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Abstract: Let A = (S,A, δ) be an n-state automaton over m input letters. The merging graph
of A is the simple undirected graph G = (S,E) of which the edge set E consists of all binary
mergable sets of A . The automaton A is said to be matching if E is a matching of the state
set S. The matchingness of A can be decided in O(nm) times. If A is a matching automaton,
then the rank of A is n/2 and, for any integer r with n/2 ≤ r ≤ n, an r-rank input word
of A having length at most

∑n−r
i=0 i can be computed in O(n2 + nm) times. This illustrates

that Pin conjecture (and hence rank conjecture) is true for matching automata. Furthermore,
it is shown that the tight bound for the lengths of the shortest r-rank input words of n-state
matching automata is

∑n−r
i=0 i.
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1 Introduction

Automaton is the simplest computational model served as
the mathematical model of many discrete control systems
such as computers and relay control systems. An automaton
consists of a state set, an input alphabet and a state
transition function that corresponds to the set of states,
the set of input orders and the state transition rule of
a discrete control system, respectively, The input words
of an automaton are the finite sequences of input letters
corresponding to the input order sequences of a discrete
control system.

Synchronising automaton is a class of special automata
raised from the consideration on the following typical

problem in control theory (Ashby, 1956): how can we
restore control over such a device if we do not know its
current state but can observe outputs produced by the device
under various actions? An automaton is synchronising if
it has a synchronising word (i.e., an input word that
can transition all states to the same state). Clearly, the
synchronising words are helpful with restoreing control
over the devices that can be described as a synchronising
automaton. Synchronising automata were invented by Černý
(Černý, 1964) in 1964, and re-invented several times by
the researchers from different categories such as electronics,
industrial automation and robotics. Since 1990s, due to
the significant applications of synchronising automata
in robotics (Eppstein, 1990), part handling problem
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in industrial automation (Ashby, 1956), communication
(Burgin et al., 2001; Jürgensen, 2008), biocomputing
(Benenson et al., 2001; Benenson, 2003), multiple valued
logic and symbolic dynamics (Hrishnaswamy et al., 2008;
Salomaa, 2012), many researches had been involved in
the study on synchronising automata. The main works are
revolved around the following Černý conjecture raised by
Černý (Černý, 1964) in 1964: every n-state synchronising
automaton has a synchronising word of length not
exceeding (n− 1)2. Till now, this conjecture is still open
except for some special cases (Almeida et al., 2009; Cui
et al., 2019, 2023; de Bondt et al., 2020; Dubuc, 1998;
Eppstein, 1990; He et al., 2021; Kari, 2003; Pin, 1983;
Steinberg, 2011; Trahtman, 2007; Volkov, 2009, 2008),
and it has become the longest-standing open problem in
combinatorial theory on automata.

To consider the problem of restoring control over the
devices that can not be described as a synchronising
automaton, the notion rank for input words as well as
automata were advised and investigated. An input word w
of an automaton is r-rank if the states can be partitioned
into r classes such that w is capable to transition the
states in the same class to the same states. An automaton
is r-rank if r is the minimum rank of its input words.
Then the synchronising words are exactly the 1-rank input
words, while synchronising automata are exactly the 1-rank
automata. As a generalisation of Černý conjecture, Pin
raised the following Pin conjecture in 1978: if an n-state
automaton has an r-rank input word, then it has an r-rank
input word of length not exceeding (n− r)2. Pin conjecture
was confirmed for many cases (Ananichev and Volkov,
2004, 2005; Imreh and Steinby, 1964; Pin, 1978a,b), but
negated by Kari (2001) for the case that n− r = 4. The
restriction of Pin conjecture on the input words having the
minimum rank (which are called the terminal input words)
is named by rank conjecture (Almeida and Steinberg, 2009;
Rystsov, 1992). This restricted conjecture has neither been
proved nor disproved.

The aim of this paper is to introduce matching automata
and confirm Pin conjecture (and hence rank conjecture) for
matching automata. The needed terminologies and notations
are explained in Section 2. The definition and the decision
algorithm of matching automata are given in Section 3.
In Section 4, Pin conjecture is confirmed for matching
automata. The tight bound for the lengths of the shortest
r-rank input words of matching automata are determined in
Section 5. The last section consists of a brief summary and
some discussions.

2 Preliminaries

2.1 The matchings of sets

The cardinality of a set X is denoted by |X|. The Cartesian
product of two sets X and Y is denoted by X × Y , i.e.,

X × Y = {(x, y) : x ∈ X, y ∈ Y } .

A partition of a set X is a family {Xi : i ∈ I} of pairwise
disjoint non-empty subsets of X satisfying the condition
that X =

∪
i∈I Xi. Every subset in a partition of X is

called a class. A matching of a set X is a partition of X in
which every class is a binary subset of X .

A simple undirected graph is an ordered pair of the form
G = (V,E) in which V is a finite set called the vertex set,
and E is a family of binary subsets of V called the edge
set. The members of V and E are called the vertices and
the edges of G, respectively. The simple undirected graph
G = (V,E) is called a complete graph if E consists of all
binary subsets of V , and it is called a 1-regular graph if E
is a matching of V .

2.2 Words and free monoids

Given an alphabet A. The finite sequences over A are
called words. The empty sequence is called the empty
word and denoted by ϵ. A non-empty word a1, a2, . . . , an
is usually written as a1a2 · · · an. The length of a word
w is denoted by ℓ(w). The concatenation wu of a word
w = a1a2 · · · an by a word u = b1b2 · · · bm is the word
a1a2 · · · anb1b2 · · · bm. Then

ℓ(wu) = ℓ(w) + ℓ(u).

The set of all words over the alphabet A is denoted by A∗.
The algebraic structure of the set A∗ with respected to the
concatenation operation is called the free monoid over A.
A word u is a factor of a word w if there exist two words
v and v′ such that w = vuv′. Specially, a word u is a left
factor of a word w if there exists some word v′ such that
w = uv′.

2.3 Automata

An automaton is a triad of the form A = (S,A, δ) in which
S is a finite set called the state set, A is an alphabet called
the input alphabet, and δ is a function from S ×A to S
called the state transition function. The elements of S and
A are called the states and the input letters of the automaton
A , respectively. The words over A are called the input
words of A .

Let A = (S,A, δ) be an automaton. For any state s and
any input letter a of A , the image δ(s, a) of the ordered
pair (s, a) under the state transition function δ is called the
action of a on s, and simply denoted by sa, i.e.,

sa = δ(s, a).

If sa = t, then it is said that the input letter a transitions
the state s to the state t. The action of an input word w on
a state s is inductively defined as below:

sw =


s

if w is the empty word ϵ,
(sa1a2 · · · an−1)an

if w = a1a2 · · · an is a non-empty word.
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If sw = t, then it is said that the input word w transitions
the state s to the state t. Clearly, for any state s and any
input words w, u of A , we have

(sw)u = s(wu).

The state transition graph of the automaton A is a labelled
digraph having vertex set S and labelling set A that has an
edge (s, a, t) from the state s to the state t with label a if
and only if a is an input letter that transitions s to t. The
sketched state transition graph of A is the digraph obtained
by removing all loops from the state transition graph of A .

2.4 Synchronising automata

Let A = (S,A, δ) be an automaton. As a generalisation of
the action of an input word on a state, define the action Tw
of an input word w of A on a set T of states of A as
follows:

Tw = {tw : t ∈ T}.

The word w is called a synchronising word of T if
w transitions all states in T to the same state. The
sets of states having synchronising words are called
synchronisable sets (Salomaa, 2012). The automaton
A is said to be synchronising if its state set S is
synchronisable. In this case, the synchronising words of
S is called the synchronising words of A . The following
simplified application example of synchronising automata
is introduced by Volkov (2009).

Example 2.1 (Volkov, 2009): Suppose that a certain device
has a polygonal part. Such parts arrive at manufacturing
sites in boxes and they need to be sorted and oriented before
assembly.

Figure 1 Four possible orientations called 0, 1, 2, 3,
respectively

HIGH,low
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For simplicity, assume that only four initial orientations of
the part shown in Figure 1 are possible. Further, suppose
that prior the assembly the part should take the “bump-left”
orientation. Thus one has to construct an orienter that will
put the part in the prescribed position independently of
its initial orientation. This goal can be achieved in the
following sensor-free scheme. We put parts to be oriented
on a conveyer belt which takes them to the assembly point
(assume that the belt is moving from left to right), and
let the stream of the parts encounter a series of obstacles
a and b placed along the belt in the order abbbabbba. A
obstacle b should be high enough in order that any part on
the belt encounters this obstacle by its rightmost low angle.
Being curried by the belt, the part then is forced to turn
90◦ clockwise. A obstacle a has the same effect whenever

the part is in the orientation 0; otherwise it does not touch
the part which therefore passes by without changing the
orientation. The scheme can be described as an automaton
C4 = (S,A, δ) in which S = {0, 1, 3, 2}, A = {a, b}, and
the state transition function δ is defined as below:

δ(0, b) = 1, δ(1, b) = 2, δ(2, b) = 3, δ(3, b) = 0,

δ(0, a) = 1, δ(1, a) = 1, δ(2, a) = 2, δ(3, a) = 3.

The state transition graph of the automaton C4 is given as
in Figure 2.

Figure 2 The actions of the obstacles
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It is a routine matter to check that, under the actions of the
obstacles, the parts can always be oriented to the orientation
1 when they are taken to the assembly. In other words,
the input word ab3ab3a is a synchronising word of the
automaton C4 that transitions all states to the state 1. The
synchronising automaton C4 was originally invented by
Černý (1964), and it is currently known as the 4-state Černý
automaton.

2.5 The rank and the terminal words of an automaton

Let A = (S,A, δ) be an automaton. Define the anti-action
Tw−1 of an input word w of A on a set T of states of A
as below:

Tw−1 = {s ∈ S : sw ∈ T}.

For an arbitrary state t of A , we write tw−1 rather than
{t}w−1. Of course, the set tw−1 is non-empty if and only
if t ∈ Sw. Moreover, when it is non-empty, the set tw−1 is
maximal in the sets of states having synchronising word w.
Let

S/w =
{
tw−1 : t ∈ Sw

}
. (1)

Then S/w is a partition of the state set S such that two
states are contained in the same class precisely when w
transitions them to the same state. Evidently, the number
of the classes in the partition S/w of S coincides with the
cardinality of the set Sw. The rank r(w) of the input word
w is defined by the cardinality of the set Sw, i.e,.

r(w) = |Sw| = |S/w|.

An input word w of the automaton A is said to be r-rank
if r(w) ≤ r, and it is called exactly r-rank if r(w) = r.
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The input words of A having the minimum rank are called
the terminal words, while the rank of the terminal words is
called the rank of A , in notation r (A ). Then

r (A ) = min
w∈A∗

r(w).

Clearly, an automaton is synchronising if and only if
it is 1-rank, and the terminal words of a synchronising
automaton are exactly the synchronising words.

3 The definition and decision of matching automata

This section is begun with defining matching automata.
After some important properties of matching automata are
revealed, a decision algorithm for matching automata is
established.

Let A = (S,A, δ) be an automaton. According to
the definition of synchronisable sets, every one-element
subset of the state set of A is synchronisable. To avoid
the unnecessary discussions, the synchronisable sets of
A containing at least two states are specially called
mergable sets. Correspondingly, the synchronising words
of a mergable set of A are specially called the merging
words. Then the states in a mergable set can be merged to
a single state under the action of a merging word. An input
letter a of the automaton A is called a defective letter if
its anti-action ta−1 on some state t contains at least two
states (He et al., 2021). If this is the case, the set ta−1

is called a defected set of A . The following lemma gives
an elementary description for the binary mergable sets of
automata.

Lemma 3.1: A binary set ε of states of an automaton A
is mergable if and only if there exists an input word w of
A such that εw is a binary set included in a defective set
of A . Moreover, if this is the case, the concatenation wa
of the input word w and some defective letter a of A is a
shortest merging word of ε, and εw is a binary mergable
set included in a defective set of the form ta−1.

Proof: Let ε be a binary set of states of A . If w is an
input word of A such that εw is a binary set included in
a defective set ta−1, then ε(wa) = (εw)a = t, and thus
ε is mergable. Conversely, if ε is mergable, then it has
a shortest word say a1a2 · · · an. Let w = a1a2 · · · an−1

and t = εa1a2 · · · an. It is certain that εw is a binary
set since, otherwise, w is a merging word of ε shorter
than a1a2 · · · an. Moreover, it follows by the equality
(εw)an = ε(wan) = t that εw is a binary mergable set
included in the defective set ta−1

n−1. This completes the
proof. �

The merging graph of an automaton A = (S,A, δ) is
defined by the simple undirected graph GA = (S,EA )
in which EA is the family of all binary mergable sets
of A . The automaton A is called a matching automaton
if GA is a 1-regular graph or, alternatively, if EA is a
matching of the state set S. If A is matching, it is evident

that |EA | = |S|/2; furthermore, Lemma 3.2 shows that the
anti-action of an input word on an edge is also an edge,
and the action of an input word on an edge is either an
edge or a single state.

Lemma 3.2: Let A = (S,A, δ) be a matching automaton
with EA = {ε1, ε2, . . . , εk}, and w an input word of
A . Then there exists a permutation σ on the set k =
{1, 2, . . . , k} such that

εiw
−1 = εσ(i), εiw ⊆ εσ−1(i) (i ∈ k).

Proof: Under the hypothesis, EA is a matching of the state
set S. Furthermore, it is easy to illustrate that the sets
ε1w

−1, ε2w
−1, . . . , εkw

−1 are pairwise disjoint such that

∪
i∈k

εiw
−1 =

(∪
i∈k

εi

)
w−1 = Sw−1 = S, (2)

and thus∑
i∈k

∣∣εiw−1
∣∣ = |S| = 2k. (3)

Take an arbitrary edge ε from EA . Then every binary
subset of the set εw−1 has to be an edge since, for any
merging word u of ε, we have∣∣(εw−1

)
wu
∣∣ ≤ |εu| = 1.

In fact, the set εw−1 is the only binary subset of itself.
Otherwise, it contains at least three pairwise distinct states
say s, t, t′. This induces the contradiction that the matching
EA of the state set S contains both of the binary sets {s, t}
and {s, t′}. Now, it is reasonable to claim that |εw−1| ≤ 2
for any ε ∈ EA , and therefore

k∑
i=0

∣∣εiw−1
∣∣ ≤ 2k. (4)

Applying equality (3) and inequality (4), we can get the
following equalities:∣∣ε1w−1

∣∣ = ∣∣ε2w−1
∣∣ = . . . =

∣∣εkw−1
∣∣ = 2.

This means that

EA =
{
ε1w

−1, ε2w
−1, . . . , εkw

−1
}
,

and hence there exists a permutation σ on the set k
such that the equality εiw

−1 = εσ(i) holds for each
i ∈ k. Furthermore, εiw ⊆ εσ−1(i) follows since εi =
εσ−1(i)w

−1. �

For a family Ω of subsets of the state set of an automaton
A = (S,A, δ), define the action Ωw and the anti-action
Ωw−1 of an input word w of A on Ω as below:

Ωw = {εw : ε ∈ Ω}, Ωw−1 = {εw−1 : ε ∈ Ω}.
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More general, define the action ΩL and the anti-action
ΩL−1 of a set L of input words of A on Ω as below:

ΩL =
∪
w∈L

Ωw, ΩL−1 =
∪
w∈L

Ωw−1.

The following lemma gives a characterisation for matching
automata.

Lemma 3.3: Let A = (S,A, δ) be an automaton, and Ω the
family of all defected sets of A . Then A is a matching
automaton if and only if Ω(A∗)

−1 is a matching of S.
Moreover, if this is the case, EA = Ω(A∗)

−1.

Proof: Let A = (S,A, δ) be an automaton, and Ω the
family of all defected sets of A . Then

Ω =
{
ta−1 : t ∈ S, a ∈ A and |ta−1| ≥ 2

}
. (5)

Moreover, it is evident that

Ω = Ωϵ−1 ⊆ Ω(A∗)
−1

. (6)

Suppose that Ω(A∗)
−1 is a matching of S. Then the sets in

Ω(A∗)
−1 are binary, so that the sets in Ω are binary. If ε

is a set in Ω(A∗)
−1, then ε = (ta−1)w−1 for some t ∈ S,

a ∈ A and w ∈ A∗, so that ε(wa) = t, and hence ε ∈ EA .
This means that

Ω (A∗)
−1 ⊆ EA . (7)

If ε ∈ EA , then it follows by Lemma 3.1 that there exists
an input word w of A such that εw is a binary set included
in some set ta−1 in Ω. Since the sets in Ω are binary, this
implies that εw = ta−1 ∈ Ω, so that (εw)w−1 ∈ Ω(A∗)

−1.
Furthermore, since ε ⊆ (εw)w−1 and the sets in Ω (A∗)

−1

are binary, we have (εw)w−1 = ε, so that ε ∈ Ω(A∗)
−1.

This means that

EA ⊆ Ω (A∗)
−1

, (8)

so that EA = Ω(A∗)
−1, and hence A is a matching

automaton.
For the converse, suppose that A is a matching

automaton. Since every edge in EA is a binary mergable
set, we can see by Lemma 3.1 that the family Ω is
non-empty. If a set ε in Ω contains three distinct states
say s, t, p, then both of {s, t} and {s, p} are edges in
EA . This contradicts to the assumption that A is a
matching automaton, and thus the sets in Ω are all binary.
Consequently, the family Ω is a subset of EA , and then
it follows by Lemma 3.2 that formula (7) holds. Take
an arbitrary edge ε from EA . Since the sets in Ω are
binary, we can see by Lemma 3.1 that there exists an input
word w such that εw ∈ Ω, so that (εw)w−1 ∈ Ω(A∗)

−1.
Furthermore, applying formula (7) and Lemma 3.2, we
can easily illustrate that ε = (εw)w−1. This means that
formula (8) holds also, so that EA = Ω(A∗)

−1, and hence
the family Ω(A∗)

−1 is a matching of S. �

By the above lemma, it is enough to decide the
matchingness of an automaton A = (S,A, δ) by two steps:
the first step is to compute the family Ω(A∗)

−1 of subsets
of S, the second one is to check whether the family
Ω (A∗)

−1 is a matching of S. In fact, the above two steps
can be combined. The details are given in the following
theorem.

Theorem 3.4: Algorithm 1 can decide the matchingness of
an n-state automaton A = (S,A, δ) over m input letters in
O (nm) times.

Proof: Let Ω be the family of all defected sets of A . Put
X0 = Z0 = Ω and define

Xi =
∪

w∈A∗,ℓ(w)≤i

Ωw−1,

Zi = Xi −Xi−1 (i = 1, 2, 3, . . .).

Then it is certain that

Ω(A∗)
−1

=
∪
i≥0

Xi. (9)

Moreover, it is routine to check that

i∪
j=0

Zj = Xi ⊆ Xi+1

= X0

∪(
XiA

−1
)

(i = 0, 1, 2, . . .).

(10)

so that

ZjA
−1 ⊆ XjA

−1 ⊆ Xj+1 ⊆ Xi (0 ≤ j < i),

and hence

Zi =
[
X0

∪(
Xi−1A

−1
)]

−Xi−1

=
i−1∪
j=0

ZjA
−1 −Xi−1

= Zi−1A
−1 −Xi−1 (i = 1, 2, . . .).

For any non-negative integer i, it is certain that Xi = Xi+1

if and only if Zi+1 = ∅. If this is the case, we can easily
see by formula (10) that

Xi = Xi+1 = . . . , ∅ = Zi = Zi+1 = . . . ,

And then Xi = Ω(A∗)
−1 follows equality (9). Therefore,

in the case that Ω ̸= ∅, there exists the minimum
non-negative integer say k such that

Zk ̸= ∅, Zk+1 = Zk+2 = . . . = ∅,
X0  X1  . . .  Xk = Xk+1 = . . . = Ω(A∗)

−1
.

By Lemma 3.3, the automaton A is matching if and only
if the following statements are true:
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1 n is an even number

2 the family Z0 is non-empty and its members are
pairwise disjoint binary sets

3 for each positive integer i, if Zi ̸= ∅, then the
members of Zi are binary sets which are not only
pairwise disjoint but also disjoint to the members of
Xi−1

4 if k is the minimum integer such that Zk = ∅, then
|Xk| = n/2.

Algorithm 1 Deciding the matchingness of an automaton

Input: an n-state automaton A = (S,A, δ) over m input
letters
Output: a string W and a set X
Initialise W = NO, X = {}.
1: If n is odd, return; otherwise, continue.
2: Initialise Y = S and Z = {}.
3: Consider the sets of the form sa−1 (s ∈ Y, a ∈ A) in the

following rules [(a)–(d)]:
(a) if |sa−1| = 1, skip;
(b) if sa−1 is a binary set whose members are unlabelled,

then label its members for each other, and add sa−1

into Z;
(c) if sa−1 is a binary set whose members are labelled

for each other, skip;
(d) otherwise, return.

4: If Z = {}, return; otherwise, continue.
5: Put X = X

∪
Z, Y = Z, Z = {}.

6: Consider the sets of the form εa−1 (ε ∈ Y, a ∈ A) in the
following rules [(e)–(g)]:
(e) if εa−1 is a binary set whose members are unlabelled,

then label its members for each other, and add εa−1

into Z;
(f) if εa−1 is a binary set whose members are labelled

for each other, skip;
(g) otherwise, Return.

7: Consider the sets Z and X in the following rules [(h)–(j)]:
(h) if Z ̸= {} and |X|+ |Z| < n̂, turn to the step 5;
(i) if Z = {} and |X| ̸= n̂, return;
(j) if Z = {} and |X| = n̂, let W=YES, return.

Beginning with Z0 and ending with the first integer
say m such that Zk = ∅, Algorithm 1 computes the
pairs (X0, Z0), (X1, Z1), . . . one by one, and decides the
matchingness of A in rules 1–4. In the process, to
avoid the troublesome comparisons, the members of every
new member in the families Zi’s are labelled for each
other. Steps 3 and 4 of Algorithm 1 are aimed to check
statement 2 which take O(nm) times. Steps 5–7 are
designed to check statements 3 and 4. Since

∑
|Zi| ≤ n/2,

these steps take times at most O(nm). Therefore the time
complexity of Algorithm 1 is O(nm). �

4 The r-rank input words of matching automata

For any non-negative integers n and r with r ≤ n, let

M(n, r) =
n−r∑
i=0

i.

The following theorem is the main result of this section. It
illustrates that Pin conjecture (and hence rank conjecture) is
true for matching automata since

M(n, r) =
(n− r)2 + (n− r)

2
≤ (n− r)2.

Theorem 4.1: Let A = (S,A, δ) be an n-state matching
automaton, and r a non-negative integer not exceeding n.
Then A is of rank n/2, and it has an r-rank input word
if and only if r ≥ n/2. Moreover, if A has an r-rank
input word, then it has an r-rank input word of length not
exceeding M(n, r).

Proof: Under the hypothesis, the edge set EA of the
merging graph GA of A is a matching of the state set S
of A , and hence it consists of n/2 edges. Suppose that

EA = {{si, ti} : i = 1, 2, . . . , n/2} .

For any terminal word w of A , it follows by Lemma 3.2
that

r(w) = |Sw| ≥ |{siw : i = 1, 2, . . . , n/2}| = n/2.

If r(w) > n/2, then the set Sw includes some edge εi in
EA , so that |Sw| > |Swwi|. This induces a contradiction
since r(w) = minu∈A∗ r(u). Therefore r (A ) = r (w) =
n/2, and hence A has an r-rank input word if and only if
r ≥ n/2.

Take a shortest merging word wε for each edge ε ∈ EA ,
and let

m = max {ℓ(wε) : ε ∈ EA } .

Then m = ℓ(wϱ) for some ϱ ∈ EA . For any positive
integer k less than m, suppose that wϱ = uv in which u
is the left factor of wϱ having length m− k. It follows by
Lemma 3.2 that ϱu = ε for some ε ∈ EA . Moreover, it is
easy to check that the words uwε and v are merging words
of the edges ϱ and ε, respectively, so that

ℓ(wϱ) ≤ ℓ(uwε) = ℓ(u) + ℓ(wε),

ℓ(wε) ≤ ℓ(v) = ℓ(wϱ)− ℓ(u),

and hence

ℓ(wε) = ℓ(wϱ)− ℓ(u) = k.

Consequently, we have

{ℓ(wε) : ε ∈ EA } = {1, 2, . . . ,m}
⊆ {1, 2, . . . , n/2}.

(11)
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Figure 3 The sketched transition graph of the automaton Mn

Figure 4 The sketched transition graph of the automaton A

Put X0 = EA and u0 = ϵ. For each positive integer i,
unless Xi−1 = ∅, take an edge εi from Xi−1 in the rule
that

ℓ (wεi) = min
ε∈Xi−1

ℓ(wε),

and define

Xi = X0

∩
Xi−1wεi , ui = wε1wε2 . . . wεi .

Then Xd = ∅ for some positive integer d not exceed n/2
since it is evident that

|X0| > |X1| > |X2| > . . . . (12)

For each i = 0, 1, . . . , d, it is a routine matter to illustrate
by Lemma 3.2 that ui is a merging word of an edge ε if
and only if εui ̸∈ Xi, so that

r(ui) = |Sui| = n/2 + |Xi|. (13)

Clearly, u0 is an n-rank input word of A with length
0 = M(n, n). Since A has at least one edge that is a
defected set, the word u1 is certainly a defective letter of
A , and hence it is an (n− 1)-rank input word of A with
length 1 = M(n, n− 1). Inductively assume that ui is a
(r + 1)-rank input word of A having length not exceed
M(n, r + 1). In the case that r (ui) < r + 1, it is certain
that ui is also a r-rank input word of A having length

ℓ (ui) ≤ M(n, r + 1) < M(n, r).

In the case that r (ui) = r + 1, it follows by inequality (12)
and equality (13) that ui+1 is an r-input word of A .
Moreover, by equality (13), we can see that

|Xi| = r (ui)− k = r + 1− k.

This implies by formula (11) that

ℓ
(
wεi+1

)
= min

ε∈Xi

ℓ(wε) ≤ k − (r + 1− k) + 1 = n− r,

so that

ℓ (ui+1) = ℓ (u1) + ℓ
(
wεi+1

)
≤ M(n, r + 1) + (n− r) = M(n, r).

This completes the proof. �

Remark 4.2: Algorithm 1 can be extended as follows:

1 if ε is a binary defected set of A obtained as the set
sa−1 for some s ∈ S and a ∈ A, then associate ε
with the letter wε = a and the integer iε = 1

2 if ε is an edge of EA obtained as the set ε′a−1 for
some ε′ ∈ Y and a ∈ A, then associate ε with the
word wε = wε′a and the integer iε = iε′ + 1.

When A is matching, for any ε ∈ EA , it is evident that wε

is a shortest merging words of ε with ℓ(wε) = iε. Following
from formula (11), we can see that

∑
ε∈EA

iε ≤
n/2∑
i=1

i =
n2 + 2n

8
.
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Therefore, the extend Algorithm 1 is of time complexity
O
(
nm+ n2

)
.

Corollary 4.3: Given an n-state automaton A = (S,A, δ)
over m input letters. When A is matching, Algorithm 2
is available to compute an r-rank input word of A in
O(nm+ n2) times such that the found word has length at
most M(n, r).

Algorithm 2 Computing an r-rank input word of a matching
automaton

Input: an n-state automaton A = (S,A, δ) over m input
letters and an integer r.
Output: a special symbol or an r-rank input word u of A .
Initialise u = △.
1: perform the extended Algorithm 1, if A is not matching,

return; otherwise, continue.
2: if r < n/2, return; otherwise, continue.
3: let X = EA and u = ϵ.
4: find the edge ε such that iε = min{iε′ : ε′ ∈ X} and put

u = uwε.
5: compute the set X = {ε′wε : ε′ ∈ X and |ε′wε| = 2}.
6: if |X| > n− r, turn to the step 4; otherwise, return.

Proof: It follows from the proof of Theorem 4.1 that
Algorithm 2 is available to compute an r-rank input word
of A which has length at most M(n, r). As pointed out
in Remark 4.2, the step 2 may takes O

(
nm+ n2

)
times.

Since A has n/2 edges, and the number of the edges in X
is strictly decreasing, to perform the step 4 in all possible
loops needs O

(
n2
)
times. Furthermore, since the output

word u is of length O
(
n2
)
, to perform the step 5 in all

possible loops also needs O
(
n2
)
times. Hence the time

complexity of Algorithm 2 is O(nm+ n2).

Remark 4.4: Essentially, Algorithm 2 was invented by Pin
(1983). In general, the r-rank input word of a matching
automaton obtained by performing Algorithm 2 is not the
shortest one. For example, let A1 be an automaton having
the sketched transition graph given in Figure 3.

Then A1 has a unique defective letter a and two
defected sets {s0, s′0}, {t1, t′1}. Performing the extended
Algorithm 1, we can obtain that EA = {εi : i =
1, 2, . . . , 8} where

ε1 = {t1, t′1}, ε2 = {s0, s′0}, ε3 = {t2, t′2}, ε4 = {s1, s′1},

ε5 = {t3, t′3}, ε6 = {s2, s′2}, ε7 = {t4, t′4}, ε8 = {t0, t′0},

and thus A1 is matching. The shortest synchronising word
wi (i = 1, 2, . . . , 8) of the edge εi obtained in this process
is given as below:

w1 = w2 = a, w3 = a2, w4 = ba, w5 = a3,

w6 = cba, w7 = a4, w8 = a5.

Continuing to perform the left steps of Algorithm 2, we
may obtain a terminal input word a5(ba)a3 of A1 which
has length 10. Direct calculation shows that abacba3 is a
terminal input word of A1 which has length only 8.

5 The extreme matching automata

In this section, we consider the so-called n-state extreme
matching automaton Mn = (M,A, δ) having the sketched
transition graph given in Figure 4.

Clearly, Mn has a unique defective letter a and a unique
defected set {s0, t0}. Let

εi = {si, ti}, ui = aiai−1 . . . a1 (i = 1, 2, . . . , k).

It is easy to see that ε1, ε2, . . . , εk are all edges of
the merging graph GMn of Mn, and that the words
u1, u2, . . . , uk are the unique shortest synchronising words
of the edges ε1, ε2, . . . , εk, respectively. Therefore, Mn is
a matching automaton with

EMn = {ε1, ε2, . . . , εk} .

Two input letters ai, aj of Mn are said to be commutative
if saiaj = sajai for all s ∈ M . For any input words w,w′

of Mn, we write w ∼ w′ if w = uaiajv and w′ = uajaiv
for two commutative letters ai, aj and two input words
u, v of Mn. More general, we write w

∗∼ w′ if there is
a sequence w = w0, w1, . . . , wm = w′ of input words of
Mn such that wi ∼ wi+1 for each i = 0, 1, . . . ,m− 1. If
w

∗∼ w′, then we call w′ a swapped word of w. Recall that
an equivalence ρ on A∗ is called a congruence if w ρw′

implies uwv ρ uw′v for any u, v ∈ A∗. The following
lemma is evident.

Lemma 5.1: Two input letters ai, aj of Mn are
commutative if and only if Taiaj = Tajai for any subset
T of M , and if and only if i− j ̸= ±1. The relation
∗∼ on A∗ is a congruence. Moreover, if w

∗∼ w′, then
Mw = Mw′ and r(w) = r(w′). �

It is evident that the empty word ϵ is the unique shortest
n-rank input word of Mn. In what follows, we consider the
shortest r-rank input words of Mn where r is an arbitrary
integer in the interval [n/2, n− 1]. If T = {si, ti, . . .}
is a subset of M including an edge εi, for the sake of
convenience, we formally write T as {εi, . . .}. Some
fundamental properties of the shortest r-rank input words
of Mn are given as below:

Lemma 5.2: Let w = x1x2 . . . xm (x1, x2, . . . , xm ∈ A) be
a shortest r-rank input word of Mn. Then the following
statements are true for any meaningful integers i and j:

1 |Mx1x2 . . . xi| > |Mx1x2 . . . xixi+1| if and only if
xi+1 = a1 and ε1 ⊆ Mx1x2 . . . xi

2 Mx1x2 . . . xi = Mx1x2 . . . xj if and only if i = j.

Proof: Since ε1 is the unique defected set of Mn, and
a1 is the unique letter acting as a merging word of ε1,
statement 1 holds. If Mx1x2 . . . xi = Mx1x2 . . . xj for
some integers i, j with 1 ≤ i < j ≤ m, then

Mw = M(x1x2 . . . xj)(xj+1 . . . xm)

= M(x1x2 . . . xi)(xj+1 . . . xm).
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Table 1 All possible cases of the sets T2, T2aiai+1ai, T2aiai+1 and T2ai+1ai

Case T2 T2aiai+1ai T2aiai+1 T2ai+1ai

1 {si−1, εi, si+1} {si−1, εi, si+1} {εi−1, si, si+1} {εi−1, si, si+1}
2 {εi−1, si, εi+1} {εi−1, si, εi+1} {si−1, εi, εi+1} {εi−1, εi, si+1}
3 {εi−1, si, si+1} {si−1, si, εi+1} {si−1, si, εi+1} {si−1, εi, si+1}
4 {si−1, εi, εi+1} {εi−1, εi, si+1} {εi−1, εi, si+1} {εi−1, si, εi+1}
5 {si−1, si, εi+1} {εi−1, si, si+1} {si−1, εi, si+1} {εi−1, si, si+1}
6 {εi−1, εi, si+1} {si−1, εi, εi+1} {εi−1, si, εi+1} {si−1, εi, εi+1}
7 {si−1, si, si+1} {si−1, si, si+1} {si−1, si, si+1} {si−1, si, si+1}
8 {εi−1, εi, εi+1} {εi−1, εi, εi+1} {εi−1, εi, εi+1} {εi−1, εi, εi+1}

Figure 5 A decomposition of the r-rank input word w′′ of Mn

This leads to the contradiction that (x1x2 . . . xi)
(xj+1 . . . xm) is an r-rank input word of Mn shorter than
w. Therefore statement 2 is also true. �

Lemma 5.3: Let w be a shortest r-rank input word of Mn,
w′ a swapped word of w, and v′ a swapped word of some
factor v of w. Then the following statements are true:

1 the word w′ is also a shortest r-rank input word of
Mn

2 the word v′ is a factor of some swapped word of w

3 the word v′ has no factor of the form
aiai (i = 1, 2, . . . , n/2)

4 the word v′ has no factor of the form
aiai+1ai (i = 2, 3, . . . , n/2− 1).

Proof: The swapped word w′ of w is also a shortest r-rank
input word of Mn since it is evident that ℓ(w) = ℓ(w′)
and it follows from Lemma 5.1 that r(w) = r(w′). Since
v is a factor of w, there have to be input words u1, u2

of Mn such that w = u1vu2. Observing from Lemma 5.1
that the relation ∗∼ on A∗ is a congruence, we have w =

u1vu2
∗∼ u1v

′u2, and hence v′ is a factor of the swapped
word u1v

′u2 of w.
If there is an integer i with 1 ≤ i ≤ n/2 such that

v′ = v1aiaiv2 for some input words v1, v2 of Mn, then
u1v

′u2 = u1v1aiaiv2u2 which is a swapped word of w and
hence a shortest r-input word of A . It is routine to check
that, for any s ∈ M ,

saiai =

{
s1 = sai if s ∈ ε1 and i = 1,
s otherwise,

so that

Mu1v1aiai =

{
Mu1v1 if ε1 ̸⊆ Mu1v1,
Mu1v1ai if ε1 ⊆ Mu1v1.

This contradicts to Lemma 5.2(2). Hence v′ has no factor
of the form aiai.

Hypothesise that i is an integer with 1 < i < n/2 such
that v′ = v1 (aiai+1ai) v2 for some input words v1, v2 of
Mn, and let

T1 = Mu1v1 −
(
εi−1

∪
εi
∪

εi+1

)
,

T2 = Mu1v1
∩(

εi−1

∪
εi
∪

εi+1

)
.

Then it is evident that T1aiai+1ai = T1, and thus

Mu1v1 (aiai+1ai) = T1

∪
(T2aiai+1ai) .

Furthermore, for each j = i− 1, i, i+ 1, it is clear that tj ∈
T2 if and only if εj ⊆ T2. Table 1 exhibits all possible cases
of the sets T2, T2aiai+1ai, T2aiai+1 and T2ai+1ai.

Observing that T2aiai+1ai coincides with one
of the sets T2, T2aiai+1 and T2ai+1ai, we claim
that Mu1v1(aiai+1ai)v2u2 coincides with one
of the sets Mu1v1v2u2, Mu1v1aiai+1v2u2 and
Mu1v1ai+1aiv2u2. Since u1v1(aiai+1ai)v2u2

∗∼ w and
hence Mu1v1(aiai+1ai)v2u2 = Mw, this contradicts to
the assumption that w is a shortest k-rank input word of
Mn. Therefore v′ has no factor of the form aiai+1ai (1 <
i < n/2). �

The following theorem is the main result of this section:

Theorem 5.4: Given an integer r with n/2 ≤ r < n. A
word in A∗ is a shortest r-rank input word of Mn if and
only if it is a swapped word of the word u1u2 . . . un−r.

Proof: It is routine to check that, for any positive integer i
with i ≤ n/2,

Mu1u2 . . . ui

= {s1, s2, . . . , si, εi+1, εi+2, . . . , εn/2},
(14)
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so that

r(u1u2 . . . ui) = n− i,

and hence

r(u1u2 . . . un−r) = r.

Accordingly to Lemma 5.1, Lemma 5.3 and the above
equality, the desired result is equivalent to that, if w is a
shortest r-rank input word of Mn, then each one of the
words u1u2 . . . ui’s (i = 1, 2, . . . , n− r) is a left factor of
some swapped word of w.

Let w be an arbitrary shortest r-rank input word of Mn.
Then it follows from Lemma 5.2 that the initial of w has to
be a1, and hence u1 = a1 is a left factor of w. Inductively
hypothesise that u1u2 . . . ui (1 ≤ i < n− r) is a left factor
of some swapped word w′ of w. In what follows, we show
that u1u2 . . . uiui+1 is also a left factor of some swapped
word of w by giving an induction to the left factors of ui+1.

At first, supposing that w′ = u1u2 . . . uiu, we can see
by equality (14) and Lemma 5.2(2) that the initial of u is
ai+1, so that u1u2 . . . uiai+1 is also a left factor of the
swapped word w′ of w. Next, we inductively hypothesise
that some word u1u2 . . . uiai+1ai . . . aj (1 < j ≤ i+ 1) is
a left factor of a swapped word w′′ of w, and suppose that

w′′ = w1w2,

where

w1 = u1u2 . . . uiai+1ai . . . aj ,

w2 = x1x2 . . . xm (x1, x2, . . . , xm ∈ A).

To show that the word u1u2 . . . uiai+1ai . . . ajaj−1 is also
a left factor of some swapped word of w and then complete
the proof, we need Lemmas 5.5–5.9.

Lemma 5.5: The letter aj−1 appears in the word w2.

Proof: Otherwise, observing from equality (14) that

Mw1 = {s1, s2, . . . , si, εi+1, εi+2, . . . , εm}ai+1ai . . . aj

= {s1, s2, . . . , si−1, εi, si+1, εi+2, . . . , εm}ai . . . aj
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= {s1, s2, . . . , sj−2, εj−1, sj , . . . , si+1, εi+2, . . . , εm},

(15)

we can routinely show that, for any left factor u of w2,

εh
∩

Mw1u = sh (h = 1, 2, . . . , j − 2).

By virtue of Lemma 5.2 (1) and Lemma 5.1, this leads to
the contradiction that

r (w′′) = |Mw′′| = |Mw1| = n− i > r.

Therefore the letter aj−1 has to appear in the word w2. �

Hereinafter, we suppose that xg is the first appearance of
the letter aj−1 in w2, and let

v = x1x2 . . . xg.

Then we have

Lemma 5.6: The letters a1, a2, . . . , aj−1 do not appear in
the word x1x2 . . . xg−1.

Proof: Of course, the letter aj−1 does not appear in
x1x2 . . . xg−1. If some letter in a1, a2, . . . , aj−2 appears
in x1x2 . . . xg−1, suppose that xg′ is the first one of
such appearances. Then it is certain that the letters
a1, a2, . . . , aj−1 do not appear in the word x1x2 . . . xg′−1.
This implies by Lemma 5.1 that xg′ is commutative with
the letters x1, x2, . . . , xg′−1, so that

w1 (x1x2 . . . xg′−1)xg′
∗∼ w1xg′ (x1x2 . . . xg′−1) .

Consequently, applying Lemma 5.1 and equality (15),
we may obtain the following equality contradicting to
Lemma 5.2(2):

Mw1 (x1x2 . . . xg′−1)xg′

= Mw1xg′ (x1x2 . . . xg′−1)

= {s1, s2, . . . , sj−2, εj−1, sj , . . . , si+1, εi+2, . . . , εm}
xg′x1x2 . . . xg′−1

= {s1, s2, . . . , sj−2, εj−1, sj , . . . , si+1, εi+2, . . . , εm}
x1x2 . . . xg′−1

= Mw1 (x1x2 . . . xg′−1) .

Therefore, it is sure that the letters a1, a2, . . . , aj−1 do not
appear in x1x2 . . . xg−1. �

Lemma 5.7: If xg′ is the last appearance of the letter aj
in the word x1x2 . . . xg−1, then there is an appearance xg′′

of the letter aj+1 in x1x2 . . . xg′−1 such that the letters
aj−1, aj , aj+1 do not appear in xg′′+1xg′′+2 . . . xg′−1.

Proof: Suppose that xg′ is the last appearance of aj in
x1x2 . . . xg−1. If aj+1 does not appear in x1x2 . . . xg′−1,
then it follows from Lemma 5.1 and Lemma 5.6 that the
letter xg′ = aj commutes with those in x1x2 . . . xg′−1, so
that

w1 (x1x2 . . . xg′−1)xg′

= (u1u2 . . . ui) (ai+1ai . . . aj+1aj) (x1x2 . . . xg′−1) aj
∗∼ (u1u2 . . . ui) (ai+1ai . . . aj+1aj) aj (x1x2 . . . xg′−1)

= (u1u2 . . . ui)(ai+1ai . . . aj+1)(ajaj)(x1x2 . . . xg′−1),

and thus the factor w1 (x1x2 . . . xg′−1)xg′ of w′′ has a
swapped word which has a factor a2j . This contradicts to
Lemma 5.3(3), yielding that the letter aj+1 appears in
x1x2 . . . xg′−1. Let xg′′ be the last appearance of aj+1 in
x1x2 . . . xg′−1. Then the r-rank input word w′′ of Mn can
be diagrammatised as below:
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Of course, the letters aj−1, aj+1 do not appear
in xg′′+1xg′′+2 . . . xg′−1. If the letter aj appears in
xg′′+1xg′′+2 . . . xg′−1, for the last one say xg′′+l of such
appearances, we have

xg′′+1xg′′+2 . . . xg′−1xg′

= xg′′+1xg′′+2 . . . xg′−1aj
∗∼ xg′′+1xg′′+2 . . . xg′′+l−1(ajaj)xg′′+l+1 . . . xg′−1.

Contradicting to Lemma 5.3(3), this means that the factor
xg′′+1xg′′+2 . . . xg′−1xg′ of w′′ has a factor ajaj . Hence
aj also does not appear in xg′′+1xg′′+2 . . . xg′−1. �

Lemma 5.8: If the letter aj appears in the word
x1x2 . . . xg−1, then there exist an integer h with j + 1 ≤
h ≤ k such that

v
∗∼ v1 (ahah−1 . . . aj+1ajaj−1) v2

for some words v1, v2 ∈ A∗ in which v1 is either the empty
word or a left factor of v terminated by some letter in
aj , aj+1, . . . , ah.

Proof: Suppose that xg′ is the last appearance of aj in
x1x2 . . . xg−1. Then it follows from Lemma 5.7 that there
is an appearance xg′′ of aj+1 in x1x2 . . . xg′−1 such that
aj−1, aj , aj+1 do not appear between xg′′ and xg′ . This
implies by Lemma 5.1 and Lemma 5.6 that

v = (x1x2 . . . xg′′−1)aj+1(xg′′+1xg′′+2 . . . xg′−1)

aj(xg′+1xg′+2 . . . xg−1)aj−1

∗∼ (x1x2 . . . xg′′−1)aj+1(xg′′+1xg′′+2 . . . xg′−1)

ajaj−1(xg′+1xg′+2 . . . xg−1)

∗∼ (x1x2 . . . xg′′−1)aj+1ajaj−1

(xg′′+1xg′′+2 . . . xg′−1)(xg′+1xg′+2 . . . xg−1).

(16)

If there is an appearance xg′′′ of aj+2 in x1x2 . . . xg′′−1

such that the letters aj−1, aj , aj+1, aj+2 do not appear
between xg′′′ and xg′′ , similar to formula (16), we may
obtain that

v
∗∼ (x1x2 . . . xg′′′−1)aj+2aj+1ajaj−1

(xg′′′+1 . . . xg′′−1)(xg′′+1 . . . xg′−1)(xg′+1 . . . xg−1).

Continuing to the above process, we can obtain the
maximum integer h with j + 1 ≤ h ≤ k, a left factor v′1 of
v as well as a words v′2 ∈ A∗ such that

v
∗∼ v′1 (ahah−1 . . . aj+1ajaj−1) v

′
2.

In the first case that the letters aj−1, aj , . . . , ah do not
appear in v′1, we observe that ah+1 does not appear in v′1
also. Otherwise, suppose that v′1 = x1x2 . . . xl in which xl′

is the last appearance of the letter ah+1. Then it is certain
that aj−1, aj , . . . , ah+1 do not appear in xl′+1xl′+2 . . . xl,
and hence aj−1, aj , aj+1, . . . , ah commutes with the

letters appearing in xl′+1xl′+2 . . . xl. Contradicting to the
definition of the integer h, this implies that

v
∗∼ v′1 (ahah−1 . . . aj+1ajaj−1) v

′
2

∗∼ x1x2 . . . xl′ (ahah−1 . . . aj+1ajaj−1)

xl′+1xl′+2 . . . xlv
′
2

= x1x2 . . . xl′−1 (ah+1ahah−1 . . . aj+1ajaj−1)xl′+1

xl′+2 . . . xlv
′
2.

Following by the observation that ah+1 does not appear
in v′1, we can see that the letters aj−1, aj , aj+1, . . . , ah
commutes with those in v′i. Putting v1 = ϵ and v2 = v′1v

′
2,

we have

v
∗∼ v′1 (ahah−1 . . . aj+1ajaj−1) v

′
2

∗∼ (ahah−1 . . . aj+1ajaj−1) v
′
1v

′
2

= v1 (ahah−1 . . . aj+1ajaj−1) v2.

In the second case that some of the letters aj−1, aj , . . . , ah
appears in v′1, suppose that v′1 = x1x2 . . . xl in which xl′

is the last one of the appearances of aj−1, aj , . . . , ah.
Then the letter ah+1 does not appear in xl′+1xl′+2 . . . xl.
Otherwise, under the assumption that xl′′ is the last
appearance of ah+1 in xl′+1xl′+2 . . . xl, the letters
aj−1, aj , . . . , ah commutes with those in xl′′+1xl′′+2 . . . xl.
Contradicting to the definition of the integer h, this implies
that

v
∗∼ v′1 (ahah−1 . . . aj+1ajaj−1) v

′
2

∗∼ x1x2 . . . xl′′ (ahah−1 . . . aj+1ajaj−1)

xl′′+1xl′′+2 . . . xlv
′
2

= x1x2 . . . xl′′−1 (ah+1ahah−1 . . . aj+1ajaj−1)

xl′′+1xl′′+2 . . . xlv
′
2.

Hence ah+1 does not appear in xl′+1xl′+2 . . . xl, so
that the letters aj−1, aj , . . . , ah commutes with those
in xl′+1xl′+2 . . . xl. Put v1 = x1x2 . . . xl′ and v2 =
xl′+1xl′+2 . . . xlv

′
2. Observing from Lemma 5.6 that aj−1

does not appear in x1x2 . . . xg−1, we claim that v1 is a left
factor of v terminated by the letter xl′ in aj , aj+1, . . . , ah
and

v
∗∼ v′1 (ahah−1 . . . aj+1ajaj−1) v

′
2

∗∼ x1x2 . . . xl′ (ahah−1 . . . aj+1ajaj−1)

xl′+1xl′+2 . . . xlv
′
2

= v1 (ahah−1 . . . aj+1ajaj−1) v2.

This finishes the proof. �

Lemma 5.9: The letter aj does not appear in the word
x1x2 . . . xg−1.

Proof: Otherwise, it follows from Lemma 5 that there exist
an integer h with j + 1 ≤ h ≤ k such that

v
∗∼ v1 (ahah−1 . . . aj+1ajaj−1) v2
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for some words v1, v2 ∈ A∗ in which v1 is either the empty
word or a left factor of v terminated by some letter in
aj , aj+1, . . . , ah. The desired claim is a consequence of the
following discussions:

Case 1: v1 = ϵ. In this case, since the letter aj commutes
with ah, ah−1, . . . , aj+2, we have

w1v = (u1u2 . . . ui) (ai+1ai . . . aj+1aj) v
∗∼ (u1u2 . . . ui) (ai+1ai . . . aj+1aj)

(ahah−1 . . . aj+1ajaj−1) v2
∗∼ (u1u2 . . . ui) (ai+1ai . . . aj+1)

(aj+haj+h−1 . . . aj+2) ajaj+1ajaj−1v2,

and then the swapped word

(u1u2 . . . ui) (ai+1ai . . . aj+1) (aj+haj+h−1 . . . aj+2)

ajaj+1ajaj−1v2

of the factor w1v of w′′ has a factor ajaj+1aj . This
contradicts to Lemma 5.3(4).

Case 2: v1 is terminated by ah. In this case, supposing that
v1 = v′1ah, we have

v
∗∼ v1 (ahah−1 . . . aj+1ajaj−1) v2

= v′1ahahah−1 . . . aj+1ajaj−1v2,

and then the swapped word v′1ahahah−1 . . . aj+1ajaj−1v2
of the factor v of w′′ has a factor ahah. This contradicts to
Lemma 5.3(3).

Case 3: v1 is terminated by some letter aj′ in
aj , aj+1, . . . , ah−1. In this case, supposing that v1 = v′1aj′ ,
we have

v
∗∼ v1 (ahah−1 . . . aj+1ajaj−1) v2

= v′1aj′ (ahah−1 . . . aj+1ajaj−1) v2,
∗∼ v′1 (ahah−1 . . . aj′+2aj′aj′+1aj′aj′−1 . . . aj+1ajaj−1) v2

and then the swapped word v′1(ahah−1

. . . aj′+2aj′aj′+1aj′aj′−1 . . . aj+1ajaj−1)v2 of the factor
v of w′′ has a factor ahah. This also contradicts to
Lemma 5.3(4).

As a consequence of the above lemma, we can see by
Lemma 5.1 that the letter xg = aj−1 commutes with the
letters x1, x2, . . . , xg−1, and hence

w
∗∼ w′′ = w1w2

= w1(x1x2 . . . xg−1)aj−1(xg+1 . . . xm)
∗∼ w1aj−1(x1x2 . . . xg−1)(xg+1 . . . xm).

This completes the proof of Theorem 5.4. �

Corollary 5.10: For any integer r with n/2 ≤ r ≤ n, the
shortest r-rank input words of the automaton Mn have
length M(n, r).

6 Conclusions and discussion

The study of synchronising automata was helpful with
restoring control over the devices that can be described
as a synchronising automaton. Černý conjecture is the
primary issue of the study of synchronising automata. The
investigation on the r-rank input words of automata was
motivated by the consideration on the problem to restore
control over the devices that can not be described as a
synchronising automaton. Pin conjecture and its restriction
rank conjecture are generalisations of Černý conjecture. Of
course, the research on Pin conjecture and rank conjecture
are advantageous for resolving the problem to restore
control over devices.

The present paper is concentrated on the r-rank input
words of matching automata, given an n-state matching
automaton A over m input letters. It is shown that A
has an r-rank input word if and only if n/2 ≤ r ≤ n.
Moreover, if A has an r-rank input word, then an r-rank
input word of A having length at most M(n, r) can be
found in O(nm+ n2) times. Since M(n, r) ≤ (n− r)2,
this implies the conclusion that Pin conjecture and rank
conjecture are true for matching automata. Furthermore, it
is proved that the shortest r-rank input words of the n-state
extreme matching automaton Mn have length M(n, r), and
thus the tight bound for the lengths of the shortest r-rank
input words of n-state matching automata is M(n, r).
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