

International Journal of Embedded Systems

ISSN online: 1741-1076 - ISSN print: 1741-1068
https://www.inderscience.com/ijes

An improved VM selection and allocation hybrid algorithm using
grasshopper and firefly in cloud computing

Rachhpal Singh, Sarpreet Singh

DOI: 10.1504/IJES.2024.10068150

Article History:
Received: 23 February 2024
Last revised: 25 July 2024
Accepted: 24 September 2024
Published online: 10 February 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijes
https://dx.doi.org/10.1504/IJES.2024.10068150
http://www.tcpdf.org

Int. J. Embedded Systems, Vol. 17, Nos. 3/4, 2024 251

Copyright © 2024 Inderscience Enterprises Ltd.

An improved VM selection and allocation hybrid
algorithm using grasshopper and firefly in cloud
computing

Rachhpal Singh* and Sarpreet Singh
Department of Computer Science,
Sri Guru Granth Sahib World University,
Fatehgarh Sahib, India
Email: rachhpal@pbi.ac.in
Email: ersarpreetvirk@gmail.com
*Corresponding author

Abstract: Cloud computing has emerged as a dynamic and resource-intensive domain,
demanding innovative solutions to efficiently allocate and manage resources. In response, this
paper introduces a pioneering optimisation algorithm that seamlessly integrates the Grasshopper
Algorithm for virtual machine selection and the firefly algorithm (FA) for physical machine
selection. The primary objective is to optimise critical quality of service parameters while
effectively addressing challenges associated with service level agreement violation (SLA-V) and
power consumption. Through a comprehensive series of rigorous evaluations, Grasshopper and
FA consistently outperform existing solutions. The authors demonstrate significant reduction in
SLA-V and power consumption, offering tangible benefits to cloud service providers. This work
represents a promising advancement in cloud resource management, aligning with green
computing initiatives and promising cost-saving opportunities.

Keywords: cloud computing; CC; resource allocation; grasshopper algorithm; firefly algorithm;
FA; quality of service; QoS; SLA violation; power consumption; PC; optimisation; green
computing; cost savings.

Reference to this paper should be made as follows: Singh, R. and Singh, S. (2024) ‘An improved
VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing’,
Int. J. Embedded Systems, Vol. 17, Nos. 3/4, pp.251–266.

Biographical notes: Rachhpal Singh is currently an Assistant Professor in Computer Science at
Punjabi University Centre for Emerging and Innovation Technology, Mohali, Punjab, India. He
is pursuing his PhD degree with the Department of Computer Science, at Sri Guru Granth Sahib
World University, Fatehgarh Sahib, Punjab, India. He did his Master of Technology (MTech)
and Master of Computer Applications (M.C.A.) at Punjabi University Patiala (Punjab). He has
teaching and research experience of more than 12 years in Computer Science. He has presented
various papers at national and international conferences. His areas of interest include cloud
computing, programming languages, and artificial intelligence.

Sarpreet Singh is working as an Assistant Professor in the Department of Computer Science at
Sri Guru Granth Sahib World University. His areas of expertise are grid computing and cloud
computing. He has published over 35 research papers in various international journals and
conferences. He has supervised more than 40 students in their post-graduation courses for
computing research.

1 Introduction
With the evolution of information technology (IT), the
attraction towards achieving green cloud technology has
also become more and more popular. Cloud computing
(CC) is one of the technologies that have always been a
keen are of interest for scientific community. Initially, as
early as 2008, cloud was thought as an option for
performing speedy executions (Panwar and Supriya, 2022).
Later on, its horizons spread to application architecture
while delivering services related to infrastructure as well.
Today, cloud comprises of three layers, namely,

infrastructure as a service (IaaS), platform as a service
(PaaS) and software as a service (SaaS) (Guarda et al.,
2021).

The execution of any application needs an operating
platform and hence PaaS has become essential part of SaaS.
The leading vendors such as Azure, AWS and Google cloud
platform are available in the market to offer 100’s of
services with individual pricing that can be customised
based on configuration options. Thus, the energy
requirements of a cloud data centre is expected to rise from

252 R. Singh and S. Singh

200 TWh to 2967 TWh from 2016 to 2030 (Koot and
Wijnhoven, 2021).

Virtual machine (VM) allocation and migration are
critical techniques in CC that play a significant role in
improving the job computation rate and overall system
performance. In cloud environments, numerous users and
applications simultaneously utilise shared resources, making
efficient resource allocation and management essential for
meeting performance requirements and optimising resource
utilisation. VM allocation involves assigning VMs to
physical machines (PMs) based on specific criteria, while
VM migration refers to the process of moving VMs from
one PM to another during runtime (Stillwell et al., 2010).

Figure 1 Wireless sensor network architecture involving
aggregator node (see online version for colours)

Broker

Service Allocate

Green Scheduler

User
Application

User 3

User 2

User 1

PM1 PM1 PMn

VM1 VM1 VM1

The significance of VM allocation and migration lies in
their ability to enhance the job computation rate in CC
environments. By dynamically allocating VMs to
appropriate PMs and migrating them when needed, it
becomes possible to achieve load balancing, resource
optimisation, and improved system performance. Efficient
VM allocation ensures that each VM is placed on an
appropriate PM with sufficient resources to meet its
computational demands (Talwani et al., 2022). This avoids
resource bottlenecks, maximises resource utilisation, and
prevents overloading of PMs, resulting in faster job
execution and improved responsiveness.

Furthermore, VM migration allows for workload
management and adaptation to changing system conditions.
For example, when a PM becomes overloaded or
experiences hardware failures, VM migration can be
employed to redistribute the workload and ensure
uninterrupted service. By migrating VMs from heavily
loaded PMs to underutilised ones, the computational load is
evenly distributed across the cloud infrastructure, enabling
faster job completion times and improved scalability (Wang
et al., 2019).

In CC environments, VM allocation and migration
strategies can be guided by various factors such as VM
resource requirements, PM capabilities, network conditions,
and workload characteristics. Advanced algorithms and
techniques, including machine learning, optimisation
algorithms, and predictive analytics, can be applied to
automate and optimise the decision-making process
(Manaswi and Sharma, 2024). These techniques consider
factors such as PM performance, energy efficiency, cost,

and user-defined preferences to determine the most suitable
placement and migration strategies (Szabo et al., 2014). The
benefits of efficient VM allocation and migration extend
beyond speeding up job computation rates. They include
improved resource utilisation, reduced energy consumption,
and enhanced scalability and flexibility. By dynamically
adjusting resource allocation based on workload demands
and system conditions, cloud providers can deliver
higher-quality services, meet service-level agreements
(SLAs), and efficiently utilise their infrastructure resources.
Swarm Intelligence has emerged as a powerful technique
for solving complex optimisation problems by drawing
inspiration from the collective behaviour of social insect
colonies. One important application of Swarm Intelligence
is in VM selection from overutilised PM to minimise overall
PC. With the exponential growth of CC and data centres,
energy efficiency has become a crucial concern. By
efficiently allocating VMs to underutilised PMs and
consolidating workloads, Swarm Intelligence can help
reduce energy consumption, operational costs, and
environmental impact (Singh et al., 2021; Meshkati and
Safi-Esfahani, 2019). Efficient PC management plays a
crucial role in the allocation and migration of VMs within a
cloud data centre. By considering PC as a critical factor,
sophisticated VM allocation and migration strategies can be
designed to optimise resource utilisation while minimising
energy waste. Effective allocation ensures that VMs are
placed on PMs with sufficient capacity and compatible
power profiles, leading to improved energy efficiency and
reduced operational costs. Furthermore, intelligent VM
migration techniques enable the consolidation of workloads
onto a reduced number of PMs, promoting better resource
utilisation and minimising overall PC. By prioritising
power-aware VM allocation and migration, cloud data
centres can achieve significant energy savings and enhance
the sustainability of their operations.

By leveraging swarm intelligence algorithms, such as
ant colony optimisation (ACO), particle swarm optimisation
(PSO), or artificial bee colony (ABC), grasshopper and
firefly optimisation algorithm, VM selection from
overutilised PMs can be optimised to minimise the overall
PC (Elmagzoub et al., 2021; Alharbi et al., 2021). These
algorithms mimic the collective behaviour and intelligence
of social insects to find optimal solutions in a decentralised
and self-organising manner. They can effectively explore
the solution space, consider multiple factors like CPU
utilisation, memory usage, and network traffic, and make
intelligent decisions on VM placement and migration to
underutilised PMs. By intelligently managing VM
placement and workload consolidation using Swarm
Intelligence, data centre operators can achieve significant
energy savings. This not only reduces operational costs but
also contributes to environmental sustainability by
minimising carbon footprint. Furthermore, efficient VM
selection and power management also improve the overall
performance, reliability, and scalability of the cloud
infrastructure. In conclusion, Swarm Intelligence offers a
promising approach for VM selection from overutilised

 An improved VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing 253

PMs to minimise PC in data centres. By leveraging the
collective intelligence of swarm-based algorithms, data
centre operators can optimise VM placement and workload
consolidation, leading to improved energy efficiency,
reduced operational costs, and a greener computing
environment.

The contributions of the proposed work in the same
regard is as follows:

• Integration of optimised grasshopper algorithm for
VM selection: The proposed solution incorporates the
integration of the optimised grasshopper algorithm, a
metaheuristic optimisation technique, for efficient VM
selection. By leveraging the algorithm’s capabilities,
the solution aims to improve the selection process by
considering various factors such as resource utilisation,
load balancing, and minimising response time.

• Firefly algorithm (FA) for VM replacement to target
PM: The solution also integrates the FA, another
metaheuristic optimisation technique, for the
replacement of VMs to the target PM. By applying the
FA, the solution optimises the allocation of VMs to
PMs based on factors such as resource availability, PM
capacity, and minimising migration time.

• Evaluation of proposed work on the base of quality of
service (QoS) parameters.

• Comparison of the proposed work with other state of
art algorithms

Thus, the introduction section provides the background
search on CC with reference to user demand and service
allocation. The paper is organised in seven sections
including introduction section. Section 2 provides an
extensive literature review on existing strategies on VM
selection and placement algorithms. The proposed method
is described in Section 3 in multiple subsections, including
the, system architecture and power modelling. Section 4 is
dedicated for the problem formulation and Section 5
presents the proposed hybrid algorithm that combines two
swarm intelligence techniques, namely, Grasshopper
Optimisation and FA. The criteria used to assess this
algorithm are also covered in this section. This is followed
by results and performance comparisons in Section 6.
Section 7 represents the conclusion section of the paper.

2 Related work
Several novel approaches have been investigated in the
recent literature on VM management in CC environments.
Enhancing energy economy and performance as well as
optimising VM placement and migration techniques through
sophisticated algorithmic interventions have been the main
areas of attention. The main conclusions of multiple
investigations published in recent past be compiled in this
review, along with any pertinent downsides.

Energy-aware strategies for data centre resource
allocation were first presented by Beloglazov et al. (2012).

Their method satisfied operational constraints such as QoS
while minimising energy use. Their heuristic approach’s
main drawback was its reliance on pre-established
thresholds and parameters, which may make it difficult to
adjust to workload fluctuations or real-time modifications in
the conditions of data centres.

A firefly optimisation technique for energy-aware VM
migration was proposed by Kansal and Chana (2016).
Although novel, bio-inspired algorithms such as firefly may
not scale well in bigger settings and required a great deal of
parameter adjusting to adapt to complex and dynamic cloud
environments.

PSO was used by Chou et al. (2016) for dynamic
power-saving in cloud data centres, a technique that
demonstrated notable gains in energy efficiency. PSO’s
stochastic nature, however, may cause problems with
convergence and possibly uneven performance between
runs.

Naik et al. (2020) introduced FHCS for VM migration
and task scheduling in cloud data centres, aiming at
improving resource utilisation and performance. Although
the hybrid strategy sought to enhance overall performance
and energy efficiency, the incorporation of several
optimisation strategies may result in a rise in computing
overhead and algorithmic complexity.

Dubey and Sharma (2020) presented an extended
intelligent water drop approach for VM allocation in a
secure CC framework, focusing on enhancing security while
efficiently allocating resources.

Singh and Singh (2021) approach leveraged the internet
learning capabilities of artificial neural networks to
dynamically allocate VMs based on changing workload
demands in cloud environments. By employing neural
networks, their method aimed to adaptively allocate
resources, optimising the utilisation of cloud infrastructure
while ensuring efficient allocation of virtual resources to
meet performance requirements. The primary disadvantage
in this case was the need for substantial computer power
and big datasets in order to properly train the neural
networks.

Tarahomi et al. (2021) proposed a power-aware VM
allocation mechanism in cloud data centres using a
micro genetic-based approach, aiming to optimise
power consumption (PC) while meeting performance
requirements. Although genetic algorithms are renowned for
their ability to explore a wide range of solutions, it is
important to carefully calibrate genetic operators in order to
prevent premature convergence.

Zaffar (2021) study focused on modelling and
forecasting sunspot cycles using ARMA (p, q)-GARCH
(1, 1) models. While not directly related to CC, this research
showcases the application of advanced modelling
techniques.

Mohammed and Zeebaree (2021) conducted a
comprehensive review of CC services, including IaaS, PaaS,
and SaaS. Their study provides valuable insights into the
features and suitability of these services for various

254 R. Singh and S. Singh

applications, aiding in better decision-making for cloud
deployments.

Tran et al. (2022) introduced a VM migration policy for
multi-tier applications in CC based on the Q-learning
algorithm, focusing on optimising performance and resource
utilisation. It proved to be quite successful in
accommodating environment-specific needs. On the other
hand, the learning-based strategy was sensitive to the
original policy parameters and required long training
periods.

Talwani et al. (2022) proposed a machine
learning-based approach for VM allocation and migration in
CC. They harnessed the power of machine learning
techniques to optimise resource allocation, which can
significantly enhance the efficiency and performance of
cloud data centres. It offered adaptive and predictive
resource management capabilities. However, the opacity
and complexity of machine learning models may make
maintenance and debugging difficult.

Singh and Singh (2023) introduced a bio-inspired
approach for VM migration. Their method utilised
re-initialisation and decomposition based-whale optimisation
techniques to improve VM placement and migration
strategies. This approach offers the potential for more
efficient VM allocation and resource utilisation in cloud
environments. Large-scale ecosystems were easier to
manage because to the creative decomposition technique,
but there was still a big problem with performance being
dependent on beginning population and parameter settings.

In order to accomplish effective VM placement in cloud
data centres, Durairaj and Sridhar (2023) proposed the
multi-objective mayfly optimisation algorithm for VM
placement (MOM-VMP), which is augmented using
principal component analysis (PCA). One significant
limitation of the approach was its computational
complexity, which could result in longer processing times
when making real-time judgements on VM placement, even
though it demonstrated promise in terms of optimising
resource use and lowering energy consumption.

An upgraded version of the simple and efficient
simulated annealing (SESA) method for VM migration was
created by Kaur et al. (2023). The goal of this methodology
was to lower the cost of migration and downtime. The
method may not scale well in extremely dynamic contexts
and its performance was largely dependent on the original
parameters, even with the enhancements.

An improved ordinal optimisation method was
developed by Yadav and Mishra (2023) with the goal of
lowering scheduling overhead in task scheduling. Their
approach was novel in reducing operating expenses and
boosting throughput, but as the study focused mostly on
simulations, real-world application may reveal other
difficulties, such as adaptability to various cloud
infrastructures.

An efficient energy-consuming genetic-based technique
for VM consolidation was proposed by Radi et al. (2023).
Although this method proved to be energy-efficient, the
slow convergence rates of genetic algorithms may make

them unsuitable for usage in situations where making fast
decisions is essential.

A fuzzy and predictive strategy was used by Zolfaghari
(2024) to improve energy-performance awareness during
VM migrations. This strategy effectively balanced workload
and energy consumption, but it may not be as dependable in
unexpected operating environments due to its reliance on
precise forecasts and the intricacy of fuzzy logic systems.

Mehta et al. (2024) investigated enhanced whale
optimisation options for VM placement that complies with
SLA requirements. Although the application of whale
optimisation may be computationally expensive and
unsuitable for time-sensitive VM placement scenarios, their
techniques optimised the placement process by taking SLA
restrictions into consideration.

Vijaya and Srinivasan (2024) used a multi-objective
meta-heuristic approach with an emphasis on energy
efficiency to address VM placement. Although the
meta-heuristic’s multi-objective character could make it
difficult to balance conflicting aims, which could have an
impact on the optimality of solutions, their method proved
successful in maximising the use of energy and resources.

Overall, it has been observed that the research in the
recent years has made a substantial contribution to the field
of CC, especially in terms of optimising VM administration.
All of the approaches, albeit novel, may have inevitable
limitations that reduce their usefulness in real-world
applications. These difficulties include the necessity
for real-time adaptation, scalability concerns, high
computational needs, and reliance on starting parameter all
of which are essential for CC settings. It is recommended
that more study be done to enhance these methods,
guarantee wider applicability, and increase computing
efficiency.

3 Proposed work
The proposed work incorporates the system model and
design in terms of the cloud data centres, power modelling
and the system architecture along with the proposed
solution.

3.1 Cloud data centres and resources
Consider a cloud data centre consisting of m heterogeneous
PMs. Let P represent the set of PMs, where jPj = m. Each
PM is denoted by PMj and characterised by a six-element
tuple: PMj = (Idj, CPU_MIPSj, PEj, RAMj, BWj, Sizej).
Here, P must be tuples characterised by unique identifiers,
numerical attributes for CPU capacity, number of
processing elements, RAM capacity, bandwidth, and storage
size. These attributes are typically integers or floats. Here,
Idj is the unique identity, CPU MIPSj represents CPU
performance in million instructions per second, PEj denotes
the processing element, RAMj represents the amount of
main memory, BWj is the network bandwidth, and Sizej
corresponds to secondary storage. Now, let’s assume there
are n total VMs in the data centre. V represents the set of

 An improved VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing 255

VMs, where jVj = n. Each VM is denoted by VMi
and characterised by a six-element tuple: VMi = (Idi,
CPU_MIPSi, RAMi, BWi, Sizei, UserIdi). Here, Idi is the
unique identity, CPU_MIPSi, RAMi, BWi, and Sizei
represent the requested amount of CPU-MIPS, memory,
bandwidth, and size by the VM. UserIdi denotes the unique
ID of the user. In this model, each VM is deployed to run a
single application or service, and if needed, multiple VMs
can be deployed for a single application or service. It is
important to understand that if PM value based on six
elements are not fulfilled, the PM will lack a complete
description. As such it can lead to incorrect or inefficient
resource allocation, scheduling, and overall system
performance issues.

3.2 Power modelling
PC is a critical aspect of data centre operations. It is directly
related to the energy consumed by PMs and the associated
cooling systems. The power consumed by a PM consists of
two components: static power (Pstatic) and dynamic power
(Pdynamic). The static power refers to the power consumed by
a PM even when it is idle or not executing any workload.
On the other hand, dynamic power is the power consumed
by a PM while executing tasks (Szabo et al., 2014).

The total power consumed by a PM can be represented
as the sum of static and dynamic power, as shown in
equation (1):

 total static dynamicP P P= + (1)

The static power (Pstatic) is relatively constant and is mainly
attributed to components such as the motherboard, power
supply, and cooling fans. On the other hand, the dynamic
power (Pdynamic) depends on the CPU utilisation and
workload characteristics. It can be calculated using equation
(2):

maxdynamicP P U C= × × (2)

Here, Pmax represents the maximum PC of the PM, U
denotes the CPU utilisation, and C is a constant factor
representing the dynamic PC per unit CPU utilisation.

The PC of PMs is known to be influenced by various
factors, including CPU-MIPS utilisation, RAM utilisation,
network bandwidth utilisation, and storage utilisation.
Among these factors, CPU-MIPS utilisation has been
observed to contribute the most to PC, accounting for
approximately 40%–75% of the total PC

The power model is formulated based on the linear
relationship between CPU-MIPS utilisation and PC. The PC
of a PM, denoted as power (CMU), is defined as a function
of CPU-MIPS utilisation (CMU) and is expressed by the
following equation:

() * max (1)* max *i iPower CMU C P C P CMU= + − (3)

Here, Pmaxi represents the maximum PC of a PM with full
capacity or 100% CPU-MIPS utilisation. The value of C,
ranging between 0 and 1, represents the fraction of power
consumed by an idle PM. The specific value of C depends
on the type of PM being used (e.g., PM1, PM2, etc.)

To further analyse the energy consumption of a PM over
a specific time interval [t0, t1], denoted as E, the PC is
integrated over that interval. This integration is carried out
by considering the time-varying CPU-MIPS utilisation,
denoted as CMU(t), which represents the utilisation at a
given time t. The energy consumption E can be calculated
using the following equation:

()
1

0
()

t

t
E Power CMU t dt=  (4)

By utilising this power model, it becomes possible to
estimate the energy consumption of the PMs within the
cloud data centre. This modelling approach allows for
detailed analysis of PC trends and provides insights into
resource utilisation and optimisation strategies for
minimising energy consumption.

4 Problem formulation
The problem addressed in this research is the optimisation
of VM selection and allocation in CC environments to
reduce overall PC and prevent SLA violations. Existing
methods lack efficient optimisation and fail to consider
important factors such as resource utilisation, load
balancing, and response time. The proposed solution
integrates the optimised grasshopper algorithm for VM
selection and the FA for VM replacement, aiming to
minimise PC and improve SLA compliance. The problem
can be mathematically formulated as follows:

1
: (_)

m

i
Minimise PC minimise PM power

= (5)

Subject to:

()
1 utilisation

n
resource capacityj

VM PM
=

≤ (6)

()PC thresholdVM SLA≤ (7)

where
• Σ(PMpower) represents the total PC of all PMs in the

cloud infrastructure.
• Σ(VMresource_utilisation) represents the total resource

utilisation of all selected VMs.
• PMcapacity denotes the capacity of a PM in terms of

available resources.
• SLAthreshold denotes the maximum allowable response

time as per the SLA agreement.

The objective is to minimise the total PC while ensuring
that the total resource utilisation, response time, and
migration time satisfy their respective thresholds. The
integration of the optimised grasshopper algorithm and the
FA will provide an efficient solution for VM selection and
replacement, considering these optimisation constraints. To
control PC in the approach, optimise CPU utilisation and
use dynamic voltage and frequency scaling (DVFS).
Additionally, implement efficient task scheduling and

256 R. Singh and S. Singh

resource allocation policies to reduce both static and
dynamic PC.

5 Proposed work
The proposed work is divided into two parts. The first part
incorporates the preliminary allocation of a VMi to a PMj if
the PMj has enough available resources for the VM. In
order to do so, a broadcast mechanism is designed that is
inspired by modified best fit decreasing (MBFD) algorithm
in which each possible PM is analysed in such a manner that
the following constraints are satisfied.

. . PMj resources VMi resource demand>

min()Arg AllocationPC

The proposed work can be presented using the following
work flow diagram shown in Figure 2 with yellow box
presenting the innovative step.

The first part also finds the hotspot PMs viz. the PMs
that are either overutilising the resources or underutilising
the resources. Once the hotspots are identified, the VMs
from overutilised PMs are to be selected in order to make it
neutral whereas the underutilised PM loses all its VMs.

()()if | , u CPU PCO Norm PM PM Threshold≥ (8)

()()if | ,u CPU PCU Norm PM PM Threshold≤ (9)

where Ou is the overutilised PMs where Uu is the
underutilised PMs.

The threshold is calculated by taking a margin of 10%–
30% of the average threshold.From the overutilised PMs,
the VMs are selected using proposed O-GrA (optimised
grasshopper) algorithm. Once the VMs are selected from
Ou, the O-FrA (optimised firefly) algorithm is applied for
the replacement of the VMs over the remaining PMs.

Algorithm B-MBFD (Broadcast MBFD)
Input: VMs (list of virtual machines), PMs (list of physical
machines)
Output: VM_to_PM (Dictionary representing VM to PM
allocation)
1: Sort VMs in decreasing order based on resource

requirements
2: Initialise an empty dictionary VM to PM
3: for each VM in VMs do
4: Initialise a variable bestPM as None

5: Initialise a variable capacityremainingmin as infinity

6: for each PM in PMs do
7: if PM’s capacity is greater than or equal to VM’s

resource requirements then
8: if best_PM is None or PM’s remaining capacity is

less than capacityremainingmin then

9: Set besPM as PM
10: Set capacityremainingmin as PM’s remaining

capacity
11: end if
12: end if
13: end for
14: if best_PM is not None then
15: Assign VM to bestPM
16: Update bestPM’s remaining capacity by subtracting

VM’s resource requirements
17: Add VM toPM allocation to VM to PM dictionary
18: end if
19: end for
20: return VM to PM

The B-MBFD algorithm provides the allocation table
containing four parameters, VMj viz the VM that is
allocated to PMi, utilised CPU in the allocation, total PC of
the allocation.

Figure 2 Work flow (see online version for colours)

Start Initiate VMS and PMs
For each VM,

broadcast requirements
to each available PM

If (PMi has resource) Evaluate Power
Consumption

Evaluate Min PC
And index at providing

PM

Allocate VM to
PM (MBFD)

Once the job ends
find hotspot PMs

From OuPM,
Select VMs using

GOA

Yes

Drop PMi for
VMj

Check Next
PMi +1

Use O-Fr to
reallocate VMs

Stop

1 2

3

3(b)

3(a)

456

7

8

No

 An improved VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing 257

Once the allocation is complete, the proposed work uses O-
GrA which is an advancement of the existing grasshopper
algorithm with the amendments in the evaluating fitness
function and input structure of the grasshopper.

5.1 Grasshopper algorithm
The grasshopper algorithm is a metaheuristic optimisation
technique that has emerged as an effective solution for
complex optimisation problems, including the selection of
VMs from overutilised PMs in CC environments. Its
stepwise approach and its significance in VM selection from
overutilised PMs can be outlined as follows:

1 Initialisation: The algorithm begins by initialising a
population of candidate solutions, representing
potential VM-to-PM allocations. The initial population
can be generated randomly or based on heuristics,
ensuring diversity in the solutions. The input data is
derived from the custom dataset which is generated
through simulations.

2 Fitness evaluation: Each candidate solution undergoes
fitness evaluation using a defined fitness function. The
function considers multiple factors such as PC, resource
utilisation, SLA violations, and other relevant metrics.
Fitness evaluation guides the algorithm to prioritise
solutions that minimise PC and meet SLA
requirements.

3 Affinity calculation: The affinity between VMs and
PMs is computed, assessing the compatibility and
suitability of each pairing. Affinity calculation
considers factors like resource requirements,
performance characteristics, and constraints. This step
aids in identifying the most suitable VMs to allocate on
overutilised PMs.

4 Selection: A selection mechanism is employed to
choose candidate solutions for further exploration.
Selection can be based on fitness values, dominance
relations, or rank-based strategies. Solutions with better
fitness or higher ranks, indicative of superior
performance, are given higher probabilities for
reproduction or exploration.

5 Variation operators: Variation operators such as
crossover, mutation, or recombination are applied to the
selected solutions, generating new offspring solutions.
These operators introduce diversity and exploration,
facilitating potential improvements in the VM-PM
allocation.

6 Local search: Local search techniques can be
incorporated to refine the solutions and explore
neighbouring solution spaces. This step involves
exploiting local optima and fine-tuning the allocation
through small adjustments or swaps in the VM-PM
assignments.

7 Termination criteria: The algorithm continues iterating
through selection, variation, and local search until a
termination criterion is met. Common termination
criteria include a specific number of iterations, a
predefined fitness threshold, or the convergence of
solutions.

Table 1 Variables of proposed O-GrA algorithm

Variable Description

A Data matrix containing objective values
L Indices matrix specifying data indices
N Number of iterations
K Number of clusters for K-Means clustering
Hg Number of hoppers in a group
Lf Number of levy flights
d_th Threshold distance
λ Penalty factor
Cf Convergence factor
O Objective values array
H Grasshopper population
B Baby hopper
G Cluster labels
C Cluster centroids
FqH Food quality for individual hopper
FqG Food quality for group
Sp Surviving probability
Pos Levy flight position
Fit Fitness
I Index with maximum fitness

Algorithm 1 Grasshopper VM migration algorithm

1 Input: Data matrix A, indices matrix L, number of
iterations N, number of clusters K, parameters Hg, Lf, dth,
λ, Cf

2 Output: Updated grasshopper population H
3 Initialize objective values array O
4 for j ← 0 to N - 1 do
5 O[j] ← CollectObjectiveValues(A, L[j][0])
6 end for
7 Initialize grasshopper population H with collected objective

values
8 Apply K-Means clustering to O with K clusters, obtaining

labels G and centroids C
9 Initialize baby hopper B with zeros
10 for j ← 0 to N - 1 do
11 B ← InitializeBabyHopper(H[j])
12 for l ← 0 to Lf - 1 do
13 for m ← 1 to Hg - 1 do
14 B[m] ← SelectGroupMember(H, N)
15 end for

258 R. Singh and S. Singh

16 FqH, FqG ← CalculateFoodQuality(B, C[G])
17 Sp ← UpdateSurvivingProbability(Sp, FqH, FqG, λ)
18 Pos ← GenerateLevyPosition()
19 B ← UpdateBabyHopperPosition(B, Pos, C[G])
20 Sp ← ApplyPenaltyFactor(Sp, λ)
21 end for
22 Fitness(Sp)= √((∑_{i=1}^{Lf}) Sp[i])
23 I ← FindMaxFitnessIndex(Sp)
24 if Sp[I] > Cf then
25 H[I] ← B
26 end if
27 end for

The grasshopper algorithm’s significance in VM selection
from overutilised PMs lies in its ability to optimise resource
allocation, minimise PC, and ensure SLA compliance. By
harnessing its optimisation capabilities, the algorithm helps
identify superior VM-PM allocations, resulting in enhanced
energy efficiency, reduced operational costs, and improved
QoS for cloud users. The grasshopper algorithm represents a
valuable approach to address resource allocation challenges
in cloud data centres, particularly in the context of
overutilised PMs, where efficient VM selection is crucial
for sustainable and high-performance CC environments.

The proposed work is inspired with the architecture of
grasshopper algorithm and optimises it in terms of pairing
and fitness evaluation as follows:

1 Input parameters:
• The algorithm takes several input parameters:
• Data matrix A containing objective values.
• Indices matrix L specifying data indices.
• Number of iterations N.
• Number of clusters K for K-Means clustering.
• Parameters Hg, Lf, hdth, λ, and Cf for controlling

various aspects of the algorithm.

2 Objective values collection:
• The algorithm starts by collecting objective values

from the data matrix A based on the indices
provided in the matrix L.

3 Initialisation:
• It initialises the grasshopper population H with the

collected objective values.
• Applies K-means clustering to the objective values

array O to obtain cluster labels G and centroids C.

4 Baby hopper initialisation:
• Initialises the baby hopper B with zeros.

5 Main Loop:
• Iterates through each grasshopper in the

population.
• For each grasshopper, performs a set of actions:

• Initialises the baby hopper B with values from the
grasshopper.

• Executes a loop for a predefined number of levy
flights:

• Selects group members randomly and updates the
baby hopper.

• Calculates food quality for individual hopper
(FqH) and group (FqG).

• Updates surviving probability (Sp).
• Generates a random position for levy flight (Pos).
• Updates the baby hopper position based on levy

flight and centroid (C[G]).
• Applies a penalty factor (λ) to the surviving

probability.

6 Fitness calculation:
• Calculates fitness based on the surviving

probability.
• The fitness function is defined as the square root of

the sum of surviving probabilities for all levy
flights.

7 Selection:
• Finds the index with the maximum fitness.
• If the maximum fitness exceeds a predefined

convergence factor Cf, updates the grasshopper
with the new baby hopper position.

8 Output:
• Outputs the updated grasshopper population.

5.2 Firefly algorithm
FA is a metaheuristic algorithm proposed by Yang in 2009.
The FA draws its inspiration from the social behaviour of
fireflies and their flashing patterns. The light intensity and
the attractiveness of a firefly are key components in the
formulation of the algorithm.

The algorithm tries to mimic the behaviour of fireflies
wherein the less bright fireflies tend to move towards the
brighter ones. This is done in search of mate. If no brighter
firefly is found, they move randomly. Moreover, the
brightness of a firefly is seen as the objective function and is
determined by the landscape of the problem under
consideration.

Let us explain the algorithm in detail using
mathematical notations:

• Objective function: First, we define the objective
function f(x), where x = (x1, ..., xd) denotes the
d-dimensional space of decision variables that are to be
optimised.

• Light intensity: The light intensity I of a firefly at a
particular location x can be determined by the value
attained at that location by the objective function. The
light intensity I(x) is thus proportional to the function
f(x). The exact relationship between the light intensity

 An improved VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing 259

and the function can vary depending on the problem.
For maximisation problems, the brighter fireflies are
those with higher function values, whereas for
minimisation problems, the brighter fireflies are those
with lower function values.

• Attractiveness: The attractiveness beta of a firefly is
seen as being proportional to the light intensity seen by
adjacent fireflies. Thus, for a firefly i at location xi
observing another firefly j at location xj, if firefly j is
brighter (i.e., has higher light intensity), the
attractiveness beta of firefly j to firefly i is calculated as
beta = beta0 * exp(-gamma*rij). Here, beta0 is the

attractiveness of a firefly at zero distance (i.e., the
attractiveness at r = 0), gamma is a light absorption
coefficient, and rij is the Euclidean distance between xi
and xj.

• Movement: In terms of movement, a firefly i is moved
towards a brighter firefly j using the following formula:
xi = xi + beta*(xj – xi) + alpha*(rand-0.5). In this
equation, alpha is the step size, rand is a random
number drawn from a uniform distribution in the
interval [0, 1], and beta*(xj – xi) represents the
attractiveness. The term alpha*(rand-0.5) introduces
randomness in the movement, allowing fireflies to
move randomly when there are no brighter fireflies.

Algorithm 2 O-Fr Algorithm
1 sfmc←0 →Selected for migration counter
2 alpha ←0.1 →Alpha
3 beta ←0.2 →Beta
4 gamma ←0.1 →Gamma
5 ss←10 →Step size
6 Outputs: Reallocated VMs
7 for sfm ← 1 to Lngth[SFM] do →Selected for migration
8 cCD ← vmC[sfm] →Current CPU demand
9 cRD ← vmRR[sfm] →Current resource demand
10 sfmc ← sfmc + 1
11 pF←{} →Possible flies
12 pC←{} →Possible costs
13 pL ←{} →Possible Light
14 cIS←cRDx 1000 →Current instruction set
15 for jj←1 to pmC do →PM count
16 aR←pmR[jj] →Available resource
17 aC←pmC[jj] →Available CPU
18 AV1 ←ConstantArray[0,{1,5}] →Attraction Value1
19 AV←AV1[[1]] →Attraction Value
20 {AIf1,AIf2,AIf3}←pmCosting [Length[pF] ⟶ At1 ⟶ cost, At2, PC, & At3 ⟶ CPUUtilisation
21 LIA ←{} →Light Intensity All
22 for aif ←1 to Length[AIf1] do
23 AIf2[aif]L1 AIf1[aif]x cIS x AIf3{aif]

aC
 ← +  
 

 →Light intensity

24 AppendTo[LIA,LI]
25 end for
26 mG←1000 Max Generations
27 for mg←1 to mg do
28 ff1c ←0 →Firefly1 counter
29 for ff1←1 to Length [pF] do
30 ff2c←0 →Firefly2 counter
31 for ff2←1 to Length [pF] do
32 if ff1≠ff2 then
33 if ff2c>Length[LIA] then
34 ff2c←0
35 end if
36 dist←LIA[[ff1c]]-LIA[[ff2c]] →Distance
37 ff2c←ff2c+1
38 aVal←β*exp(–γr2).r+α →A value

260 R. Singh and S. Singh

39
 [] [][] 1AV [ff1c] AV ff1c

aVal
← +

40 ff2c←ff2c+1
41 end if
42 end for
43 ff1c←ff1c+1
44 end for
45 end for
46 {mV,mI}←findMax[AV] →Max value,Max index
47 Print[‘VM:’,sfm will be allocated to:pF[[mI]]
48 end for

Table 2 Utilised variables for FA

Variable name Description

migrationforselected (SFM) List of VMs that have been selected
for migration.

VMCPU List that represents the CPU demand
of each VM.

req1resVM List that represents the resource
demands of each VM.

PMres List representing the available
resources for each physical machine
(PM).

PMCPU List representing the available CPU
for each physical machine (PM).

PM count (PMC) Count of PMs.

Next, using the above pseudo-code, the O-Fr is
implemented in the context of a VM migration issue, where
the aim is to determine the optimal allocation of VMs to
PMs to minimise some cost functions.

• Initialise parameters alpha, beta, gamma, and stepsize
for the FA.

• Iterate over each VM sfm in the migrationforselected list.
The counters sfmcounter and sfm are used to index into
the VMCPU and 1reqresVM lists and if they exceed the
length of these lists, they are reset or set to a random
value within range.

• The current CPU and resource demand for VM sfm are
computed. This is done by summing the corresponding
entries in VMCPU and 1 .reqresVM

• The code then checks for each PM jj if it has sufficient
CPU and resources to satisfy the demands of the
current VM. If a PM has enough resources, it is
considered a potential host for the VM and its index is
added to the list possibleflies.

• If no PM is found that can host the VM, a random PM
is chosen as a potential host.

• The code initialises the attraction values and calculates
some costs using the pmcosting function for each potential
host PM. The exact nature of these costs is not clear
from the pseudo code but they likely involve some
measure of the ‘cost’ or ‘suitability’ of assigning the
VM to a PM.

• The light intensity of each potential host (firefly) is
calculated. The light intensity is a measure of the
‘attractiveness’ or ‘suitability’ of a PM as a host for the
VM.

• In a nested loop, each potential host PM (firefly) is
compared with every other potential host. If the light
intensity of PM ff2 is greater than PM ff1, then ff1 is
attracted towards ff2, moving in the decision space
towards ff2. This is represented by updating the
attraction value of ff1. Finally, after all potential host
PMs have been compared, the PM with the maximum
attraction value is chosen as the host for the current
VM. The allocation of this VM to the chosen PM is
then printed.

6 Result and discussion
This section evaluates the performance of O-Gr combined
O-Fr algorithm and compare it with established state-of-the-
art algorithms. The assessment employs key metrics such as
total PC, total utilised CPU, total number of migrations, and
SLA violation. Synthetic workloads were used in our
experiments to gauge the algorithm’s effectiveness. The
results are juxtaposed with those of prominent VM
migration algorithms, including Talwani et al. (2022),
Kansal and Chana (2016) and Singh and Singh (2021).
Findings indicate that O-Fr shows promise, demonstrating
reduced total PC, optimised CPU utilisation, minimised
migrations, and mitigated SLA violations.

SLA violation in the context of PC can be defined as the
extent to which the actual PC of a system exceeds the
specified power limit or threshold defined in the SLA.

[]
 (%)

() /
SLA violation

Actual PC SLA power limit SLA power limit
=

−
 (10)

 An improved VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing 261

Mathematically, the power limit (PL) based on the average
value of neutral PMs can be expressed as:

(1/)*PL N Pi= Σ (11)

where

PL is the power limit (average PC).

N is the total number of neutral PMs.

ΣPi represents the sum of PC values of all neutral PMs

The improvement observed in the PC in kW OGrA+OFr
with an average PC of 10.76524162 kW for 1,250 VMs, can
be attributed to the utilisation of the Grasshopper and
Firefly optimisation techniques within the OGrA+OFr
algorithm. When compared to other methodologies, such as
PC in kW Talwani et al. (2022). (11.73675885 kW), ‘PC in
kW Kansal and Chana (2016)’ (11.74478644 kW), and ‘PC
in kW Singh and Singh (2021)’ (11.63079994 kW),
it becomes evident that the OGrA+OFr approach
outperforms the others in terms of power efficiency. These
nature-inspired algorithms, such as grasshopper and firefly,
excel in efficiently selecting and placing VMs by

considering factors like resource demands and VM
migration strategies. By leveraging the collective
intelligence of these optimisation methods, the OGrA+OFr
algorithm achieves superior VM placement and migration
decisions, ultimately leading to a significant reduction in
PC.

In the case of the OGrA+OFr, ‘SLA-V OGrA+OFr
records a notably low SLA violation of 0.085716074,
showcasing its effectiveness in meeting service-level
requirements. This metric, ‘SLA-V OGrA+OFr’, represents
the degree to which the OGrA+OFr algorithm adheres to the
predefined service level agreement (SLA). In contrast,
‘SLA-V Talwani et al. (2022)’, (0.094696604), ‘SLA-V
Kansal and Chana (2016)’ (0.094192428), and ‘SLA-V
Singh and Singh (2021)’ (0.093157854) show slightly
higher SLA violation values, indicating that these
algorithms may experience relatively more significant
deviations from the specified SLAs. The OGrA+OFr
algorithm excels in directly minimising SLA violations,
underscoring its ability to maintain service quality while
optimising PC and resource allocation.

Table 3 Comparative analysis of PC

Total number
of PMs

Total number
of VMs

Power
consumption in kW

OGrA+OFr

Power consumption in kW
Talwani et al. (2022)

Power consumption in
kW Kansal and Chana

(2016)

Power consumption in
kW Singh and Singh

(2021)
10 50 8.20241825 9.41036164 9.40947362 9.26905356
20 100 8.44126569 8.56809205 8.64360942 8.70471717
30 150 8.647098 9.10156469 9.3189534 8.67120337
40 200 8.8920332 8.97634621 10.0730238 9.3227766
50 250 9.06739081 10.20679 10.1552512 9.35812619
60 300 9.25533748 10.0228888 10.8907078 9.51590199
70 350 9.43958284 10.0930988 10.4301495 9.8674329
80 400 9.6215538 11.1911705 11.1450082 11.0378167
90 450 9.8212016 10.8792815 10.6537092 11.0515121
100 500 10.2049953 11.5245482 11.9843064 11.1810021
110 550 10.2772765 11.0913943 11.252443 11.1234703
120 600 10.6015424 11.9280635 10.7312915 11.0877528
130 650 10.7257006 12.4941373 10.7279229 11.6185171
140 700 11.0526153 11.9946018 11.3564497 11.7312727
150 750 11.1078118 11.2899846 12.2598884 12.4741325
160 800 11.4837127 11.9720174 11.7305129 12.7390514
170 850 11.7539896 12.2965465 13.0518997 12.9858648
180 900 11.8876926 13.0532678 13.2727998 13.0514914
190 950 12.0129771 12.8039946 13.6639306 13.3707
200 1,000 12.2651721 14.1663371 13.3355978 13.1338179
210 1,050 12.59634 13.1468172 13.599417 14.1558084
220 1,100 12.6333702 13.247967 13.0814719 14.5019697
230 1,150 12.7242109 14.5345263 14.8984566 13.474453
240 1,200 13.3305686 14.7415385 13.7018972 13.8101399
250 1,250 13.0851828 14.683635 14.2514896 13.532014

262 R. Singh and S. Singh

Table 4 SLA-V comparison

Total number
of PMs

Total number of
VMs SLA-V OGrA+OFr SLA-V Talwani et al.

(2022)
SLA-V Kansal and

Chana (2016)
SLA-V

Singh and Singh (2021)

10 50 0.08403747 0.09401515 0.09188212 0.0987554
20 100 0.08419547 0.09679518 0.0963706 0.08511192
30 150 0.08473805 0.08728784 0.08635815 0.09041836
40 200 0.08442284 0.09274834 0.09874877 0.09077092
50 250 0.08416002 0.09929489 0.0867523 0.08465388
60 300 0.08528328 0.09518106 0.09105944 0.08821415
70 350 0.08450827 0.09389514 0.08854359 0.09704826
80 400 0.08452146 0.09356391 0.08486396 0.09099129
90 450 0.08557475 0.09541033 0.08609236 0.0866346
100 500 0.08481286 0.08642543 0.09413995 0.0967023
110 550 0.08640727 0.0944647 0.10108373 0.09632576
120 600 0.08467212 0.09485055 0.09754149 0.08992207
130 650 0.08537913 0.09246261 0.09721514 0.09033496
140 700 0.08612586 0.08909842 0.09757344 0.08989068
150 750 0.08604972 0.09264382 0.09603147 0.09608064
160 800 0.08580055 0.09288515 0.09602369 0.09769692
170 850 0.08629814 0.09981152 0.09041113 0.091239
180 900 0.08724471 0.09545 0.10284989 0.09067882
190 950 0.08766691 0.10238738 0.1030168 0.09069712
200 1,000 0.08735716 0.09901291 0.09553461 0.09282469
210 1,050 0.08588595 0.09726938 0.09198792 0.0964512
220 1,100 0.08636457 0.10016552 0.09244575 0.09832093
230 1,150 0.08785977 0.09479683 0.10104138 0.10001901
240 1,200 0.08644173 0.09809122 0.09928741 0.09873317
250 1,250 0.08709379 0.08940782 0.08795561 0.10043031

Table 5 Number of migrations

Total number
of PMs

Total number
of VMs

Number of migrations
OGrA+OFr

Migration count
Talwani et al. (2022)

Migration count Kansal
and Chana (2016)

Migration count Singh
and Singh (2021)

10 50 14 16 17 17
20 100 28 30 31 31
30 150 39 41 42 45
40 200 72 77 77 76
50 250 81 83 85 82
60 300 86 89 90 94
70 350 125 126 128 131
80 400 114 117 116 119
90 450 132 136 139 133
100 500 150 151 152 151
110 550 195 207 209 197
120 600 194 198 197 211
130 650 212 214 215 219
140 700 243 262 266 244
150 750 242 269 272 244
160 800 239 241 242 251
170 850 235 243 245 236

 An improved VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing 263

Table 5 Number of migrations (continued)

Total number
of PMs

Total number
of VMs

Number of migrations
OGrA+OFr

Migration count
Talwani et al. (2022)

Migration count Kansal
and Chana (2016)

Migration count Singh
and Singh (2021)

180 900 234 236 237 246
190 950 252 255 255 267
200 1,000 265 274 275 266
210 1,050 347 335 348 349
220 1,100 330 354 355 333
230 1,150 323 351 353 326
240 1,200 338 340 343 343
250 1,250 408 421 423 410

Figure 3 Improvement graph for SLA (see online version for colours)

0

5

10

15

20

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250

Im
pr

ov
em

en
t %

Number of VMs

Improvement Graph for SLA Voilation

Improvement % in SLA-V (Proposed to Talwani et al. [5]) Improvement % in SLA-V (Proposed to Kansal & Chana [14])

Improvement % in SLA-V (Proposed to Shalu et al. [18])

Figure 4 Improvement in PC (see online version for colours)

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250

Im
pr

ov
em

en
t %

Number of VMs

Improvement Graph for Power Consumption

Improvement % in Power consumption (Proposed to Talwani et al. [5])
Improvement % in power consumption (Proposed to Kansal & Chana [14])
Improvement % in power consumption (Proposed to Shalu et al. [18])

The ‘average migration count OGrA+OFr’, with an average
value of 191.64, highlights the efficiency of the OGrA+OFr
algorithm in minimising the total number of VM migrations
for a scenario involving 1,250 VMs. This metric represents
the average count of VM migrations required during the
optimisation process. In contrast, ‘average migration count
Talwani et al. (2022)’ (205.08), ‘average migration count
Kansal and Chana (2016)’ (204.04), and ‘average migration

count Singh and Singh (2021)’ (200.64) exhibit slightly
higher average migration counts. This suggests that these
alternative algorithms may require more migrations on
average to achieve resource optimisation. The OGrA+OFr
algorithm’s ability to reduce the average migration count
highlights its effectiveness in resource allocation and VM
placement, making it a compelling choice for minimising
disruptions in large-scale virtualised environments.

264 R. Singh and S. Singh

Figure 5 Improvement in number of migration (see online version for colours)

0
2
4
6
8

10
12
14
16
18
20

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100115012001250

Im
pr

ov
em

en
t i

n
%

Number of VMs

Improvement Graph for Number of Migrations

Improvement % in Number of Migrations (Proposed to Talwani et al. [5])

Improvement % in Number of Migrations (Proposed to Kansal & Chana [14])

Improvement % in Number of Migrations (Proposed to Shalu et al. [18])

Figure 3 visually illustrates the substantial improvements
achieved by the OGrA+OFr optimisation algorithm in
mitigating service level agreement violation (SLA-V) when
compared to two existing algorithms, Talwani et al. (2022)
Kansal and Chana (2016) and Singh and Singh (2021). This
graphical representation presents a comprehensive view of
the algorithm’s performance across various scenarios,
including different numbers of PMs and VMs. The vertical
axis represents the percentage improvement in SLA-V,
which ranges from approximately 0.4% to 15%. Each data
point on the graph corresponds to a specific scenario,
making it evident that the OGrA+OFr algorithm
consistently enhances the QoS delivery, thereby reducing
SLA breaches. These improvements hold significant
implications for ensuring a reliable and robust CC
environment, particularly when accommodating diverse
workloads and resource demands. Figure 4 provides a visual
depiction of the positive impact of the OGrA+OFr
optimisation algorithm on PC reduction in comparison to
Talwani et al. (2022), Kansal and Chana (2016) and Singh
and Singh (2021). This graphical representation further
emphasises the algorithm’s effectiveness in optimising
power utilisation within CC environment.

The vertical axis represents the percentage improvement
in PC, which spans from approximately 0.9% to 15%. Each
data point on the graph corresponds to a specific scenario
involving varying numbers of PMs and VMs. The upward
trendline in Figure 4 underscores that the OGrA+OFr
algorithm consistently achieves improved power efficiency.
These improvements have dual benefits, contributing to
environmental sustainability by reducing energy
consumption and generating cost savings for cloud service
providers. The ability to maintain high-quality service while
minimising resource waste aligns with contemporary green
computing initiatives and enhances the overall efficiency of
cloud infrastructure. In Figure 5, a comparative analysis of
the improvement percentages over the proposed OGrA+OFr
method as discussed over the three different methods. Three
different papers, namely Talwani et al. (2022), Kansal and

Chana (2016), and Singh and Singh (2021), have proposed
strategies to enhance the efficiency of OGrA+OFr in
reducing the number of migrations. The improvement
percentages, depicted in the graph, demonstrate the
variability in effectiveness across these methods. Talwani
et al. (2022) exhibit improvements ranging from 0.662% to
12.5%, while Kansal and Chana (2016) show enhancements
ranging from 1.28% to 17.65%. Similarly, Singh and Singh
(2021) present improvements ranging from 0.423% to
13.33%. These findings underline the diverse approaches
taken to mitigate migrations in OGrA+OFr and highlight the
potential for significant efficiency gains.

7 Conclusions
In this paper, a novel optimisation algorithm has been
introduced to enhance resource allocation and management
within CC environments. The approach leverages the
Grasshopper optimisation algorithm for VM selection and
the OFr algorithm for PM selection, with the aim of
optimising critical QoS parameters while effectively
addressing concerns related to SLA-V and PC. The
integration of the OGrA for VM selection represents a
notable innovation in this research. This phase plays a
pivotal role in identifying the most suitable VMs for
migration, considering parameters such as CPU utilisation
and PC. The evaluation demonstrates that the OGrA+OFr
algorithm consistently outperforms existing solutions in
terms of SLA-V, achieving substantial improvements
ranging from approximately 0.4% to 15%. This highlights
the algorithm’s robustness in elevating the QoS delivery, a
vital aspect in CC. Complementing the VM selection, the
algorithm leverages the OFr algorithm for PM selection.
This phase is pivotal in ensuring that VMs are strategically
placed on PMs capable of efficiently accommodating their
resource demands. This leads to a substantial reduction in
PC and an overall enhancement in system performance. The
OGrA+OFr consistently reduces PC, with improvements

 An improved VM selection and allocation hybrid algorithm using grasshopper and firefly in cloud computing 265

ranging from approximately 0.9% to 15%, aligning
seamlessly with green computing initiatives and presenting
cost-saving opportunities for cloud service providers. The
comprehensive evaluation underscores the algorithm’s
versatility across diverse scenarios, encompassing varying
numbers of PMs and VMs. The consistent positive trend in
improvement percentages across these scenarios reaffirms
the algorithm’s reliability and adaptability in diverse CC
environments.

In comparison to existing algorithms, including those
developed by Talwani et al. (2022), Kansal and Chana
(2016), and Singh and Singh (2021), the OGrA+OFr
algorithm emerges as a promising solution. It adeptly
addresses the complexities of VM selection and PM
placement, aligning itself with contemporary green
computing initiatives and ensuring cost-effective resource
management. The OGrA+OFr algorithm consistently
reduces PC across various scenarios, with improvements
ranging from approximately 0.9% to 15%. This signifies its
efficiency in resource allocation and environmental
sustainability efforts. In the evaluations, the OGrA+OFr
algorithm exhibits a notable reduction in the total number of
migrations required, minimising operational disruptions and
resource overhead. In comparison to the algorithm
developed by Singh and Singh (2021), our OGrA+OFr
algorithm showcases significant improvements in SLA-V,
underscoring its effectiveness in ensuring consistent service
quality. The OGrA+OFr algorithm consistently outperforms
Singh and Singh’s (2021) algorithm in terms of PC
reduction, highlighting its efficiency in optimising resource
utilisation.

Disclaimer
Authors have not received any funding for this research
work.

Data availability
The data will be made available on request to the
corresponding author.

References
Alharbi, M.T., Qawqzeh, Y., Jaradat, A., Nazim, K. and Sattar, A.

(2021) ‘A review of swarm intelligence algorithms
deployment for scheduling and optimization in cloud
computing environments’, PeerJ Computer Science, August,
Vol. 7, p.e696, DOI: 10.7717/PEERJ-CS.696.

Beloglazov, A., Abawajy, J. and Buyya, R. (2012) ‘Energy-aware
resource allocation heuristics for efficient management of
data centers for cloud computing’, Future Generation
Computer Systems, May, Vol. 28, No. 5, pp.755–768,
DOI: 10.1016/J.FUTURE.2011.04.017.

Chou, L-D., Chen, H-F., Tseng, F-H., Chao, H-C. and Chang, Y-J.
(2016) ‘DPRA: dynamic power-saving resource allocation for
cloud data center using particle swarm optimization’, IEEE
Systems Journal, Vol. 12, No. 2, pp.1554–1565.

Dubey, K. and Sharma, S.C. (2020) ‘An extended intelligent water
drop approach for efficient VM allocation in secure
cloud computing framework’, Journal of King Saud
University-Computer and Information Sciences, Vol. 34,
No. 7, pp.3948–3958.

Durairaj, S. and Sridhar, R. (2023) ‘MOM-VMP: multi-objective
mayfly optimization algorithm for VM placement supported
by principal component analysis (PCA) in cloud data center’,
Cluster Computing, June, pp.1–19, DOI: 10.1007/S10586-
023-04040-8/METRICS.

Elmagzoub, M.A., Syed, D., Shaikh, A., Islam, N., Alghamdi, A.
and Rizwan, S. (2021) ‘A survey of swarm intelligence based
load balancing techniques in cloud computing environment’,
Electronics, November, Vol. 10, No. 21, p.2718,
DOI: 10.3390/ELECTRONICS10212718.

Guarda, T., Augusto, M.F., Costa, I., Oliveira, P., Villao, D. and
Leon, M. (2021) ‘The impact of cloud computing and
virtualization on business’, Communications in Computer and
Information Science, Vol. 1485, pp.399–412, DOI: 10.1007/
978-3-030-90241-4_31/COVER.

Kansal, N.J. and Chana, I. (2016) ‘Energy-aware virtual machine
migration for cloud computing-a firefly optimization
approach’, Journal of Grid Computing, Vol. 14, No. 2,
pp.327–345.

Kaur, A., Kumar, S., Gupta, D., Hamid, Y., Hamdi, M., Ksibi, A.,
Elmannai, H. and Saini, S. (2023) ‘Algorithmic approach to
virtual machine migration in cloud computing with updated
SESA algorithm’, Sensors (Basel, Switzerland), July, Vol. 23,
No. 13, p.6117, DOI: 10.3390/S23136117.

Koot, M. and Wijnhoven, F. (2021) ‘Usage impact on data center
electricity needs: a system dynamic forecasting model’,
Applied Energy, June, Vol. 291, p.116798, DOI: 10.1016/
J.APENERGY.2021.116798.

Manaswi, D. and Sharma, D.M. (2024) ‘Artificial intelligence
empowering the digital world’, Futuristic Trends in
Artificial Intelligence, March, Vol. 3, No. 10, pp.83–90,
DOI: 10.58532/V3BGAI10P2CH3.

Mehta, S., Kaur, P. and Agarwal, P. (2024) ‘Improved whale
optimization variants for SLA-compliant placement of virtual
machines in cloud data centers’, Multimedia Tools and
Applications, January, Vol. 83, No. 1, pp.149–171,
DOI: 10.1007/S11042-023-15528-1/METRICS.

Meshkati, J. and Safi-Esfahani, F. (2019) ‘Energy-aware resource
utilization based on particle swarm optimization and artificial
bee colony algorithms in cloud computing’, Journal of
Supercomputing, May, Vol. 75, No. 5, pp.2455–2496,
DOI: 10.1007/S11227-018-2626-9/METRICS.

Mohammed, C.M., Zeebaree, S.R.M. et al. (2021) ‘Sufficient
comparison among cloud computing services: IaaS, PaaS, and
SaaS: a review’, International Journal of Science and
Business, Vol. 5, No. 2, pp.17–30.

Naik, B.B., Singh, D. and Samaddar, A.B. (2020) ‘FHCS:
hybridised optimisation for virtual machine migration and
task scheduling in cloud data center’, IET Communications,
Vol. 14, No. 12, pp.1942–1948.

Panwar, R. and Supriya, M. (2022) ‘Dynamic resource
provisioning for service-based cloud applications: a Bayesian
learning approach’, Journal of Parallel and Distributed
Computing, October, Vol. 168, pp.90–107, DOI: 10.1016/
J.JPDC.2022.06.001.

Radi, M., Alwan, A.A. and Gulzar, Y. (2023) ‘Genetic-based
virtual machines consolidation strategy with efficient energy
consumption in cloud environment’, IEEE Access, Vol. 11,
pp.48022–48032, DOI: 10.1109/ACCESS.2023.3276292.

266 R. Singh and S. Singh

Singh, S. and Singh, D. (2021) ‘Artificial neural network-based
virtual machine allocation in cloud computing’, Journal of
Discrete Mathematical Sciences and Cryptography, Vol. 24,
No. 6, pp.1739–1750.

Singh, H., Tyagi, S., Kumar, P., Gill, S.S. and Buyya, R. (2021)
‘Metaheuristics for scheduling of heterogeneous tasks in
cloud computing environments: analysis, performance
evaluation, and future directions’, Simulation Modelling
Practice and Theory, September, Vol. 111, p.102353,
DOI: 10.1016/J.SIMPAT.2021.102353.

Singh, S. and Singh, D. (2023) ‘A bio-inspired VM migration
using re-initialization and decomposition based-whale
optimization’, ICT Express, Vol. 9, No. 1, pp.92–99.

Stillwell, M., Schanzenbach, D., Vivien, F. and Casanova, H.
(2010) ‘Resource allocation algorithms for virtualized service
hosting platforms’, Journal of Parallel and Distributed
Computing, September, Vol. 70, No. 9, pp.962–974,
DOI: 10.1016/J.JPDC.2010.05.006.

Szabo, C., Sheng, Q.Z., Kroeger, T., Zhang, Y. and Yu, J. (2014)
‘Science in the cloud: allocation and execution of
data-intensive scientific workflows’, Journal of Grid
Computing, Vol. 12, No. 2, pp.245–264, DOI: 10.1007/
S10723-013-9282-3.

Talwani, S., Singla, J., Mathur, G., Malik, N., Jhanjhi, N.Z.,
Masud, M. and Aljahdali, S. (2022) ‘Machine-learning-based
approach for virtual machine allocation and migration’,
Electronics, Vol. 11, No. 19, p.3249.

Tarahomi, M., Izadi, M. and Ghobaei-Arani, M. (2021) ‘An
efficient power-aware VM allocation mechanism in cloud
data centers: a micro genetic-based approach’, Cluster
Computing, Vol. 24, No. 2, pp.919–934.

Tran, C.H., Bui, T.K. and Pham, T.V. (2022) ‘Virtual machine
migration policy for multi-tier application in cloud computing
based on Q-learning algorithm’, Computing, Vol. 104, No. 6,
pp.1285–1306.

Vijaya, C. and Srinivasan, P. (2024) ‘Multi-objective
meta-heuristic technique for energy efficient virtual machine
placement in cloud data centers’, Informatica, February,
Vol. 48, No. 6, pp.1–18, DOI: 10.31449/INF.V48I6.5263.

Wang, Z., Sun, D., Xue, G., Qian, S., Li, G. and Li, M. (2019)
‘Ada-Things: an adaptive virtual machine monitoring and
migration strategy for internet of things applications’, Journal
of Parallel and Distributed Computing, October, Vol. 132,
pp.164–176, DOI: 10.1016/J.JPDC.2018.06.009.

Yadav, M. and Mishra, A. (2023) ‘An enhanced ordinal
optimization with lower scheduling overhead based novel
approach for task scheduling in cloud computing
environment’, Journal of Cloud Computing, December,
Vol. 12, No. 1, pp.1–14, DOI: 10.1186/S13677-023-00392-
Z/TABLES/8.

Yang, X.S. (2009) ‘Firefly algorithms for multimodal
optimization’, in International Symposium on Stochastic
Algorithms, October, pp.169–178, Springer Berlin
Heidelberg, Berlin, Heidelberg.

Zaffar, A. (2021) ‘Modeling and forecasting of sunspots cycles: an
application of ARMA (p, q)-GARCH (1, 1) model’,
Research Square, pp.1–17, DOI: https://doi.org/10.21203
/rs.3.rs-412946/v1.

Zolfaghari, R. (2024) ‘Energy-performance aware virtual machines
migration in cloud network by using prediction and fuzzy
approaches’, Engineering Applications of Artificial
Intelligence, May, Vol. 131, p.107825, DOI: 10.1016/
J.ENGAPPAI.2023.107825.

