1(γ2 + β2y)(a1 + a4(γ2 + β2y))

+ α2
2 − α2

2(γ1 + β1y)(a2 + a4(γ1 + β1y)))

+ y2(a1β1(α2β1 − α1β2) + β2(−α1a2β2

+ a2α2β1 − α1a4β2γ1 + 2α2a4β1γ1)

+ a4β1γ2(α2β1 − 2α1β2))

− α1y(β1γ2(a1 + a4γ2) + a1β2γ1

+ 2β2γ2(a2 + a4γ1) + β1)

+ α2y(2β1γ1(a1 + a4γ2)

+ β2γ1(a2 + a4γ1) + a2β1γ2 − β2)

− α1γ
2
2(a2 + a4γ1) + α2γ2(γ1(a2 + a4γ1)− 1)

+ α1α2a4x
2(−α1γ2 + α2γ1

− α1β2y + α2β1y) + a4β1β2y
3(α2β1 − α1β2)),

its corresponding first integrals are given as follows:
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Case 1: a21 + a22 = 0, the corresponding first integral (5) becomes

H1(x, y)

=
(γ1 + α1x+ β1y)

2 + (γ2 + α2x+ β2y)
2

1− a4(γ1 + α1x+ β1y)2
.

(13)

Case 2: a21 + a22 ̸= 0, the first integral (6) now writes

H
(1)
2 (x, y)

= (−a1 − 2a4(γ2 + α2x+ β2y) + S)−
(S+a1)

a1

(a1 + 2a4(γ2 + α2x+ β2y) + S)
(a1−S)

a1(
(γ1 + α1x+ β1y)

2 + (γ2 + α2x+ β2y)
2
)S/a1

,

(14)

where S =
√
a21 − 4a4, if 4a4 − a21 < 0 and a2 = 0.

The first integral (7) becomes

H
(2)
2 (x, y)

= (−a2 − 2a4(γ1 + α1x+ β1y) + S)−
S+a2
a2

(a2 + 2a4(γ1 + α1x+ β1y) + S)
a2−S
a2(

(γ1 + α1x+ β1y)
2 + (γ2 + α2x+ β2y)

2
)S/a2

,

(15)

where S =
√
4a4 + a21, if 4a4 + a22 > 0 and a1 = 0.

The first integral (8) now writes

H
(3)
2 (x, y)

= e−2 arctan(R1(x,y))(
(γ1 + α1x+ β1y)

2 + (γ2 + α2x+ β2y)
2

a1(γ2 + α2x+ β2y) + a4(γ2 + α2x+ β2y)2 + 1

)S/a1

,

(16)

with R1(x, y) =
1

S
(a1 + 2a4(γ2 + α2x+ β2y)) and S =

√
4a4 − a21, if 4a4 − a21 > 0

and a2 = 0.
The first integral (9) becomes

H
(4)
2 (x, y)

= e−2 arctan(R2(x,y))(
(γ1 + α1x+ β1y)

2 + (γ2 + α2x+ β2y)
2

a2(γ1 + α1x+ β1y) + a4(γ1 + α1x+ β1y)2 − 1

)S/a2

,

(17)

with R2(x, y) =
1

S
(a2 + 2a4(γ1 + α1x+ β1y)) and S =

√
−a22 − 4a4, if 4a4 + a22 <

0 and a1 = 0.
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The first integral (10) becomes

H
(5)
2 (x, y) =

(γ1 + α1x+ β1y)
2 + (γ2 + α2x+ β2y)

2

(a1(γ2 + α2x+ β2y) + 2)2
eR3(x,y), (18)

where R3(x, y) =
4

a1(γ2 + α2x+ β2y) + 2
, if 4a4 − a21 = 0 and a2 = 0.

The first integral (11) becomes

H
(6)
2 (x, y) =

(γ1 + α1x+ β1y)
2 + (γ2 + α2x+ β2y)

2

(2− a2(γ1 + α1x+ β1y))2
eR4(x,y), (19)

where R4(x, y) =
4

2− a2(γ1 + α1x+ β1y)
, if 4a4 + a22 = 0 and a1 = 0.

3 Proof of Theorem 4

Here we are going to show the upper bound number of limit cycles for the discontinuous
piecewise differential systems with an arbitrary linear and cubic uniform isochronous
centres separated by x = 0.

In the right half-plane Γ+ we consider the linear differential centre (2) in
the first integral is H(x, y) of the form (3). In the left half-plane Γ− we
consider system (12), with its first integrals H

(k)
j (x, y) with k = 1, . . . , 6 and

j = 1, 2, where H
(k)
j (x, y) = H1(x, y) if j = 1.

The next system of equations must be verified if the discontinuous piecewise
differential systems (2)–(12) have a limit cycle that intersects the line x = 0 in the two
points (0, y) and (0, Y ), with y ̸= Y

E1 = H(0, y)−H(0, Y )

= (y − Y )
(
8αd1 − 4β2y − yω2 − 4β2Y − ω2Y

)
= 0,

E2 = H
(k)
j (0, y)−H

(k)
j (0, Y ) = h

(k)
j (y, Y ) = 0.

(20)

By solving E1 = 0, we get Y =
8αd1

4β2 + ω2
− y and by replacing it in E2 = 0 we get

an equation F (y) = 0 with the variable y, that changes depending on the first integrals
H

(k)
j (x, y) of system (12).

Proof of statement 1 of Theorem 4: We start the proof of this statement for the
discontinuous piecewise differential system separated by x = 0 and formed by the
arbitrary linear differential centre (2) and the arbitrary cubic uniform isochronous
differential centre (12) satisfying a21 + a22 = 0, where H

(k)
1 (x, y) = H1(x, y) and

F (y) =
(
4β2 + ω2

)
(β2γ2(a4γ

2
1 − 1)

+ a4β
2
1β2γ2y

2 − β1γ1(a4γ
2
2 + a4β

2
2y

2 + 1))

− 4αd1(β
2
2(1− a4γ

2
1)

+ β2
1(a4γ2(γ2 + 2β2y) + 1)

− 2a4β1β
2
2γ1y).
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The quadratic equation F (y) = 0 has at most two real solutions. Consequently,
system (20) can have at most two real solutions (y1, F (y1)) and (y2, F (y2)).
Since (y1, F (y1)) = (F (y2), y2) these solutions provide the same limit cycle for
the discontinuous piecewise differential system (2)–(12). Consequently, the planar
discontinuous piecewise differential system (2)–(12) can have at most one limit cycle
under the condition a21 + a22 = 0.

To complete the proof of this statement we present a discontinuous piecewise
differential system that has only one limit cycle and satisfies a21 + a22 = 0. We take the
linear differential centre in the half-plane Γ+.

ẋ = −x+
13y

8
+

1

10
, ẏ = −2x+ y +

3

10
, (21)

with the first integral

H(x, y) = 80x2 − 8x(10y + 3) + y(65y + 8).

In the half-plane Γ− we consider the cubic uniform isochronous centre

ẋ =
1

900
(x

(
45x2 − 84x− 1036

)
+ 24(3x+ 4)y2

− 6x(33x+ 56)y + 904y + 208),

ẏ =
1

900
(15x2(3y + 4)− 2x(3y(33y + 68) + 746)

+ 4y(6y(3y + 1) + 115)− 992),

(22)

with the first integral

H1(x, y) =
13x2 + 2x(8− 7y) + 2y(5y + 4) + 16

(5x− 2y + 14)(5x− 2(y + 3))
.

The unique real solution of system (20) is (y1, y2) = (−1.32287.., 1.1998..) which
produces the unique limit cycle for the discontinuous piecewise differential system
(21)–(22), see Figure 1(a). Then statement 1 holds. �

Proof of statement 2 of Theorem 4: Here, we demonstrate the statement for the
discontinuous piecewise differential systems separated by x = 0 and formed by the
arbitrary linear differential centre (2) and the arbitrary cubic uniform isochronous
differential centres (12) satisfying a21 + a22 ̸= 0, and we distinguish the following
subcases:

Subcase 2.1: If 4a4 − a21 < 0 and a2 = 0, then k = 1 and j = 2 in system (20), then
H

(1)
2 (x, y) the first integral of system (12) is given by (14). In this case finding the

solution of the equation F (y) = 0 is equivalent to solving the f1(y) = g1(y) equation
such that

f1(y) =

(
k0 + k1 y + k2 y2

G0 +G1 y + k2 y2

)r

and

g1(y) =

(
m1 +m2 y

m3 −m2 y

)p (
n1 +m2 y

n3 −m2 y

)q

,
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where

k0 = γ2
1 + γ2

2 +
64α2d21

(4β2 + ω2)
2

(
β2
1 + β2

2

)
+

16αd1
4β2 + ω2

(β1γ1 + β2γ2),

k1 = −2(β1γ1 + β2γ2)−
16αd1

4β2 + ω2

(
β2
1 + β2

2

)
,

k2 = β2
1 + β2

2 ,

G0 = γ2
1 + γ2

2 , G1 = 2(β1γ1 + β2γ2),

S =
√

a21 − 4a4, r =
S

a1
m1 = S − a1 − 2a4γ2, m2 = −2a4β2,

m3 = S − a1 − 2a4γ2 −
16αa4β2d1
4β2 + ω2

, p = −S + a1
a1

,

n1 = −S − a1 − 2a4γ2,

n3 = −S − a1 − 2a4γ2 −
16αa4β2d1
4β2 + ω2

,

q =
a1 − S

a1
.

The maximum number of the real solutions of system (20) is equivalent to the maximum
number of the intersection points of the graphics of the function f1(y) with the ones of
g1(y).

We denote by g′1(y) the first derivative of the function g1(y), given by

g′1(y) =
(m1 +m2 y)p−1(n1 +m2 y)q−1

(m3 −m2 y)p+1(n3 −m2 y)q+1
P1(y),

where

P1(y) = m2n1n3p(m1 +m3) +m1m2m3q(n1 + n3)

+ (m2
2(q(m3 −m1)(n1 + n3)

− p(m1 +m3)(n1 − n3)))y

+ (−m3
2(p(m1 +m3) + q(n1 + n3))) y

2.

In all the graphics of the functions fi(y) and gi(y), with i = 1, 2, 3, the dashed lines
represent the vertical asymptote straight lines, and the horizontal straight line is the
y-axis.

Since p ̸= 0 ̸= q, for p, q > 0, and from the geometric study, the function g1(y)

has two distinct vertical asymptote straight lines y1 =
m3

m2
and y2 =

n3

m2
. Its variation

depends on the sign of its first derivative, the nature of the parameters p and q, the roots
of the quadratic polynomial P1(y) with their possible positions concerning y1 and y2,
and for the two roots r1 =

−m1

m2
and r2 =

−n1

m2
of g′1(y).
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So if we suppose that p > q > 0 and y1 < y2, the possible positions of the two real
roots r1 and r2 concerning the vertical asymptote y1 and y2 can be as follows.

1 r1 < r2 < y1 < y2 with its symmetric y1 < y2 < r1 < r2

2 r1 < y1 < r2 < y2 with its symmetric y1 < r1 < y2 < r2

3 r1 < y1 < y2 < r2

4 y1 < r1 < r2 < y2.

Similarly we find the same possible positions if y2 < y1.
Now we will analyse the possible positions of the real roots for the quadratic

polynomial P1(y) with respect to y1, y2, r1 and r2. We denote by

∆ = m4
2(p(m1 +m3)(n1 − n3)

+ q(m1 −m3)(n1 + n3))
2

+ 4m2
2(m2p(m1 +m3)

+m2q(n1 + n3))(m2n1n3p(m1 +m3)

+m1m2m3q(n1 + n3)),

the discriminant of P1(y), and by using the expressions of y1, y2, r1 and r2 we can
write ∆ in the form

∆ = m8
2(r1 − y1)(r2 − y2)

(
p2(r1 − y1)(r2 − y2)

+ 2pq(r1(r2 − 2y1 + y2) + r2y1

+ q2(r1 − y1)(r2 − y2)− 2r2y2 + y1y2)
)
.

If the polynomial P1(y) has a pair of distinct real roots r3 and r4, i.e., ∆ > 0, their
expressions are given by

r3 =
p(r1 − y1)(r2 + y2) + q(r1 + y1)(r2 − y2) +

√
∆/m8

2

2(p(r1 − y1) + q(r2 − y2))
,

r4 =
p(r1 − y1)(r2 + y2) + q(r1 + y1)(r2 − y2)−

√
∆/m8

2

2(p(r1 − y1) + q(r2 − y2))
.

If we suppose that r1 < r2 < y1 < y2 it results that r3 < r4 because p(r1 − y1) +
q(r2 − y2) < 0. By fixing the position of r3 between r1 and r2 with r1 < r3 < r2, then
we obtain the position of r4.

The first inequality r1 < r3 is equivalent to

(r1 − y1)(−y2(p+ q) + 2pr1 − pr2 + qr2)

−
√
∆/m8

2 > 0.
(23)

The second inequality r3 < r2 is equivalent to

− (r2 − y2)(p(r1 − y1)− q(r1 − 2r2 + y1))

+
√
∆/m8

2 > 0,
(24)
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by summing the two inequalities (23) and (24) we get (r1 − r2)(p(r1 − y1) + q(r2 −
y2)) > 0, which is satisfied for all r1 < r2 < y1 < y2. So to find the position of r4, we
assume that r3 < r4 < r2, it is clear that the first inequality r3 < r4 holds.

For r4 < r2 we get

− (r2 − y2)(p(r1 − y1)− q(r1 − 2r2 + y1))

−
√
∆/m8

2 > 0.
(25)

A necessary condition so that this last inequality holds is p(r1 − y1)− q(r1 − 2r2 +
y1) > 0, i.e., p(r1 − y1) > q(r1 − 2r2 + y1) = q(r1 − y1) + 2q(y1 − r2). We know that
p ≥ q > 0 and r1 − y1 < 0, then p(r1 − y1) ≤ q(r1 − y1) < 0. Since 2q(y1 − r2) > 0
then p(r1 − y1) ≤ q(r1 − y1) < q(r1 − y1) + 2q(y1 − r2) = q(r1 − 2r2 + y1), which is
a contradiction. Then the position r1 < r3 < r4 < r2 < y1 < y2 is not possible.

Now we assume that r2 < r4 < y1, the inequality r2 < r4 is equivalent to

(r2 − y2)(p(r1 − y1)− q(r1 − 2r2 + y1))

+
√
∆/m8

2 > 0,
(26)

and r4 < y1 is equivalent to

(r1 − y1)(p(r2 − 2y1 + y2) + q(r2 − y2))

−
√
∆/m8

2 > 0.
(27)

So (26)+(27) implies (y1 − r2)(p(r1 − y1) + q(r2 − y2)) > 0 which is a contradiction,
because y1 − r2 > 0, r1 − y1 < 0 and r2 − y2 < 0. Then the position r1 < r3 < r2 <
r4 < y1 < y2 is not possible.

Now we assume that y1 < r4 < y2, the inequality y1 < r4 is equivalent to

(r1 − y1)(p(r2 − 2y1 + y2) + q(r2 − y2))

−
√
∆/m8

2 < 0,
(28)

and r4 < y2 equivalent to

− (r2 − y2)(p(r1 − y1) + q(r1 + y1 − 2y2))

+
√
∆/m8

2 < 0.
(29)

So (28)–(29) gives (y1 − y2)(p(y1 − r1) + q(y2 − r2)) < 0. Since y1 − y2 < 0, y1 −
r1 > 0 and y2 − r2 > 0, this inequality holds. Similarly we provide all the positions of
the real roots of P1(y) concerning the vertical asymptote y1 and y2 and to r1 and r2
that are given in what follows:

1 r1 < r3 < r2 < y1 < r4 < y2 with its symmetric y1 < r3 < y2 < r1 < r4 < r2

2 y1 < r3 < r4 < r1 < y2 < r2 with its symmetric r1 < y1 < r2 < r3 < r4 < y2

3 r1 < r3 < r4 < y1 < r2 < y2 with its symmetric y1 < r1 < y2 < r3 < r4 < r2
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4 r3 < r1 < y1 < r4 < y2 < r2 with its symmetric r1 < y1 < r3 < y2 < r2 < r4

5 y1 < r1 < r3 < r2 < y2 < r4 with its symmetric r3 < y1 < r1 < r4 < r2 < y2

6 r3 < r4 < y1 < r1 < y2 < r2 with its symmetric r1 < y1 < r2 < y2 < r3 < r4.

If P1(y) has a pair of complex roots, we have only the position r1 < y1 < r2 < y2
together with its symmetric y1 < r1 < y2 < r2.

Figure 3 The graphics of the function g1(y) if p and q are even, or if p even and

q =
k1

2k2 + 1
with k1, k2 ∈ N (see online version for colours)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

If P1(y) has a double real root r0, the possible positions of this double root with respect
to y1, y2, r1 and r2 are

1 r1 < r0 < y1 < r2 < y2 together with its symmetric y1 < r1 < y2 < r0 < r2

2 r1 < y1 < r2 < r0 < y2 together with its symmetric y1 < r0 < r1 < y2 < r2.

Remark 5: In these proofs we only give the graphics of the functions, when the first
derivative’s sign of all the functions started when y → −∞ with a positive sign and
also with a negative sign when y → −∞. The cases that we omit to consider explicitly
will be called the symmetric cases of the ones that we considered.
Figures 3, 4 and 5 the possible graphics for the function g1(y). Indeed, if p and q

are even integers or if p is an even integer and q =
2l1

2l2 + 1
with l1, l2 ∈ N, or if p =

2l1
2l2 + 1

and q =
2l′1

2l′2 + 1
with l1, l2, l

′
1, l

′
2 ∈ N, we give all the graphics of g1(y) in

Figure 3. If P1(y) has a pair of distinct real roots r3 and r4 which can take the position
(1) where the graphic of g1(y) is given in Figure 3(a), or either the position (2), or
(3), or (4), or (5) or (6), where graphics of g1(y) are given either in Figure 3(b), or
Figure 3(c), or Figure 3(d), or Figure 3(e) or Figure 3(f), respectively. If P1(y) has a
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pair of complex roots, the graphic of g1(y) is illustrated in Figure 3(g). If P1(y) has
a double real root taking either the position (1) or (2), then the graphics of g1(y) are
given by Figure 3(h) or Figure 3(i).

If p and q are odd integers, or if p is an odd integer and q =
2l1 + 1

2l2 + 1
with l1, l2 ∈ N,

or if p =
2l1 + 1

2l2 + 1
and q =

2l′1 + 1

2l′2 + 1
with l1, l2, l

′
1, l

′
2 ∈ N, we give all the graphics of

g1(y) in Figure 4. If P1(y) has a pair of distinct real roots r3 and r4 either in the
position (1), or (2), or (3), or (4), or (5) or (6), then the graphics of g1(y) are given
either in Figures 4(a) and 4(b), or Figures 4(c) and 4(d), or Figures 4(e) and 4(f), or
Figures 4(g) and 4(h), or Figures 4(i) and 4(j), or Figures 4(k) and 4(l), respectively. If
P1(y) has a pair of complex roots, then the graphics of g1(y) are shown in Figures 4(m)
and 4(n). If P1(y) has a double real root r0 either in the position (1) or (2), then the
graphics of g1(y) are given either in Figures 4(o) and 4(p), or Figures 4(q) and 4(r),
respectively.

In a similar way we obtain that if p is an odd integer and q is an even integer, or

if p =
2l1 + 1

2l2 + 1
and q =

2l′1
2l′2 + 1

with l1, l2, l
′
1, l

′
2 ∈ N, or if p is an even integer and

q =
2l1 + 1

2l2 + 1
with l1, l2 ∈ N, or if p is an odd integer and q =

2l1
2l2 + 1

with l1, l2 ∈ N,

we give all the graphics of g1(y) in Figure 5.

If p is an odd integer and q is either irrational or q =
l1
2l2

with l1, l2 ∈ N and l2 ̸= 0,

the function g1(y) is well defined on Dg1 = [r2, y2) and the sign of g′1(y) depends on
the sign of the polynomial P1(y), therefore the graphics of g1(y) are the parts drawn
on Dg1 when both p and q are odd integers.

If p is an even integer and q is either irrational or q =
l1
2l2

with l1, l2 ∈ N and l2 ̸= 0,

the function g1(y) is well defined on Dg1 = [r2, y2) and the sign of g′1(y) is determined
by the sign of P1(y) and on the sign of the product (n1 + n2y2)(n1 + n3y2), therefore
the graphics of g1(y) are the parts drawn on Dg1 in which one of the integers p and q
is odd and the other is even.

If p is either irrational or p =
l1
2l2

and q is either irrational or q =
l′1
2l′2

with

l1, l2, l
′
1, l

′
2 ∈ N and l2 ̸= 0 ̸= l′2, or if p is either irrational or p =

l1
2l2

and q =
2l′1 + 1

2l′2 + 1
with l1, l2, l

′
1, l

′
2 ∈ N and l2 ̸= 0, the function g1(y) is well defined on Dg1 = [r1, y1) ∩

[r2, y2) and the sign of g′1(y) is determined on sign of P1(y), therefore the graphics of
g1(y) are the parts drawn on Dg1 when both p and q are odd integers.

If p is either irrational or p =
l1
2l2

and q =
2l′1

2l′2 + 1
with l1, l2, l

′
1, l

′
2 ∈ N and l2 ̸= 0,

the function g1(y) is well defined on Dg1 = [r1, y1) ∩ [r2, y2) and the sign of g′1(y) is
determined by the sign of P1(y) and (n1 +m2 y)(n3 −m2 y), therefore the graphics
of g1(y) are the parts drawn on Dg1 in which one of the integers p and q is odd and
the other is even.

For the case p, q < 0 or pq < 0, we found the same graphics by the same way.
Now for the function f1(y) we denote by ∆1 and ∆2 the discriminant of the

quadratic polynomials G0 +G1 y + k2 y2 and k0 + k1 y + k2 y2, respectively. We have
∆ = ∆1 = ∆2 = −4(β2γ1 − β1γ2)

2 ≤ 0.
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Figure 4 The graphics of the function g1(y) if p and q are odd (see online version
for colours)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

If ∆ = 0, the function f1(y) becomes

f1(y) =

(
G1 + 2k2 y

k1 + 2k2 y

)2r

,

and its first derivative has the form

f ′
1(y) =

η(G1 + 2k2 y)2r−1

(k1 + 2k2 y)2r+1
,

with η = 4rk2(k1 −G1). Then to draw all the graphics of the function f1(y) with ∆ =
0 we have to study the sign of its derivative which depends on η and the nature of the
parameter 2r.

For r > 0 it is clear that f ′
1(y) vanish at z1 = − G1

2k2
that can have only one possible

position with respect to the vertical asymptote straight line z2 = − k1
2k2

. Thus in this
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case we only draw the graphics of the function f1(y) when z1 < z2, and we omit the
case when z2 < z1 as in the graphics of g1(y).

Figure 5 The graphics of the function g1(y) if p odd and q even, or p odd and q =
l1

2l2 + 1
with l1, l2 ∈ N (see online version for colours)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

If r is a natural number or r =
l1

2l2 + 1
with l1, l2 ∈ N, the sign of f ′

1(y) depends on

the sign of the product η(G1 + 2k2 y)(k1 + 2k2 y). So the only possible graphic of this
function is shown in Figure 6(a).

If r =
2l1 + 1

4l2 + 2
with l1, l2 ∈ N, the sign of f ′

1(y) is relates only on the parameter η.
Here the graphics of this function are shown in Figure 6(b) if η < 0 and in Figure 6(c)
if η > 0.

If either r is irrational or r =
2l1 + 1

4l2
with l1, l2 ∈ N and k2 ̸= 0, the function f1(y)

is well defined on Df1 = [z1, z2), and the sign of f ′
1(y) is related only on the nature of

η. Thus the graphics of f1(y) are the parts drawn on Df1 in Figure 6(b) if η < 0 and
in Figure 6(c) if η > 0.

Similarly when r < 0, we obtain the identical graphics as r > 0.
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If ∆ < 0 the function f1(y) has two extremums. Thus Figures 6(d) and 6(e) are the
only possible graphics for the function f1(y).

Figure 6 The graphics of the function f1(y) (see online version for colours)

(a) (b) (c)

(d) (e)

Figure 7 The seven intersection points between the graphics of f1(y) presented in a
continuous line and g1(y) presented in a dashed line (see online version for colours)
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Note: The vertical lines represent the asymptote’s straight lines.

For the function g1(y) when both integers p and q are even, we notice that the
derivative’s sign only changes at most seven times, but in the other cases it changes at
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most five times, which guarantees that the even case is the one that gives the maximum
number of the intersection points of the function f1(y) with g1(y), so to provide this
maximum it is sufficient to obtain the upper bound number of the intersection points of
f1(y) with g1(y) when p and q are even integers. Then we are only interested in the
graphics of the function g1(y) drawn in Figure 3. Since y = 1 is the common horizontal
asymptote straight line for these two functions, it ensures that no intersection points exist
between these graphics at infinity. Then the graphics of f1(y) and g1(y) can intersect in
at most seven points. Consequently system (20) can have at most seven real solutions.
It is simple to demonstrate that if (y, Y ) is a solution of system (20), then the symmetry
(Y, y) is also a solution of that system. Therefore the maximum number of limit cycles
of the discontinuous piecewise differential system (2)–(12) for 4a4 − a21 < 0 and a2 = 0
is at most three.

Figure 8 The graphics of the function f2(y) (see online version for colours)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

By considering {m1, m2, m3, n1, n3, p, q , k0, k1, k2, G0, G1, r} −→ {0.3, 1,
0.01, 2, 2, 2, 2, 0.333333.., 1, 0.75, 0.75, −1.5, 3} we build an example in which the
graphics of f1(y) and g1(y) interesect in seven points, see Figure 7.

Subcase 2.2: If 4a4 + a22 > 0 and a1 = 0, then k = 2 and j = 2 in system (20), and
H

(2)
2 (x, y) given by (15) represent the first integral of system (12). Thus the solutions

of F (y) = 0 are identical to the solutions of f1(y) = g1(y) given in subcase 2.1, with

m1 = S − a2 − 2a4γ1, m2 = −2a4β1,
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m3 = S − a2 − 2a4γ1 −
16αa4β1d1
4β2 + ω2

,

n1 = −S − a2 + 2a4γ1,

n3 = −S − a2 − 2a4γ1 −
16αa4β1d1
4β2 + ω2

,

p = −S + a2
a2

, q =
a2 − S

a2
,

r =
S

a2
, S =

√
a22 + 4a4,

Therefore the maximum number of the intersection points between the graphics of f1(y)
and g1(y) is at most five. Then as in the previous subcase the maximum number of limit
cycles of the discontinuous piecewise differential system (2)–(12) with 4a4 + a22 > 0
and a1 = 0 is at most three.

To prove that our results are reached we will give an example of three limit cycles
for the class formed by a linear centre and a cubic uniform isochronous centre with
4a4 + a22 > 0 and a1 = 0.

In the region Γ+ we consider the linear differential centre

ẋ = x− 41y

32
+

9

10
, ẏ = 2x− y + 1, (30)

with the first integral

H(x, y) = −8

5
(10x+ 9)y + 16x(x+ 1) +

41y2

4
.

In the region Γ− we consider the cubic isochronous centre

ẋ = x(y(0.0880169.. − 0.0000688837..y)

− 1.99445..) + 0.0000375..x3

+ x2(0.000336918..y + 0.00960476..)

+ (−0.0179787..y − 17.9585..)y

+ 12.6236..,

ẏ = y(y(0.00207603.. − 0.0000688837..y)

+ 1.94435..) + x2(0.0000375..y − 0.00108607..)

+ x((0.000336918..y − 0.00994057..)y

+ 0.27169..) + 13.1497..,

(31)

with the first integral

H
(2)
2 (x, y) =

0.00015625..

(
x2 + x(14.6152..y + 98.7172..)

+y(67.4919..y − 94.8194..) + 14255.7..

)2.

[
(0.00075..x− 0.00015..y + 0.300095..)3

(−0.00075..x+ 0.00015..y + 0.0999052..)1.,

]
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Figure 9 The two possible graphics of the function g2(y) (see online version for colours)

(a) (b)

Figure 10 The nine points intersection between the graphics of f2(y) presented in a
continuous line and g2(y) presented in a dashed line (see online version
for colours)
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Note: The vertical lines represent the asymptote’s straight lines.

Figure 11 The graphics of the function g3(y) (see online version for colours)

(a) (b) (c)

(d) (e) (f)

For the discontinuous piecewise differential system (30)–(31), system (20) has the three
solutions (y1, y2) = (−0.426236.., 1.83111..), (y3, y4) = (−0.173113.., 1.57799..) and



360 L. Baymout et al.

(y5, y6) = (0.193249.., 1.21163..) which provide the three limit cycles intersecting the
separation straight line x = 0 in the six points (0, yj) with j = 1, . . . , 6, see Figure 1(b).

Subcase 2.3: If 4a4 − a21 > 0 and a2 = 0, then k = 3 and j = 2 in system (20), and the
first integral H(3)

2 (x, y) of (12) is given by (16). The solutions of the equation F (y) = 0
are identically equivalent to the ones of the equation f2(y) = g2(y) such that

f2(y) =

(
k0 + k1 y + k2 y2

G0 +G1 y +G2 y2

)r

and

g2(y) = e2(arctan(m1+m2 y)−arctan(m3−m2 y)),

where

k0 =
(γ2

1 + γ2
2)

(4β2 + ω2)
2 (16β

4(γ2(a1 + a4γ2) + 1)

+ 8β2(ω2(γ2(a1 + a4γ2) + 1)

+ 4αβ2d1(a1 + 2a4γ2)) + a1γ2ω
4 + 8αa1β2d1ω

2

+ a4
(
γ2ω

2 + 8αβ2d1
)2

+ ω4),

k1 =
16αβ2d1
4β2 + ω2

(a1β1γ1 + a1β2γ2 + 2a4β1γ1γ2

− a4β2γ
2
1 + a4β2γ

2
2) + 2a1β1γ1γ2 − a1β2γ

2
1

+ a1β2γ
2
2 + 2a4β1γ1γ

2
2 − 2a4β2γ

2
1γ2

+
128α2a4β

2
2d

2
1

(4β2 + ω2)
2 (β1γ1 + β2γ2) + 2β1γ1 + 2β2γ2,

k2 =
8αβ2d1
4β2 + ω2

(a1β
2
1 + a1β

2
2 − 4a4β1β2γ1

+ 2a4γ2(β1 − β2)(β1 + β2)) + a1β
2
1γ2

− 2a1β1β2γ1 − a1β
2
2γ2 + a4β

2
1γ

2
2 − 4a4β1β2γ1γ2

+ a4β
2
2γ

2
1 − 2a4β

2
2γ

2
2 +

64α2a4β
2
2d

2
1

(4β2 + ω2)
2

(
β2
1 + β2

2

)
+ β2

1 + β2
2 ,

G0 =
γ2(a1 + a4γ2) + 1

(4β2 + ω2)2
((4β2 + ω2)2(γ2

1 + γ2
2)

+ 64α2d21(β
2
1 + β2

2)

+ 16αd1(4β
2 + ω2)(β1γ1 + β2γ2)),

G1 = −2β1γ1(γ2(a1 + a4γ2) + 1)

+ β2(a1(γ1 − γ2)(γ1 + γ2) + 2γ2(a4γ
2
1 − 1))

+
64α2β2d

2
1

(4β2 + ω2)2
(β2

1 + β2
2)(a1 + 2a4γ2)

− 16αd1
4β2 + ω2

(β2
1(γ2(a1 + a4γ2) + 1)

− β1β2γ1(a1 + 2a4γ2) + β2
2(1− a4γ

2
2)),



The limit cycles of a class of discontinuous piecewise differential 361

G2 = − 16αβ2d1
4β2 + ω2

(a1(β
2
1 + β2

2)

+ a4(2β
2
1γ2 − β1β2γ1 + β2

2γ2))

+ a1β
2
1γ2 − 2a1β1β2γ1

− a1β
2
2γ2 + a4β

2
1γ

2
2 − 4a4β1β2γ1γ2

+ a4β
2
2γ

2
1 − 2a4β

2
2γ

2
2 +

64α2a4β
2
2d

2
1

(4β2 + ω2)
2

(
β2
1 + β2

2

)
+ β2

1 + β2
2 , r =

S

a1
, S =

√
4a4 − a21,

m1 =
1

S

(
a1 + 2a4γ2 +

16αa4β2d1
4β2 + ω2

)
,

m2 =
2a4β2

S
, m3 =

a1 + 2a4γ2
S

.

The first derivative of the function f2(y) is

f ′
2(y) =

(
k0 + k1 y + k2 y2

)r−1

(G0 +G1 y +G2 y2)
r+1 P2(y),

where

P2(y) = r(G0k1 −G1k0) + r(2G0k2 − 2G2k0)y

+ r(G1k2 −G2k1)y
2.

Now to draw all possible graphics of the function f2(y), we denote by ∆, ∆1 and ∆2

the discriminants of the quadratic polynomials G0 +G1 y +G2 y2, k0 + k1 y + k2 y2

and P2(y), respectively.
If ∆,∆1 > 0 the function f2(y) becomes a particular case of g1(y), i.e., p = q = r.

Then the graphics of f2(y) are equivalently the same graphics as the ones of g1(y)
when both p, q are odd or even which provide the graphics shown in Figures 3 and 4.

If ∆,∆1 ≤ 0 the function f2(y) have the same graphics as the function f1(y). Then
the graphics of f2(y) are illustrated in Figure 6.

For r > 0 and according to the sign of the derivative f ′
2(y) which is related to the

nature of the parameter r and on the sign of discriminates ∆, ∆1 and ∆2, we study all
the possible graphics of the function f2(y) in what follows.

If either r is an even integer or r =
k1

2k2 + 1
with k1 and k2 in N, the possible

graphics of the function f2(y) are shown in Figures 8(a) and 8(b) if ∆ < 0, ∆1 = 0
and ∆2 > 0; or in Figure 8(c) if ∆ < 0 and ∆1,∆2 > 0; or in Figures 8(d) and 8(e) if
∆, ∆2 > 0 and ∆1 < 0; or in Figures 8(f) and 8(g) if ∆ = 0, ∆1 < 0 and ∆2 > 0.
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If the integer r is odd, the possible graphics of the function f2(y) are illustrated
in Figures 8(a) and 8(b) if ∆ < 0, ∆1 = 0 and ∆2 > 0; or in Figures 8(h) and 8(i) if
∆ < 0 and ∆1,∆2 > 0; or in Figures 8(j) and 8(k) if ∆,∆2 > 0 and ∆1 < 0; or in
Figures 8(l) and 8(m) if ∆ = 0, ∆1 < 0 and ∆2 > 0.

If r =
k1
2k2

with k1, k2 in N and k1 ̸= 0 ̸= k2, the function f2(y) is well defined on

Df2 when (k0 + k1 y + k2 y2)(G0 +G1 y +G2 y2) ≥ 0 and G0 +G1 y +G2 y2 ̸= 0,
then the graphics of f2(y) are the parts drawn on Df2 when r is an odd integer.

Similarly if r < 0 we obtain the identical graphics as r > 0.
According to the sign of the derivative g′2(y) given by

g′2(y) = 2m2

(
(m1 +m2 y)2 + (m3 −m2 y)2 + 2

((m1 +m2 y)2 + 1) ((m3 −m2 y)2 + 1)

)
e2
(
arctan(m1+m2 y)−arctan(m3−m2 y)

)
,

which depends only on the parameter m2, we get the two different possible graphics:
Figure 9(a) of if m2 > 0, and Figure 9(b) if m2 < 0.

In this case the upper bound number of the intersection points between f2(y) and
g2(y) is reached when r is an even integer, ∆ > 0 and ∆1 > 0, and the graphics of
f2(y) are the ones drawn in Figure 3 because in this case the function f2(y) has the
form of the function g1(y) and we proved in the previous subcases the reason in order
that r must be an even integer. According to the graphics of the function g2(y) shown
in Figure 9 and due to the fact there are no intersecting points at infinity, it results
that these graphics can intersect at most in nine points. Consequently the maximum
number of limit cycles of the discontinuous piecewise differential system (2)–(12) for
4a4 − a21 > 0 and a2 = 0 is at most four.

By taking {k0, k1, k2, G0, G1, G2, r, s1, s2, s3} −→ {0.3, 1.15, 0.5, 0.15, –0.65,
0.4, 2, 1, 1, –30} we build an example in which the graphics of the two functions f2(y)
and g2(y) intersect in nine points. These points are shown in Figure 12.

Subcase 2.4: If 4a4 + a22 < 0 and a1 = 0, so k = 4 and j = 2 in system (20), and the
first integral of system (12) is H

(4)
2 (x, y) given by (17). Then to solve F (y) = 0 it is

equivalent to solve f2(y) = g2(y) given in subcase 2.3, with

k0 =
(γ2

1 + γ2
2)

(4β2 + ω2)2
(16β4(γ1(a2 + a4γ1)− 1)

+ 8β2(ω2(γ1(a2 + a4γ1)− 1)

+ 4αβ1d1(a2 + 2a4γ1)) + ω4(a2γ1 − 1)

+ 8αa2β1d1ω
2 + a4(γ1ω

2 + 8αβ1d1)
2),

k1 =
16αβ1d1
4β2 + ω2

(β1γ1(a2 + a4γ1) + β2γ2(a2 + 2a4γ1)

− a4β1γ
2
2) + a2β1γ

2
1 − a2β1γ

2
2 + 2a2β2γ1γ2

− 2a4β1γ1γ
2
2 + 2a4β2γ

2
1γ2

+
128α2a4β

2
1d

2
1

(4β2 + ω2)2
(β1γ1 + β2γ2)− 2β1γ1 − 2β2γ2,
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k2 =
8αβ1d1
4β2 + ω2

(a2(β
2
1 + β2

2)

− 2a4(β
2
1γ1 + 2β1β2γ2 − β2

2γ1))− a2β
2
1γ1

− 2a2β1β2γ2 + a2β
2
2γ1

− 2a4β
2
1γ

2
1 + a4β

2
1γ

2
2 − 4a4β1β2γ1γ2

+ a4β
2
2γ

2
1 +

64α2a4β
2
1d

2
1

(4β2 + ω2)2
(β2

1 + β2
2)− β2

1 − β2
2 ,

G1 = β1γ
2
2(a2 + 2a4γ1)− 2β2γ2(γ1(a2 + a4γ1)− 1)

+
64α2β1d

2
1(a2 + 2a4γ1)

(4β2 + ω2)2
(β2

1 + β2
2)

+
16αd1

4β2 + ω2
(β1β2γ2(a2 + 2a4γ1)

− β2
2γ1(a2 + a4γ1) + β2

1(a4γ
2
1 + 1) + β2

2)

+ β1γ1(2− a2γ1),

G2 = − 16αβ1d1
4β2 + ω2

(a2(β
2
1 + β2

2)

+ a4(β
2
1γ1 − β1β2γ2 + 2β2

2γ1))

− a2β
2
1γ1 − 2a2β1β2γ2 + a2β

2
2γ1

− 2a4β
2
1γ

2
1 + a4β

2
1γ

2
2 − 4a4β1β2γ1γ2 + a4β

2
2γ

2
1

+
64α2a4β

2
1d

2
1

(4β2 + ω2)2
(β2

1 + β2
2)− β2

1 − β2
2 ,

m1 =
a2 + 2a4γ1

S
, m2 =

2a4β1

S
,

m3 =
1

S
(a2 + 2a4γ1 +

16αa4β1d1
4β2 + ω2

),

r =
S

a2
, S =

√
−a22 − 4a4.

Consequently the maximum number of limit cycles of the discontinuous piecewise
differential system (2)–(12) for 4a4 − a22 < 0 and a1 = 0 is at most four.

The maximum number of limit cycles in subcases 2.3 and 2.4 is at most four, but
we can only build an example having three limit cycles for the class formed by a linear
centre and a cubic uniform isochronous centre with 4a4 − a21 > 0 and a2 = 0.

In the region Γ+ we consider the linear differential centre

ẋ =
4x

5
− 881y

800
+

9

10
, ẏ = 2x− 4y

5
+ 1, (32)

with the first integral

H(x, y) = 4

(
2x− 4y

5

)2

+ 16

(
x− 9y

10

)
+

25y2

4
.
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In the region Γ− we consider the cubic isochronous centre

ẋ = x2(1.33839.. − 0.126705..y)

+ x(y(5.14213.. − 0.155116..y)− 8.99951..)

− 0.025..x3 + y(4.56894..y − 16.6475..)

+ 11.9886..,

ẏ = x2(−0.025..y − 0.270459..)

+ x((−0.126705..y − 0.76873..)y + 0.93212..)

+ y((−0.155116..y − 0.268073..)y + 0.502979..)

+ 4.79534..,

(33)

with the first integral

H
(3)
2 (x, y) =

(
52x2 + x(218.821..y − 696.045..)

+y(231.874..y − 1428.38..) + 2524.64..

)
x2 + x(6.y − 14.) + y(9y − 42) + 149

e2 arctan(0.1x+0.3y−0.7),

For the discontinuous piecewise differential system (32)–(33), system (20) has the
three solutions (y1, y2) = (−0.842999.., 2.47751..), (y3, y4) = (−0.654549.., 2.28905..)
and (y5, y6) = (−0.43812.., 2.07263..) which provide the three limit cycles intersecting
the separation straight line x = 0 in the six points (0, yj) with j = 1, ..., 6, see
Figure 2(a).

Subcase 2.5: If 4a4 − a21 = 0 and a2 = 0, then k = 5 and j = 2 in system (20), and
H

(5)
2 (x, y) given by (18) is the first integral of the cubic uniform isochronous centre

(12). Now to solve F (y) = 0 it is sufficient to solve f3(y) = g3(y) with

f3(y) =
k0 + k1 y + k2 y2

G0 +G1 y + k2 y2
and

g3(y) =

(
m1 +m2 y

m3 −m2 y

)2

e

1

(m1 +m2 y)
−

1

(m3 −m2 y) ,

and

m1 = −1

4
(a1γ2 + 2), m2 = −1

4
(a1β2),

m3 = −1

4

(
a1γ2 +

8αa1β2d1
4β2 + ω2

+ 2

)
,

and k0, k1, k2, G0, G1 are the same with subcase 2.1.
It is clear that the function f3(y) is a particular case of f1(y) where r = 1 and

∆ = −4(β2γ1 − β1γ2)
2, then the corresponding graphics of f3(y) are Figure 6(a) if

∆ = 0, and Figures 6(d) and 6(e) if ∆ < 0.
For the function g3(y), the first derivative of this function is

g′3(y) =
P3(y)

(m3 −m2 y)4
e

1

(m1 +m2 y)
−

1

(m3 −m2 y) ,
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where

P3(y) = m2

(
2m2

1m3 −m2
1 + 2m1m

2
3 −m2

3

)
− 2m2

2(m1 −m3)(m1 +m3 + 1) y

− 2m3
2(m1 +m3 + 1) y2.

Since m2 ̸= 0, the variation of g3(y) depends on the ones of the quadratic polynomial
P3(y). In Figure 11 we show all the possible graphics of g3(y), where Figures 11(a)
and 11(b) correspond to the case in which the polynomial P3(y) has two distinct real
roots, Figures 11(c) and 11(d) when P3(y) has one double real root for P3(y) and (e)
and (f) if P3(y) has two complex roots for P3(y).

From the graphics of the function g3(y) shown in Figure 11, and due to the variation
of this function it is obvious that we get the maximum number of the intersection points
by intersecting Figures 11(a) and 11(b) with the graphics of the function f3(y). We
guarantee that at infinity there are no intersection points, because the two functions
f3(y) and g3(y) share the same horizontal asymptote straight line y = 1. Then we
remark that these graphics can intersect at most in five points. Consequently the upper
bound of the number of limit cycles in this case for the discontinuous piecewise
differential system (2)–(12) for 4a4 − a21 = 0 and a2 = 0 is at most two.

Figure 12 The five intersection points between the graphics of f3(y) presented in a
continuous line and g3(y) presented in a dashed line (see online version
for colours)

−2 −1 1 2 3

0.5

1.0
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2.0
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−10 −5 5 10
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8
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Note: The straight lines represent the asymptotes straight lines.

By taking {m1,m2,m3, k0, k1, k2, G0, G1} −→ {−2, 2, 6, 1/4, 1, 1, 25/4, 5} we build
an example in which the functions f3(y) and g3(y) intersects in five points shown in
Figure 12.
Subcase 2.6: If 4a4 + a22 = 0 and a1 = 0, then k = 6 and j = 2 in system (20), and
H

(6)
2 (x, y) given by (19) is the first integral of system (12). To solve F (y) = 0 it is

sufficient to solve the equation f3(y) = g3(y) mentioned in subcase 2.5, with

m1 =
1

4
(a2γ1 − 2), m2 =

a2β1

4
,

m3 =
1

4

(
a2γ1 +

8αa2β1d1
4β2 + ω2

− 2

)
,
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and the expressions of k0, k1, k2, G0, G1 are the same as the ones given in subcase 2.1.
Working in a similar way to the previous subcase the maximum number of limit

cycles of the discontinuous piecewise differential system (2)–(12) under the present
conditions is at most two.

Finally we construct an example with two limit cycles of the discontinuous piecewise
differential system (2)–(12) satisfying 4a4 + a22 = 0 and a1 = 0 to reach the result of
statement 2. In the right half-plane Γ+ we consider the linear differential centre

ẋ =
x

2
− 461y

580
+

9

10
, ẏ =

1

20
(29x− 10y + 30), (34)

with the first integral

H(x, y) = 4

(
29x

20
− y

2

)2

+
58

5

(
3x

2
− 9y

10

)
+

361y2

100
.

In the left half-plane Γ− we consider the cubic isochronous centre

ẋ = 59.0642.. − 2.510−9x3 + x2(0.0000162997..

+ 1.25625..10−6y) + x((0.000601877..y

− 0.089255..)y + 2.33048..)

+ y(4.41817..y − 57.1156..),

ẏ = −81.4419..+ x2(5.70054..10−8 − 2.510−9y)

+ x(−0.00260418..+ (6.00594..

+ 1.25626..y)10−6y)

+ y((0.000601877..y − 0.112201..)y + 5.23317..),

(35)

with the first integral

H
(6)
2 (x, y) =

(
x(26,139.5− 502.503y) + x2

+y(367,006.y − 2.04258× 107) + 3.28816× 108

)
(x+ 300.y − 19500.)2

e−R(x,y),

with R(x, y) =
40,000

x+ 300(y − 65)
.

In this case system (20) has the two solutions (y1, y2) = (−0.604777.., 2.86942..)
and (y3, y4) = (−0.242279.., 2.50692..) which produce the two limit cycles for the
discontinuous piecewise differential system (34)–(35), see Figure 2(b). Then statement 2
is held. �

Acknowledgements

The first and second authors are supported by the Directorate-General for
Scientific Research and Technological Development (DGRSDT), Algeria. The
third author is partially supported by the Agencia Estatal de Investigación
grant PID2019-104658GB-I00, the H2020 European Research Council grant
MSCA-RISE-2017-777911, AGAUR (Generalitat de Catalunya) grant 2021SGR00113,
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