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1 Introduction

Since the weakly almost periodic function (see Eberlein, 1949) was proposed by 
Eberlein in 1949, it has been a hot topic in the field of analysis until the 1970s and 
1980s. From the weakly almost periodic function on the initial topological group to the
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weakly almost periodic function on the semi-topological semigroup, a set of abstract
analysis theory has been developed. With the developments of the theory, the weakly
almost periodic function has exposed some shortcomings in its applications, especially in
the applications of differential equations. A basic problem is: under what circumstances
is the indefinite integral of a weakly almost periodic function still weakly almost
periodic? This problem is difficult to solve by the theory of weakly almost periodic
functions. This is because, using the decomposition theorem, f = f1 + f2, where f1 is
an almost periodic function, f2 is a continuous function whose mean is equal to zero
at infinity, the difficulty lies in the indefinite integral argument of the second additional
term. Based on this, and the consideration of ergodicity, Zhang (1994a, 1994b, 1995,
1997) defined a new function which is called pseudo almost periodic function. Since
then, the studies of pseudo almost periodic functions and their applications in differential
equations have made a series of important achievements in different fields (see for
example, Huang et al., 2021; Xu et al., 2021; Ayachi, 2022; Baroun et al., 2018; Chérif,
2015; Amdouni and Chérif, 2018).

A general time scale is usually not closed under the addition operation, and a large
of time scales are bounded or at least one endpoint is bounded, for example, T̃ =∪+∞
k=0[2k, 2k + 1]. Many time scales similar to this type have been applied to the study

of dynamic systems of the seventeen-year periodical cicada magicicada septendecim,
the common mayfly stenonema canadense and so on.

However, the existing pseudo almost periodic theory is only applicable to the study
of the dynamic equation defined on several special time scales (unbounded and closed
under the addition operation). What we are interested in is to construct a theory that can
be applied to the study of the pseudo almost periodic of the dynamic equations on more
general time scales, especially when the addition operation is not closed or at least one
endpoint is bounded.

In recent years, by means of the shift operators δ±, the concepts and properties of
periodic and almost periodic functions in shifts δ± on time scales have been defined and
studied in Adıvar (2013, 2010), Adıvar and Raffoul (2010a, 2010b) and Hu and Wang
(2017, 2021, 2022), respectively. The theory of periodic and almost periodic dynamic
equations in shifts δ± on time scales have been rapidly developed and applied. On
the basis of the above works, to further construct the theory of pseudo periodicity and
pseudo almost periodicity on time scales, the main work of this paper is to define the
concepts of pseudo (v-pseudo) periodic function in shifts δ± and pseudo (v-pseudo)
almost periodic function in shifts δ± on time scales, and to explore the existence and
uniqueness of pseudo (v-pseudo) periodic solution in shifts δ± and pseudo (v-pseudo)
almost periodic solution in shifts δ± of the dynamic equation on time scales as follows:

y∆(x) = L(x)y(x) + φ(x), x ∈ T, (1)

where T is a time scale; Ln×n(x) and φn×1(x) are rd-continuous functions.
Furthermore, based on the above obtained results, we bring two delayed dynamic

equation under investigation on some specific time scales to obtain more general results.

2 Preliminaries

The theory of time scales and its applications on dynamic equations (see Bohner and
Peterson, 2003).



Pseudo periodicity and pseudo almost periodicity in shifts δ± 325

Lemma 1 (Bohner and Peterson, 2003): If α ∈ R, then

1 e0(x, z) ≡ 1, eα(x, x) ≡ 1.

2 eα(σ(x), z) = (1 + µ(x)α(x))eα(x, z).

3 eα(x, z) =
1

eα(z,x) = e⊖α(z, x).

4 eα(x, z)eα(z, r) = eα(x, r).

5 (e⊖α(x, z))
∆ = (⊖α)(x)e⊖α(x, z).

6
(

1
eα(·,z)

)∆

= − α(x)
eσα(·,z) .

Remark 1: By Lemma 1, if α ∈ R+, then

eα(x, z) ≤ exp
(∫ x

z

α(ζ)∆ζ

)
,

for all x ≥ z.

A comprehensive review on periodicity and almost periodicity in shifts δ± on time
scales, see Adıvar (2013), Hu and Wang (2017, 2021, 2022) and Hu (2016).

Consider the corresponding homogeneous equation (1),

y∆(x) = L(x)y(x), x ∈ T. (2)

Definition 1 (Li and Wang, 2011; Zhang et al., 2010): Suppose that eL(x) is the
fundamental solution matrix of equation (2), if there exist a projection P and positive
constants k and α such that

|eL(x)Pe−1
L (σ(z))| ≤ ke⊖α(x, σ(z)),

z, x ∈ T, x ≥ σ(z),

|eL(x)(I − P )e−1
L (σ(z))| ≤ ke⊖α(σ(z), x),

z, x ∈ T, x ≤ σ(z),

then equation (2) satisfies exponential dichotomy on T, | · | is the Euclidean norm.

Lemma 2 (Bohner and Peterson, 2003): Suppose that ψ : T → R is strictly increasing,
T̃ := ψ(T) is a time scale. If g : T̃ → R, ψ∆(x) and g∆̃(ψ(x)) exist for x ∈ Tk, then

(g ◦ ψ)∆ = (g∆̃ ◦ ψ)ψ∆.

Lemma 3 (Bohner and Peterson, 2003): Suppose that ψ : T → R is strictly increasing,
T̃ := ψ(T) is a time scale. If f : T → R is rd-continuous, and ψ∆ is rd-continuous, then∫ d

c

f(z)ψ∆(z)∆z =

∫ ψ(d)

ψ(c)

f(ψ−1(z))∆̃z.

In the following sections, suppose that Y is a Banach space with the norm | · |,
BC(T,Y) is a set of all Y-valued bounded continuous functions.
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3 Pseudo almost periodicity in shifts δ±

Define the sets:

APS(T,Y)
= {ξ : T → Y, ξ is almost periodic in shifts δ±};
APS∆(T,Y)
= {ξ : T → Y, ξ is ∆−almost periodic in shifts δ±};
PAPS0(T,Y) = {ξ ∈ BC(T,Y) :

lim
X→+∞

1

(δX+ (x0)− δX− (x0))

∫ δX+ (x0)

δX− (x0)

|ξ(x)|∆x = 0}.

Definition 2: A function f : T → Y is called pseudo almost periodic in shifts δ±, if
f = f1 + f2, and f1 ∈ APS(T,Y), f2 ∈ PAPS0(T,Y). Let PAPS(T,Y) is the set of
all pseudo almost periodic functions in shifts δ±.

Now we study the existence of pseudo almost periodic solution in shifts δ± of
equation (1). We first consider the case of T is unbounded below and above, that is,
x ∈ (−∞,+∞)T.

Theorem 4: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ APS(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ APS∆(T,
Rn), φ2(x) ∈ PAPS0(T,Rn), then equation (1) exists exactly one solution y(x) ∈
PAPS(T,Rn), and

y(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (3)

Proof: Firstly, we prove that y(x) is a solution of equation (1). In fact,

y∆(x)− L(x)y(x)

= e∆L (x)

∫ x

−∞
Pe−1

L (σ(z))φ(z)∆z

+eL(σ(x))Pe
−1
L (σ(x))φ(x)

−e∆L (x)
∫ +∞

x

(I − P )e−1
L (σ(z))φ(z)∆z

+eL(σ(x))(I − P )e−1
L (σ(x))φ(x)

−L(x)eL(x)
∫ x

−∞
Pe−1

L (σ(z))φ(z)∆z

+L(x)eL(x)

∫ +∞

x

(I − P )e−1
L (σ(z))φ(z)∆z

= eL(σ(x))(P + I − P )e−1
L (σ(x))φ(x)

= φ(x).
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Next, we show that y(x) is pseudo almost periodic in shifts δ±.

y(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ(x)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(x)∆z

=

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ1(x)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ1(x)∆z

+

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ2(x)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ2(x)∆z.

Let y(x) = y1(x) + y2(x), y1(x) = ϕ1(x) + ϕ2(x), where

y1(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ1(x)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ1(x)∆z,

y2(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ2(x)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ2(x)∆z,

and

ϕ1(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ1(z)∆z,

ϕ2(x) =

∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ1(z)∆z.

By Lemma 3,

ϕ1(δ
q
±(x)) =

∫ δq±(x)

−∞
eL(δ

q
±(x))Pe

−1
L (σ(z))φ1(z)∆z

=

∫ x

−∞
eL(δ

q
±(x))Pe

−1
L (σ(δq±(z)))

φ1(δ
q
±(z))δ

∆q
± (z)∆z;

ϕ2(δ
q
±(x)) =

∫ +∞

δq±(x)

eL(δ
q
±(x))(I − P )e−1

L (σ(z))

φ1(z)∆z
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=

∫ +∞

x

eL(δ
q
±(x))(I − P )e−1

L (σ(δq±(z)))

φ1(δ
q
±(z))δ

∆q
± (z)∆z.

For q > 0 and ε > 0,

|ϕ1(δq±(x))− ϕ1(x)|

=

∣∣∣∣ ∫ x

−∞
eL(δ

q
±(x))Pe

−1
L (σ(δq±(z)))φ1(δ

q
±(z))δ

∆q
± (z)∆z

−
∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ1(z)∆z

∣∣∣∣
=

∣∣∣∣ ∫ x

−∞
eL(δ

q
±(x))Pe

−1
L (σ(δq±(z)))[φ1(δ

q
±(z))δ

∆q
± (z)

−φ1(z)]∆z +

∫ x

−∞
[eL(δ

q
±(x))Pe

−1
L (σ(δq±(z)))

−eL(x)Pe−1
L (σ(z))]φ1(z)∆z

∣∣∣∣
=

∣∣∣∣ ∫ x

−∞
eL(δ

q
±(x))Pe

−1
L (σ(δq±(z)))[φ1(δ

q
±(z))δ

∆q
± (z)

−φ1(z)]∆z
∣∣+ ∣∣∣∣( ∫ x−ε

−∞
+

∫ x

x−ε

)
[eL(δ

q
±(x))Pe

−1
L

(σ(δq±(z)))− eL(x)Pe
−1
L (σ(z))]φ1(z)∆z

∣∣,
and then,

|ϕ1(δq±(x))− ϕ1(x)|2

≤ 3

(∫ x

−∞
|eL(δq±(x))Pe−1

L (σ(δq±(z)))|

|φ1(δ
q
±(z))δ

∆q
± (z)− φ1(z)|∆z

)2

+3

(∫ x−ε

−∞
|eL(δq±(x))Pe−1

L (σ(δq±(z)))

−eL(x)Pe−1
L (σ(z))||φ1(z)|∆z

)2

+3

(∫ x

x−ε
|eL(δq±(x))Pe−1

L (σ(δq±(z)))

−eL(x)Pe−1
L (σ(z))||φ1(z)|∆z

)2

≤ 3k2
(∫ x

−∞
e⊖α(x, σ(z))|φ1(δ

q
±(z))δ

∆q
± (z)

−φ1(z)|∆z
)2
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+3ε2
(∫ x−ε

−∞
e⊖α

2
(x, σ(z))|φ1(z)|∆z

)2

+3ε2
(∫ x

x−ε
e⊖α

2
(x, σ(z))|φ1(z)|∆z

)2

.

Using Cauchy-Schwarz inequality,

|ϕ1(δq±(x))− ϕ1(x)|2

≤ 3k2
(∫ x

−∞
e⊖α(x, σ(z))∆z

)
×
(∫ x

−∞
e⊖α(x, σ(z))|φ1(δ

q
±(z))δ

∆q
± (z)− φ1(z)|2∆z

)
+3ε2

(∫ x−ε

−∞
e⊖α

2
(x, σ(z))∆z

)
(∫ x−ε

−∞
e⊖α

2
(x, σ(z))|φ1(z)|2∆z

)
+3ε2

(∫ x

x−ε
e⊖α

2
(x, σ(z))∆z

)
(∫ x

x−ε
e⊖α

2
(x, σ(z))|φ1(z)|2∆z

)
≤ 3k2ε2

(∫ x

−∞
e⊖α(x, σ(z))∆z

)2

+3ε2
(∫ x−ε

−∞
e⊖α

2
(x, σ(z))∆z

)2

φ̂1

+3ε2
(∫ x

x−ε
e⊖α

2
(x, σ(z))∆z

)2

φ̂1,

then, by Lemma 1 and Remark 1,

|ϕ1(δq±(x))− ϕ1(x)|2

≤ 3k2ε2

inf(⊖α)2
+

12φ̂1ε
2

inf(⊖α)2
+ 3φ̂1ε

4. (4)

Similarly, we can obtain

|ϕ2(δq±(x))− ϕ2(x)|2 ≤ 3k2ε2

α2
+

12φ̂1ε
2

α2
+ 3φ̂1ε

4, (5)

where φ̂1 = sup
x∈T

|φ1(x)|.

From equations (4) and (5), y1(x) is almost periodic in shifts δ±.
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On the other hand, equation (2) satisfies exponential dichotomy,

|y2(x)| =
∣∣∣∣ ∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ2(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ2(z)∆z

∣∣∣∣
≤ k

(∫ x

−∞
e⊖α(x, σ(z))|φ2(x)|∆z

+

∫ +∞

x

e⊖α(σ(z), x)|φ2(x)|∆z
)
,

then, by Remark 1,

1

(δX+ (x0)− δX− (x0))

∫ δX+ (x0)

δX− (x0)

|y2(x)|∆x

≤ k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ x

−∞
e⊖α(x, σ(z))|φ2(x)|∆z∆x

+
k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ +∞

x

e⊖α(σ(z), x)|φ2(x)|∆z∆x

≤ k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ x

−∞
(1 + µ(z)α) exp{−α(x− z)}

|φ2(x)|∆z∆x

+
k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ +∞

x

exp
{

−α
1 + µ(z)α

(σ(z)− x)

}
|φ2(x)|∆z∆x

≤ k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ x

−∞
(1 + µ̂α) exp{−α(x− z)}|φ2(x)|∆z∆x

+
k

(δX+ (x0)− δX− (x0))



Pseudo periodicity and pseudo almost periodicity in shifts δ± 331

∫ δX+ (x0)

δX− (x0)

∫ +∞

x

exp
{

−α
1 + µ̂α

(z − x)

}
|φ2(x)|∆z∆x

, y
(1)
2 (X) + y

(2)
2 (X),

where µ̂ = sup
z∈T

µ(z).

Now, we prove that lim
X→+∞

y
(1)
2 (X) = lim

X→+∞
y
(2)
2 (X) = 0. In fact,

0 ≤ lim
X→+∞

y
(1)
2 (X)

= lim
X→+∞

k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ x

−∞
(1 + µ̂α) exp{−α(x− z)}

|φ2(x)|∆z∆x

= lim
X→+∞

k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ +∞

0

(1 + µ̂α) exp{−αζ}|φ2(x)|∆ζ∆x

≤ (1 + µ̂α) lim
X→+∞

k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

∫ +∞

0

|φ2(x)|∆ζ∆x

= (1 + µ̂α)

∫ +∞

0

lim
X→+∞

k

(δX+ (x0)− δX− (x0))∫ δX+ (x0)

δX− (x0)

|φ2(x)|∆x∆ζ = 0,

that is lim
X→+∞

y
(1)
2 (X) = 0.

Similarly, we can obtain lim
X→+∞

y
(2)
2 (X) = 0. Hence, y2(x) ∈ PAPS0(T,Rn). This

completes the proof. �

Next we study the existence of v-pseudo almost periodic solution in shifts δ± of
equation (1).

Let U is a set of functions (weightz) v : T → (0,+∞), and

u(X, v) =

∫ δX+ (x0)

δX− (x0)

v(x)∆x,

U∞ = {v ∈ U : lim
X→+∞

u(X, v) = +∞},

UB =

{
v ∈ U∞ : v is bounded with inf

x∈T
v(x) > 0

}
,
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then UB ⊂ U∞ ⊂ U. For v ∈ U∞, set

PAPS0(T,Y, v) = {ξ ∈ BC(T,Y) :

lim
X→+∞

1

u(X, v)

∫ δX+ (x0)

δX− (x0)

|ξ(x)|v(x)∆x = 0}.

Definition 3: Let v ∈ U∞. A function f ∈ BC(T,Y) is called v-pseudo almost periodic
in shifts δ± or weighted pseudo almost periodic in shifts δ±, if f = f1 + f2, and
f1 ∈ APS(T,Y), f2 ∈ PAPS0(T,Y, v). Let PAPS(T,Y, v) is the set of all v-pseudo
almost periodic functions in shifts δ±.

Theorem 5: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ APS(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ APS∆(T,
Rn), φ2(x) ∈ PAPS0(T,Rn, v), then equation (1) exists exactly one solution y(x) ∈
PAPS(T, Rn, v), and

y(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (6)

Remark 2: Theorem 5 can be proved in a similar way as the proof of Theorem 4.

If the time scale T is bounded below, that is, x ∈ [x0,+∞)T, there are the following
results.

Theorem 6: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ APS(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ APS∆(T,
Rn), φ2(x) ∈ PAPS0(T,Rn), then equation (1) exists exactly one solution y(x) ∈
PAPS(T,Rn), and

y(x) =

∫ x

x0

eL(x)Pe
−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (7)

Theorem 7: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ APS(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ APS∆(T,
Rn), φ2(x) ∈ PAPS0(T,Rn, v), then equation (1) exists exactly one solution y(x) ∈
PAPS(T, Rn, v), and

y(x) =

∫ x

x0

eL(x)Pe
−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (8)
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4 Pseudo periodicity in shifts δ±

Define the sets:

PS(T,Y) = {ξ : T → Y, ξ is periodic in shifts δ±};
PS∆(T,Y)
= {ξ : T → Y, ξ is ∆−periodic in shifts δ±};
PPS0(T,Y) = {ξ ∈ BC(T,Y) :

lim
X→+∞

1

(δX+ (x0)− δX− (x0))

∫ δX+ (x0)

δX− (x0)

|ξ(x)|∆x = 0}.

Definition 4: A function f : T → Y is called pseudo periodic in shifts δ±, if f =
f1 + f2, and f1 ∈ PS(T,Y), f2 ∈ PPS0(T,Y). Let PPS(T,Y) is the set of all pseudo
periodic functions in shifts δ±.

Now we study the existence of pseudo periodic solution in shifts δ± of equation (1). We
first consider the case of T is unbounded below and above, that is, x ∈ (−∞,+∞)T.

Theorem 8: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ PS∆(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ PS∆(T,Rn),
φ2(x) ∈ PPS0(T,Rn), then equation (1) exists exactly one solution y(x) ∈
PPS(T,Rn), and

y(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (9)

Proof: From the proof of Theorem 4, y(x) is a solution of equation (1).

Let y(x) = y1(x) + y2(x), where y1(x), y2(x) have been defined in Section 3.
Since y1(x) is a solution of

y∆(x) = L(x)y(x) + φ1(x), (10)

then y1(δβ±(x)) is also a solution of equation (10). In fact, δβ±(x) is strictly increasing,
let γ = δβ±(x), by Lemma 2,

y∆1 (δβ±(x)) = y∆1 (γ)γ∆

= L(δβ±(x))y1(δ
β
±(x))δ

∆β
± (x)

+ φ1(δ
β
±(x))δ

∆β
± (x)

= L(x)y1(δ
β
±(x)) + φ1(x).

Besides, equation (2) satisfies exponential dichotomy, then y1(x) = y1(δ
β
±(x)), that is,

y1(x) is periodic in shifts δ±.
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Similar to the proof of Theorem 4, we can get y2(x) ∈ PPS0(T,Rn). This
completes the proof. �

Next we study the existence of v-pseudo periodic solution in shifts δ± of equation (1).
For v ∈ U∞, set

PPS0(T,Y, v) = {ξ ∈ BC(T,Y) :

lim
X→+∞

1

u(X, v)

∫ δX+ (x0)

δX− (x0)

|ξ(x)|v(x)∆x = 0}.

Definition 5: Let v ∈ U∞. A function f ∈ BC(T,Y) is called v-pseudo periodic in
shifts δ± or weighted pseudo periodic in shifts δ±, if f = f1 + f2, and f1 ∈ PS(T,Y),
f2 ∈ PPS0(T,Y, v). Let PPS(T,Y, v) is the set of all v-pseudo periodic functions in
shifts δ±.

Theorem 9: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ PS∆(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ PS∆(T,Rn),
φ2(x) ∈ PPS0(T,Rn, v), then equation (1) exists exactly one solution y(x) ∈
PPS(T,Rn, v), and

y(x) =

∫ x

−∞
eL(x)Pe

−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (11)

Remark 3: Theorem 9 can be proved in a similar way as the proof of Theorem 8.

If the time scale T is bounded below, that is, x ∈ [x0,+∞)T, there are the following
results.

Theorem 10: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ PS∆(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ PS∆(T,Rn),
φ2(x) ∈ PPS0(T,Rn), then equation (1) exists exactly one solution y(x) ∈
PPS(T,Rn), and

y(x) =

∫ x

x0

eL(x)Pe
−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (12)

Theorem 11: Suppose that µ(x) is bounded on T, equation (2) satisfies exponential
dichotomy, L(x) ∈ PS∆(T,Rn×n), φ(x) = φ1(x) + φ2(x), and φ1(x) ∈ PS∆(T,Rn),
φ2(x) ∈ PPS0(T,Rn, v), then equation (1) exists exactly one solution y(x) ∈
PPS(T,Rn, v), and

y(x) =

∫ x

x0

eL(x)Pe
−1
L (σ(z))φ(z)∆z

−
∫ +∞

x

eL(x)(I − P )e−1
L (σ(z))φ(z)∆z. (13)
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5 Applications

Consider the following delayed dynamic equation

y∆(x) = −l(x)y(x)

+ h(x)

∫ +∞

x0

k(z)d(y(δz−(x)))∆z

+ η(x), x0, x ∈ T. (14)

Suppose that l(x) ∈ APS(T,R), h(x) ∈ APS∆(T,R), and η(x) = η1(x) + η2(x),
where η1(x) ∈ APS∆(T,R) and η2(x) ∈ PAPS0(T,R).

Let θ̂ = sup
x∈[x0,+∞)T

|θ(x)|, θ̃ = inf
x∈[x0,+∞)T

|θ(x)|.

We first give some assumptions:

H1 l̃ > 0.

H2 d ∈ C(R,R), d(0) = 0 and |d(y1)− d(y2)| ≤ Ld|y1 − y2|, where Ld > 0 is the
Lipschitz constant.

H3 δ∆ς

+ (·, ς) is bounded, and 0 < δ∆ς

+ (·, ς) ≤ ϱ, where ϱ > 0 is a constant.

If H1–H3 hold, and ξ ∈ PAPS(T,R), then
∫ +∞
x0

k(z)d(ξ(δz−(x)))∆z is pseudo almost
periodic in shifts δ±.

Using the Banach fixed point theorem, we can obtain the following theorem.

Theorem 12: Suppose that H1–H3 hold, and λ = ĥLd

l̃
< 1, then equation (14) exists

exactly one solution y(x) ∈ PAPS(T,R).

Example 1: Let T = R, then µ(x) = 0.

Choose x0 = 0, y(δz−(x)) = y(x− z), and

l(x) =
1

2
− 1

4
cos(x), h(x) = sin(

√
2x),

η(x) = cos(
√
3x)− 1

1 + x2
,

k(z) = e−2z, d(y) =
1

11
(|y + 1| − |y − 1|).

According to Theorem 12, equation (14) exists exactly one solution y(x) ∈
PAPS(T,R).

Next we consider the following delayed dynamic equation

y∆(x) = −l(x)y(x) + h(x)d(y(δz−(x)))

+ η(x), x0, x ∈ T. (15)

Suppose that l(x) ∈ PS∆(T,R), h(x) = b1(x) + b2(x), and η(x) = η1(x) + η2(x),
where b1(x), η1(x) ∈ PS∆(T,R) and b2(x), η2(x) ∈ PPS0(T,R).
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Figure 1 Numerical solutions of equation (14) (Example 1) with the initial values
y(0) = {0.5, 1, 1.5} (see online version for colours)

Figure 2 Numerical solutions of equation (15) (Example 2) with the initial values
y(0) = {0.1, 0.3, 0.5} (see online version for colours)

Similarly to the proof of Theorem 12, we can obtain the following result.

Theorem 13: Suppose that H1–H3 hold, l(x) ∈ PS∆(T,R), and λ = ĥLd

l̃
< 1, then

equation (15) exists exactly one solution y(x) ∈ PPS(T,R).
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Example 2: Let T =
∪
k∈Z[2k, 2k + 1], then µ(x) = 0 if x ∈

∪
k∈Z[2k, 2k + 1), and

µ(x) = 1 if x ∈
∪
k∈Z{2k + 1}.

Choose x0 = 0, δz−(x) = x− z, z = 2, and

l(x) =
1

2
− 1

4
sinπx, h(x) = sinπx− 1

1 + x2
,

η(x) = cosπx+
1

1 + x2
,

d(y) =
1

11
(|y + 1| − |y − 1|).

According to Theorem 13, equation (15) exists exactly one solution y(x) ∈ PPS(T,R).
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