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Abstract: Cloud computing has emerged as a dynamic and resource-intensive domain, 
demanding innovative solutions to efficiently allocate and manage resources. In response, this 
paper introduces a pioneering optimisation algorithm that seamlessly integrates the Grasshopper 
Algorithm for virtual machine selection and the firefly algorithm (FA) for physical machine 
selection. The primary objective is to optimise critical quality of service parameters while 
effectively addressing challenges associated with service level agreement violation (SLA-V) and 
power consumption. Through a comprehensive series of rigorous evaluations, Grasshopper and 
FA consistently outperform existing solutions. The authors demonstrate significant reduction in 
SLA-V and power consumption, offering tangible benefits to cloud service providers. This work 
represents a promising advancement in cloud resource management, aligning with green 
computing initiatives and promising cost-saving opportunities. 
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1 Introduction 
With the evolution of information technology (IT), the 
attraction towards achieving green cloud technology has 
also become more and more popular. Cloud computing 
(CC) is one of the technologies that have always been a 
keen are of interest for scientific community. Initially, as 
early as 2008, cloud was thought as an option for 
performing speedy executions (Panwar and Supriya, 2022). 
Later on, its horizons spread to application architecture 
while delivering services related to infrastructure as well. 
Today, cloud comprises of three layers, namely, 

infrastructure as a service (IaaS), platform as a service 
(PaaS) and software as a service (SaaS) (Guarda et al., 
2021). 

The execution of any application needs an operating 
platform and hence PaaS has become essential part of SaaS. 
The leading vendors such as Azure, AWS and Google cloud 
platform are available in the market to offer 100’s of 
services with individual pricing that can be customised 
based on configuration options. Thus, the energy 
requirements of a cloud data centre is expected to rise from 
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200 TWh to 2967 TWh from 2016 to 2030 (Koot and 
Wijnhoven, 2021). 

Virtual machine (VM) allocation and migration are 
critical techniques in CC that play a significant role in 
improving the job computation rate and overall system 
performance. In cloud environments, numerous users and 
applications simultaneously utilise shared resources, making 
efficient resource allocation and management essential for 
meeting performance requirements and optimising resource 
utilisation. VM allocation involves assigning VMs to 
physical machines (PMs) based on specific criteria, while 
VM migration refers to the process of moving VMs from 
one PM to another during runtime (Stillwell et al., 2010). 

Figure 1 Wireless sensor network architecture involving 
aggregator node (see online version for colours) 
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The significance of VM allocation and migration lies in 
their ability to enhance the job computation rate in CC 
environments. By dynamically allocating VMs to 
appropriate PMs and migrating them when needed, it 
becomes possible to achieve load balancing, resource 
optimisation, and improved system performance. Efficient 
VM allocation ensures that each VM is placed on an 
appropriate PM with sufficient resources to meet its 
computational demands (Talwani et al., 2022). This avoids 
resource bottlenecks, maximises resource utilisation, and 
prevents overloading of PMs, resulting in faster job 
execution and improved responsiveness. 

Furthermore, VM migration allows for workload 
management and adaptation to changing system conditions. 
For example, when a PM becomes overloaded or 
experiences hardware failures, VM migration can be 
employed to redistribute the workload and ensure 
uninterrupted service. By migrating VMs from heavily 
loaded PMs to underutilised ones, the computational load is 
evenly distributed across the cloud infrastructure, enabling 
faster job completion times and improved scalability (Wang 
et al., 2019). 

In CC environments, VM allocation and migration 
strategies can be guided by various factors such as VM 
resource requirements, PM capabilities, network conditions, 
and workload characteristics. Advanced algorithms and 
techniques, including machine learning, optimisation 
algorithms, and predictive analytics, can be applied to 
automate and optimise the decision-making process 
(Manaswi and Sharma, 2024). These techniques consider 
factors such as PM performance, energy efficiency, cost, 

and user-defined preferences to determine the most suitable 
placement and migration strategies (Szabo et al., 2014). The 
benefits of efficient VM allocation and migration extend 
beyond speeding up job computation rates. They include 
improved resource utilisation, reduced energy consumption, 
and enhanced scalability and flexibility. By dynamically 
adjusting resource allocation based on workload demands 
and system conditions, cloud providers can deliver  
higher-quality services, meet service-level agreements 
(SLAs), and efficiently utilise their infrastructure resources. 
Swarm Intelligence has emerged as a powerful technique 
for solving complex optimisation problems by drawing 
inspiration from the collective behaviour of social insect 
colonies. One important application of Swarm Intelligence 
is in VM selection from overutilised PM to minimise overall 
PC. With the exponential growth of CC and data centres, 
energy efficiency has become a crucial concern. By 
efficiently allocating VMs to underutilised PMs and 
consolidating workloads, Swarm Intelligence can help 
reduce energy consumption, operational costs, and 
environmental impact (Singh et al., 2021; Meshkati and 
Safi-Esfahani, 2019). Efficient PC management plays a 
crucial role in the allocation and migration of VMs within a 
cloud data centre. By considering PC as a critical factor, 
sophisticated VM allocation and migration strategies can be 
designed to optimise resource utilisation while minimising 
energy waste. Effective allocation ensures that VMs are 
placed on PMs with sufficient capacity and compatible 
power profiles, leading to improved energy efficiency and 
reduced operational costs. Furthermore, intelligent VM 
migration techniques enable the consolidation of workloads 
onto a reduced number of PMs, promoting better resource 
utilisation and minimising overall PC. By prioritising 
power-aware VM allocation and migration, cloud data 
centres can achieve significant energy savings and enhance 
the sustainability of their operations. 

By leveraging swarm intelligence algorithms, such as 
ant colony optimisation (ACO), particle swarm optimisation 
(PSO), or artificial bee colony (ABC), grasshopper and 
firefly optimisation algorithm, VM selection from 
overutilised PMs can be optimised to minimise the overall 
PC (Elmagzoub et al., 2021; Alharbi et al., 2021). These 
algorithms mimic the collective behaviour and intelligence 
of social insects to find optimal solutions in a decentralised 
and self-organising manner. They can effectively explore 
the solution space, consider multiple factors like CPU 
utilisation, memory usage, and network traffic, and make 
intelligent decisions on VM placement and migration to 
underutilised PMs. By intelligently managing VM 
placement and workload consolidation using Swarm 
Intelligence, data centre operators can achieve significant 
energy savings. This not only reduces operational costs but 
also contributes to environmental sustainability by 
minimising carbon footprint. Furthermore, efficient VM 
selection and power management also improve the overall 
performance, reliability, and scalability of the cloud 
infrastructure. In conclusion, Swarm Intelligence offers a 
promising approach for VM selection from overutilised 
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PMs to minimise PC in data centres. By leveraging the 
collective intelligence of swarm-based algorithms, data 
centre operators can optimise VM placement and workload 
consolidation, leading to improved energy efficiency, 
reduced operational costs, and a greener computing 
environment. 

The contributions of the proposed work in the same 
regard is as follows: 

• Integration of optimised grasshopper algorithm for  
VM selection: The proposed solution incorporates the 
integration of the optimised grasshopper algorithm, a 
metaheuristic optimisation technique, for efficient VM 
selection. By leveraging the algorithm’s capabilities, 
the solution aims to improve the selection process by 
considering various factors such as resource utilisation, 
load balancing, and minimising response time. 

• Firefly algorithm (FA) for VM replacement to target 
PM: The solution also integrates the FA, another 
metaheuristic optimisation technique, for the 
replacement of VMs to the target PM. By applying the 
FA, the solution optimises the allocation of VMs to 
PMs based on factors such as resource availability, PM 
capacity, and minimising migration time. 

• Evaluation of proposed work on the base of quality of 
service (QoS) parameters. 

• Comparison of the proposed work with other state of 
art algorithms 

Thus, the introduction section provides the background 
search on CC with reference to user demand and service 
allocation. The paper is organised in seven sections 
including introduction section. Section 2 provides an 
extensive literature review on existing strategies on VM 
selection and placement algorithms. The proposed method 
is described in Section 3 in multiple subsections, including 
the, system architecture and power modelling. Section 4 is 
dedicated for the problem formulation and Section 5 
presents the proposed hybrid algorithm that combines two 
swarm intelligence techniques, namely, Grasshopper 
Optimisation and FA. The criteria used to assess this 
algorithm are also covered in this section. This is followed 
by results and performance comparisons in Section 6. 
Section 7 represents the conclusion section of the paper. 

2 Related work 
Several novel approaches have been investigated in the 
recent literature on VM management in CC environments. 
Enhancing energy economy and performance as well as 
optimising VM placement and migration techniques through 
sophisticated algorithmic interventions have been the main 
areas of attention. The main conclusions of multiple 
investigations published in recent past be compiled in this 
review, along with any pertinent downsides. 

Energy-aware strategies for data centre resource 
allocation were first presented by Beloglazov et al. (2012). 

Their method satisfied operational constraints such as QoS 
while minimising energy use. Their heuristic approach’s 
main drawback was its reliance on pre-established 
thresholds and parameters, which may make it difficult to 
adjust to workload fluctuations or real-time modifications in 
the conditions of data centres. 

A firefly optimisation technique for energy-aware VM 
migration was proposed by Kansal and Chana (2016). 
Although novel, bio-inspired algorithms such as firefly may 
not scale well in bigger settings and required a great deal of 
parameter adjusting to adapt to complex and dynamic cloud 
environments. 

PSO was used by Chou et al. (2016) for dynamic  
power-saving in cloud data centres, a technique that 
demonstrated notable gains in energy efficiency. PSO’s 
stochastic nature, however, may cause problems with 
convergence and possibly uneven performance between 
runs. 

Naik et al. (2020) introduced FHCS for VM migration 
and task scheduling in cloud data centres, aiming at 
improving resource utilisation and performance. Although 
the hybrid strategy sought to enhance overall performance 
and energy efficiency, the incorporation of several 
optimisation strategies may result in a rise in computing 
overhead and algorithmic complexity. 

Dubey and Sharma (2020) presented an extended 
intelligent water drop approach for VM allocation in a 
secure CC framework, focusing on enhancing security while 
efficiently allocating resources. 

Singh and Singh (2021) approach leveraged the internet 
learning capabilities of artificial neural networks to 
dynamically allocate VMs based on changing workload 
demands in cloud environments. By employing neural 
networks, their method aimed to adaptively allocate 
resources, optimising the utilisation of cloud infrastructure 
while ensuring efficient allocation of virtual resources to 
meet performance requirements. The primary disadvantage 
in this case was the need for substantial computer power 
and big datasets in order to properly train the neural 
networks. 

Tarahomi et al. (2021) proposed a power-aware VM 
allocation mechanism in cloud data centres using a  
micro genetic-based approach, aiming to optimise  
power consumption (PC) while meeting performance 
requirements. Although genetic algorithms are renowned for 
their ability to explore a wide range of solutions, it is 
important to carefully calibrate genetic operators in order to 
prevent premature convergence. 

Zaffar (2021) study focused on modelling and 
forecasting sunspot cycles using ARMA (p, q)-GARCH  
(1, 1) models. While not directly related to CC, this research 
showcases the application of advanced modelling 
techniques. 

Mohammed and Zeebaree (2021) conducted a 
comprehensive review of CC services, including IaaS, PaaS, 
and SaaS. Their study provides valuable insights into the 
features and suitability of these services for various 
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applications, aiding in better decision-making for cloud 
deployments. 

Tran et al. (2022) introduced a VM migration policy for 
multi-tier applications in CC based on the Q-learning 
algorithm, focusing on optimising performance and resource 
utilisation. It proved to be quite successful in 
accommodating environment-specific needs. On the other 
hand, the learning-based strategy was sensitive to the 
original policy parameters and required long training 
periods. 

Talwani et al. (2022) proposed a machine  
learning-based approach for VM allocation and migration in 
CC. They harnessed the power of machine learning 
techniques to optimise resource allocation, which can 
significantly enhance the efficiency and performance of 
cloud data centres. It offered adaptive and predictive 
resource management capabilities. However, the opacity 
and complexity of machine learning models may make 
maintenance and debugging difficult. 

Singh and Singh (2023) introduced a bio-inspired 
approach for VM migration. Their method utilised  
re-initialisation and decomposition based-whale optimisation 
techniques to improve VM placement and migration 
strategies. This approach offers the potential for more 
efficient VM allocation and resource utilisation in cloud 
environments. Large-scale ecosystems were easier to 
manage because to the creative decomposition technique, 
but there was still a big problem with performance being 
dependent on beginning population and parameter settings. 

In order to accomplish effective VM placement in cloud 
data centres, Durairaj and Sridhar (2023) proposed the 
multi-objective mayfly optimisation algorithm for VM 
placement (MOM-VMP), which is augmented using 
principal component analysis (PCA). One significant 
limitation of the approach was its computational 
complexity, which could result in longer processing times 
when making real-time judgements on VM placement, even 
though it demonstrated promise in terms of optimising 
resource use and lowering energy consumption. 

An upgraded version of the simple and efficient 
simulated annealing (SESA) method for VM migration was 
created by Kaur et al. (2023). The goal of this methodology 
was to lower the cost of migration and downtime. The 
method may not scale well in extremely dynamic contexts 
and its performance was largely dependent on the original 
parameters, even with the enhancements. 

An improved ordinal optimisation method was 
developed by Yadav and Mishra (2023) with the goal of 
lowering scheduling overhead in task scheduling. Their 
approach was novel in reducing operating expenses and 
boosting throughput, but as the study focused mostly on 
simulations, real-world application may reveal other 
difficulties, such as adaptability to various cloud 
infrastructures. 

An efficient energy-consuming genetic-based technique 
for VM consolidation was proposed by Radi et al. (2023). 
Although this method proved to be energy-efficient, the 
slow convergence rates of genetic algorithms may make 

them unsuitable for usage in situations where making fast 
decisions is essential. 

A fuzzy and predictive strategy was used by Zolfaghari 
(2024) to improve energy-performance awareness during 
VM migrations. This strategy effectively balanced workload 
and energy consumption, but it may not be as dependable in 
unexpected operating environments due to its reliance on 
precise forecasts and the intricacy of fuzzy logic systems. 

Mehta et al. (2024) investigated enhanced whale 
optimisation options for VM placement that complies with 
SLA requirements. Although the application of whale 
optimisation may be computationally expensive and 
unsuitable for time-sensitive VM placement scenarios, their 
techniques optimised the placement process by taking SLA 
restrictions into consideration. 

Vijaya and Srinivasan (2024) used a multi-objective 
meta-heuristic approach with an emphasis on energy 
efficiency to address VM placement. Although the  
meta-heuristic’s multi-objective character could make it 
difficult to balance conflicting aims, which could have an 
impact on the optimality of solutions, their method proved 
successful in maximising the use of energy and resources. 

Overall, it has been observed that the research in the 
recent years has made a substantial contribution to the field 
of CC, especially in terms of optimising VM administration. 
All of the approaches, albeit novel, may have inevitable 
limitations that reduce their usefulness in real-world 
applications. These difficulties include the necessity  
for real-time adaptation, scalability concerns, high 
computational needs, and reliance on starting parameter all 
of which are essential for CC settings. It is recommended 
that more study be done to enhance these methods, 
guarantee wider applicability, and increase computing 
efficiency. 

3 Proposed work 
The proposed work incorporates the system model and 
design in terms of the cloud data centres, power modelling 
and the system architecture along with the proposed 
solution. 

3.1 Cloud data centres and resources 
Consider a cloud data centre consisting of m heterogeneous 
PMs. Let P represent the set of PMs, where jPj = m. Each 
PM is denoted by PMj and characterised by a six-element 
tuple: PMj = (Idj, CPU_MIPSj, PEj, RAMj, BWj, Sizej). 
Here, P must be tuples characterised by unique identifiers, 
numerical attributes for CPU capacity, number of 
processing elements, RAM capacity, bandwidth, and storage 
size. These attributes are typically integers or floats. Here, 
Idj is the unique identity, CPU MIPSj represents CPU 
performance in million instructions per second, PEj denotes 
the processing element, RAMj represents the amount of 
main memory, BWj is the network bandwidth, and Sizej 
corresponds to secondary storage. Now, let’s assume there 
are n total VMs in the data centre. V represents the set of 
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VMs, where jVj = n. Each VM is denoted by VMi  
and characterised by a six-element tuple: VMi = (Idi, 
CPU_MIPSi, RAMi, BWi, Sizei, UserIdi). Here, Idi is the 
unique identity, CPU_MIPSi, RAMi, BWi, and Sizei 
represent the requested amount of CPU-MIPS, memory, 
bandwidth, and size by the VM. UserIdi denotes the unique 
ID of the user. In this model, each VM is deployed to run a 
single application or service, and if needed, multiple VMs 
can be deployed for a single application or service. It is 
important to understand that if PM value based on six 
elements are not fulfilled, the PM will lack a complete 
description. As such it can lead to incorrect or inefficient 
resource allocation, scheduling, and overall system 
performance issues. 

3.2 Power modelling 
PC is a critical aspect of data centre operations. It is directly 
related to the energy consumed by PMs and the associated 
cooling systems. The power consumed by a PM consists of 
two components: static power (Pstatic) and dynamic power 
(Pdynamic). The static power refers to the power consumed by 
a PM even when it is idle or not executing any workload. 
On the other hand, dynamic power is the power consumed 
by a PM while executing tasks (Szabo et al., 2014). 

The total power consumed by a PM can be represented 
as the sum of static and dynamic power, as shown in 
equation (1): 

 total static dynamicP P P= +  (1) 

The static power (Pstatic) is relatively constant and is mainly 
attributed to components such as the motherboard, power 
supply, and cooling fans. On the other hand, the dynamic 
power (Pdynamic) depends on the CPU utilisation and 
workload characteristics. It can be calculated using equation 
(2): 

maxdynamicP P U C= × ×  (2) 

Here, Pmax represents the maximum PC of the PM, U 
denotes the CPU utilisation, and C is a constant factor 
representing the dynamic PC per unit CPU utilisation. 

The PC of PMs is known to be influenced by various 
factors, including CPU-MIPS utilisation, RAM utilisation, 
network bandwidth utilisation, and storage utilisation. 
Among these factors, CPU-MIPS utilisation has been 
observed to contribute the most to PC, accounting for 
approximately 40%–75% of the total PC 

The power model is formulated based on the linear 
relationship between CPU-MIPS utilisation and PC. The PC 
of a PM, denoted as power (CMU), is defined as a function 
of CPU-MIPS utilisation (CMU) and is expressed by the 
following equation: 

( ) * max (1 )* max *i iPower CMU C P C P CMU= + −  (3) 

Here, Pmaxi represents the maximum PC of a PM with full 
capacity or 100% CPU-MIPS utilisation. The value of C, 
ranging between 0 and 1, represents the fraction of power 
consumed by an idle PM. The specific value of C depends 
on the type of PM being used (e.g., PM1, PM2, etc.) 

To further analyse the energy consumption of a PM over 
a specific time interval [t0, t1], denoted as E, the PC is 
integrated over that interval. This integration is carried out 
by considering the time-varying CPU-MIPS utilisation, 
denoted as CMU(t), which represents the utilisation at a 
given time t. The energy consumption E can be calculated 
using the following equation: 

( )
1

0
( )

t

t
E Power CMU t dt=   (4) 

By utilising this power model, it becomes possible to 
estimate the energy consumption of the PMs within the 
cloud data centre. This modelling approach allows for 
detailed analysis of PC trends and provides insights into 
resource utilisation and optimisation strategies for 
minimising energy consumption. 

4 Problem formulation 
The problem addressed in this research is the optimisation 
of VM selection and allocation in CC environments to 
reduce overall PC and prevent SLA violations. Existing 
methods lack efficient optimisation and fail to consider 
important factors such as resource utilisation, load 
balancing, and response time. The proposed solution 
integrates the optimised grasshopper algorithm for VM 
selection and the FA for VM replacement, aiming to 
minimise PC and improve SLA compliance. The problem 
can be mathematically formulated as follows: 

1
: ( _ )

m

i
Minimise PC minimise PM power

=  (5) 

Subject to: 

( )
1 utilisation

n
resource capacityj

VM PM
=

≤  (6) 

( )PC thresholdVM SLA≤  (7) 

where 
• Σ(PMpower) represents the total PC of all PMs in the 

cloud infrastructure. 
• Σ(VMresource_utilisation) represents the total resource 

utilisation of all selected VMs. 
• PMcapacity denotes the capacity of a PM in terms of 

available resources. 
• SLAthreshold denotes the maximum allowable response 

time as per the SLA agreement. 

The objective is to minimise the total PC while ensuring 
that the total resource utilisation, response time, and 
migration time satisfy their respective thresholds. The 
integration of the optimised grasshopper algorithm and the 
FA will provide an efficient solution for VM selection and 
replacement, considering these optimisation constraints. To 
control PC in the approach, optimise CPU utilisation and 
use dynamic voltage and frequency scaling (DVFS). 
Additionally, implement efficient task scheduling and 
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resource allocation policies to reduce both static and 
dynamic PC. 

5 Proposed work 
The proposed work is divided into two parts. The first part 
incorporates the preliminary allocation of a VMi to a PMj if 
the PMj has enough available resources for the VM. In 
order to do so, a broadcast mechanism is designed that is 
inspired by modified best fit decreasing (MBFD) algorithm 
in which each possible PM is analysed in such a manner that 
the following constraints are satisfied. 

.  .  PMj resources VMi resource demand>  

min( )Arg AllocationPC  

The proposed work can be presented using the following 
work flow diagram shown in Figure 2 with yellow box 
presenting the innovative step. 

The first part also finds the hotspot PMs viz. the PMs 
that are either overutilising the resources or underutilising 
the resources. Once the hotspots are identified, the VMs 
from overutilised PMs are to be selected in order to make it 
neutral whereas the underutilised PM loses all its VMs. 

( )( )if | ,  u CPU PCO Norm PM PM Threshold≥  (8) 

( )( )if | ,u CPU PCU Norm PM PM Threshold≤  (9) 

where Ou is the overutilised PMs where Uu is the 
underutilised PMs. 

The threshold is calculated by taking a margin of 10%–
30% of the average threshold.From the overutilised PMs, 
the VMs are selected using proposed O-GrA (optimised 
grasshopper) algorithm. Once the VMs are selected from 
Ou, the O-FrA (optimised firefly) algorithm is applied for 
the replacement of the VMs over the remaining PMs. 

Algorithm B-MBFD (Broadcast MBFD) 
Input: VMs (list of virtual machines), PMs (list of physical 
machines)  
Output: VM_to_PM (Dictionary representing VM to PM 
allocation)  
1: Sort VMs in decreasing order based on resource 

requirements 
2: Initialise an empty dictionary VM to PM 
3: for each VM in VMs do 
4:  Initialise a variable bestPM as None 

5:  Initialise a variable capacityremainingmin  as infinity 

6:  for each PM in PMs do 
7:  if PM’s capacity is greater than or equal to VM’s 

resource requirements then 
8:   if best_PM is None or PM’s remaining capacity is 

less than capacityremainingmin  then  

9:    Set besPM as PM 
10:    Set capacityremainingmin  as PM’s remaining 

capacity 
11:   end if 
12:  end if 
13: end for 
14: if best_PM is not None then 
15:   Assign VM to bestPM 
16:   Update bestPM’s remaining capacity by subtracting 

VM’s resource requirements  
17:   Add VM toPM allocation to VM to PM dictionary 
18:  end if 
19: end for 
20: return VM to PM 

The B-MBFD algorithm provides the allocation table 
containing four parameters, VMj viz the VM that is 
allocated to PMi, utilised CPU in the allocation, total PC of 
the allocation. 

Figure 2 Work flow (see online version for colours) 
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Once the allocation is complete, the proposed work uses O-
GrA which is an advancement of the existing grasshopper 
algorithm with the amendments in the evaluating fitness 
function and input structure of the grasshopper. 

5.1 Grasshopper algorithm 
The grasshopper algorithm is a metaheuristic optimisation 
technique that has emerged as an effective solution for 
complex optimisation problems, including the selection of 
VMs from overutilised PMs in CC environments. Its 
stepwise approach and its significance in VM selection from 
overutilised PMs can be outlined as follows: 

1 Initialisation: The algorithm begins by initialising a 
population of candidate solutions, representing 
potential VM-to-PM allocations. The initial population 
can be generated randomly or based on heuristics, 
ensuring diversity in the solutions. The input data is 
derived from the custom dataset which is generated 
through simulations. 

2 Fitness evaluation: Each candidate solution undergoes 
fitness evaluation using a defined fitness function. The 
function considers multiple factors such as PC, resource 
utilisation, SLA violations, and other relevant metrics. 
Fitness evaluation guides the algorithm to prioritise 
solutions that minimise PC and meet SLA 
requirements. 

3 Affinity calculation: The affinity between VMs and 
PMs is computed, assessing the compatibility and 
suitability of each pairing. Affinity calculation 
considers factors like resource requirements, 
performance characteristics, and constraints. This step 
aids in identifying the most suitable VMs to allocate on 
overutilised PMs. 

4 Selection: A selection mechanism is employed to 
choose candidate solutions for further exploration. 
Selection can be based on fitness values, dominance 
relations, or rank-based strategies. Solutions with better 
fitness or higher ranks, indicative of superior 
performance, are given higher probabilities for 
reproduction or exploration. 

5 Variation operators: Variation operators such as 
crossover, mutation, or recombination are applied to the 
selected solutions, generating new offspring solutions. 
These operators introduce diversity and exploration, 
facilitating potential improvements in the VM-PM 
allocation. 

6 Local search: Local search techniques can be 
incorporated to refine the solutions and explore 
neighbouring solution spaces. This step involves 
exploiting local optima and fine-tuning the allocation 
through small adjustments or swaps in the VM-PM 
assignments. 

 

7 Termination criteria: The algorithm continues iterating 
through selection, variation, and local search until a 
termination criterion is met. Common termination 
criteria include a specific number of iterations, a 
predefined fitness threshold, or the convergence of 
solutions. 

Table 1 Variables of proposed O-GrA algorithm 

Variable Description 

A Data matrix containing objective values 
L Indices matrix specifying data indices 
N Number of iterations 
K Number of clusters for K-Means clustering 
Hg Number of hoppers in a group 
Lf Number of levy flights 
d_th Threshold distance 
λ Penalty factor 
Cf Convergence factor 
O Objective values array 
H Grasshopper population 
B Baby hopper 
G Cluster labels 
C Cluster centroids 
FqH Food quality for individual hopper 
FqG Food quality for group 
Sp Surviving probability 
Pos Levy flight position 
Fit Fitness 
I Index with maximum fitness 

Algorithm 1 Grasshopper VM migration algorithm 

1 Input: Data matrix A, indices matrix L, number of 
iterations N, number of clusters K, parameters Hg, Lf, dth, 
λ, Cf 

2 Output: Updated grasshopper population H 
3 Initialize objective values array O 
4 for j ← 0 to N - 1 do 
5 O[j] ← CollectObjectiveValues(A, L[j][0]) 
6 end for 
7 Initialize grasshopper population H with collected objective 

values 
8 Apply K-Means clustering to O with K clusters, obtaining 

labels G and centroids C 
9 Initialize baby hopper B with zeros 
10 for j ← 0 to N - 1 do 
11 B ← InitializeBabyHopper(H[j]) 
12 for l ← 0 to Lf - 1 do 
13 for m ← 1 to Hg - 1 do 
14 B[m] ← SelectGroupMember(H, N) 
15 end for 
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16 FqH, FqG ← CalculateFoodQuality(B, C[G]) 
17 Sp ← UpdateSurvivingProbability(Sp, FqH, FqG, λ) 
18 Pos ← GenerateLevyPosition() 
19 B ← UpdateBabyHopperPosition(B, Pos, C[G]) 
20 Sp ← ApplyPenaltyFactor(Sp, λ) 
21 end for 
22 Fitness(Sp)= √((∑_{i=1}^{Lf}) Sp[i] )  
23 I ← FindMaxFitnessIndex(Sp) 
24 if Sp[I] > Cf then 
25 H[I] ← B 
26 end if 
27 end for 

The grasshopper algorithm’s significance in VM selection 
from overutilised PMs lies in its ability to optimise resource 
allocation, minimise PC, and ensure SLA compliance. By 
harnessing its optimisation capabilities, the algorithm helps 
identify superior VM-PM allocations, resulting in enhanced 
energy efficiency, reduced operational costs, and improved 
QoS for cloud users. The grasshopper algorithm represents a 
valuable approach to address resource allocation challenges 
in cloud data centres, particularly in the context of 
overutilised PMs, where efficient VM selection is crucial 
for sustainable and high-performance CC environments. 

The proposed work is inspired with the architecture of 
grasshopper algorithm and optimises it in terms of pairing 
and fitness evaluation as follows: 

1 Input parameters: 
• The algorithm takes several input parameters: 
• Data matrix A containing objective values. 
• Indices matrix L specifying data indices. 
• Number of iterations N. 
• Number of clusters K for K-Means clustering. 
• Parameters Hg, Lf, hdth, λ, and Cf for controlling 

various aspects of the algorithm. 

2 Objective values collection: 
• The algorithm starts by collecting objective values 

from the data matrix A based on the indices 
provided in the matrix L. 

3 Initialisation: 
• It initialises the grasshopper population H with the 

collected objective values. 
• Applies K-means clustering to the objective values 

array O to obtain cluster labels G and centroids C. 

4 Baby hopper initialisation: 
• Initialises the baby hopper B with zeros. 

5 Main Loop: 
• Iterates through each grasshopper in the 

population. 
• For each grasshopper, performs a set of actions: 

• Initialises the baby hopper B with values from the 
grasshopper. 

• Executes a loop for a predefined number of levy 
flights: 

• Selects group members randomly and updates the 
baby hopper. 

• Calculates food quality for individual hopper 
(FqH) and group (FqG). 

• Updates surviving probability (Sp). 
• Generates a random position for levy flight (Pos). 
• Updates the baby hopper position based on levy 

flight and centroid (C[G]). 
• Applies a penalty factor (λ) to the surviving 

probability. 

6 Fitness calculation: 
• Calculates fitness based on the surviving 

probability. 
• The fitness function is defined as the square root of 

the sum of surviving probabilities for all levy 
flights. 

7 Selection: 
• Finds the index with the maximum fitness. 
• If the maximum fitness exceeds a predefined 

convergence factor Cf, updates the grasshopper 
with the new baby hopper position. 

8 Output: 
• Outputs the updated grasshopper population. 

5.2 Firefly algorithm 
FA is a metaheuristic algorithm proposed by Yang in 2009. 
The FA draws its inspiration from the social behaviour of 
fireflies and their flashing patterns. The light intensity and 
the attractiveness of a firefly are key components in the 
formulation of the algorithm. 

The algorithm tries to mimic the behaviour of fireflies 
wherein the less bright fireflies tend to move towards the 
brighter ones. This is done in search of mate. If no brighter 
firefly is found, they move randomly. Moreover, the 
brightness of a firefly is seen as the objective function and is 
determined by the landscape of the problem under 
consideration. 

Let us explain the algorithm in detail using 
mathematical notations: 

• Objective function: First, we define the objective 
function f(x), where x = (x1, ..., xd) denotes the  
d-dimensional space of decision variables that are to be 
optimised. 

• Light intensity: The light intensity I of a firefly at a 
particular location x can be determined by the value 
attained at that location by the objective function. The 
light intensity I(x) is thus proportional to the function 
f(x). The exact relationship between the light intensity 
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and the function can vary depending on the problem. 
For maximisation problems, the brighter fireflies are 
those with higher function values, whereas for 
minimisation problems, the brighter fireflies are those 
with lower function values. 

• Attractiveness: The attractiveness beta of a firefly is 
seen as being proportional to the light intensity seen by 
adjacent fireflies. Thus, for a firefly i at location xi 
observing another firefly j at location xj, if firefly j is 
brighter (i.e., has higher light intensity), the 
attractiveness beta of firefly j to firefly i is calculated as 
beta = beta0 * exp(-gamma*rij). Here, beta0 is the  
 

attractiveness of a firefly at zero distance (i.e., the 
attractiveness at r = 0), gamma is a light absorption 
coefficient, and rij is the Euclidean distance between xi 
and xj. 

• Movement: In terms of movement, a firefly i is moved 
towards a brighter firefly j using the following formula: 
xi = xi + beta*(xj – xi) + alpha*(rand-0.5). In this 
equation, alpha is the step size, rand is a random 
number drawn from a uniform distribution in the 
interval [0, 1], and beta*(xj – xi) represents the 
attractiveness. The term alpha*(rand-0.5) introduces 
randomness in the movement, allowing fireflies to 
move randomly when there are no brighter fireflies. 

Algorithm 2 O-Fr Algorithm 
1  sfmc←0  →Selected for migration counter 
2 alpha ←0.1    →Alpha 
3 beta ←0.2    →Beta 
4 gamma ←0.1  →Gamma 
5 ss←10   →Step size  
6 Outputs: Reallocated VMs     
7 for sfm ← 1 to Lngth[SFM] do  →Selected for migration   
8  cCD ← vmC[sfm]   →Current CPU demand 
9  cRD ← vmRR[sfm]   →Current resource demand 
10  sfmc ← sfmc + 1     
11  pF←{}   →Possible flies 
12  pC←{}   →Possible costs 
13  pL ←{}   →Possible Light 
14  cIS←cRDx 1000    →Current instruction set 
15  for jj←1 to pmC do   →PM count   
16   aR←pmR[jj]  →Available resource 
17   aC←pmC[jj]  →Available CPU 
18  AV1 ←ConstantArray[0,{1,5}]  →Attraction Value1   
19  AV←AV1[[1]]   →Attraction Value 
20  {AIf1,AIf2,AIf3}←pmCosting [Length[pF] ⟶ At1 ⟶ cost, At2, PC, & At3 ⟶ CPUUtilisation 
21  LIA ←{}  →Light Intensity All 
22  for aif ←1 to Length[AIf1] do    
23     AIf2[aif ]L1 AIf1[aif ]x cIS x AIf3{aif ]

aC
 ← +  
 

 →Light intensity 

24     AppendTo[LIA,LI]   
25   end for    
26 mG←1000 Max Generations     
27 for mg←1 to mg do     
28    ff1c ←0 →Firefly1 counter 
29     for ff1←1 to Length [pF] do    
30      ff2c←0  →Firefly2 counter 
31       for ff2←1 to Length [pF] do    
32        if ff1≠ff2 then    
33         if ff2c>Length[LIA] then    
34          ff2c←0    
35         end if    
36  dist←LIA[[ff1c]]-LIA[[ff2c]]   →Distance  
37  ff2c←ff2c+1    
38  aVal←β*exp(–γr2).r+α →A value   
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39 
 [ ] [ ][ ] 1AV [ff1c] AV ff1c

aVal
← +  

   

40  ff2c←ff2c+1    
41  end if    
42  end for    
43  ff1c←ff1c+1    
44  end for    
45 end for    
46  {mV,mI}←findMax[AV]  →Max value,Max index 
47  Print[‘VM:’,sfm will be allocated to:pF[[mI]]    
48 end for     

 
Table 2 Utilised variables for FA 

Variable name Description 

migrationforselected (SFM)  List of VMs that have been selected 
for migration. 

VMCPU List that represents the CPU demand 
of each VM. 

req1resVM  List that represents the resource 
demands of each VM. 

PMres List representing the available 
resources for each physical machine 
(PM). 

PMCPU List representing the available CPU 
for each physical machine (PM). 

PM count (PMC) Count of PMs. 

Next, using the above pseudo-code, the O-Fr is 
implemented in the context of a VM migration issue, where 
the aim is to determine the optimal allocation of VMs to 
PMs to minimise some cost functions. 

• Initialise parameters alpha, beta, gamma, and stepsize 
for the FA. 

• Iterate over each VM sfm in the migrationforselected  list. 
The counters sfmcounter and sfm are used to index into 
the VMCPU and 1reqresVM  lists and if they exceed the 
length of these lists, they are reset or set to a random 
value within range. 

• The current CPU and resource demand for VM sfm are 
computed. This is done by summing the corresponding 
entries in VMCPU and 1 .reqresVM  

• The code then checks for each PM jj if it has sufficient 
CPU and resources to satisfy the demands of the 
current VM. If a PM has enough resources, it is 
considered a potential host for the VM and its index is 
added to the list possibleflies. 

• If no PM is found that can host the VM, a random PM 
is chosen as a potential host. 

 
 
 

• The code initialises the attraction values and calculates 
some costs using the pmcosting function for each potential 
host PM. The exact nature of these costs is not clear 
from the pseudo code but they likely involve some 
measure of the ‘cost’ or ‘suitability’ of assigning the 
VM to a PM. 

• The light intensity of each potential host (firefly) is 
calculated. The light intensity is a measure of the 
‘attractiveness’ or ‘suitability’ of a PM as a host for the 
VM. 

• In a nested loop, each potential host PM (firefly) is 
compared with every other potential host. If the light 
intensity of PM ff2 is greater than PM ff1, then ff1 is 
attracted towards ff2, moving in the decision space 
towards ff2. This is represented by updating the 
attraction value of ff1. Finally, after all potential host 
PMs have been compared, the PM with the maximum 
attraction value is chosen as the host for the current 
VM. The allocation of this VM to the chosen PM is 
then printed. 

6 Result and discussion 
This section evaluates the performance of O-Gr combined 
O-Fr algorithm and compare it with established state-of-the-
art algorithms. The assessment employs key metrics such as 
total PC, total utilised CPU, total number of migrations, and 
SLA violation. Synthetic workloads were used in our 
experiments to gauge the algorithm’s effectiveness. The 
results are juxtaposed with those of prominent VM 
migration algorithms, including Talwani et al. (2022), 
Kansal and Chana (2016) and Singh and Singh (2021). 
Findings indicate that O-Fr shows promise, demonstrating 
reduced total PC, optimised CPU utilisation, minimised 
migrations, and mitigated SLA violations. 

SLA violation in the context of PC can be defined as the 
extent to which the actual PC of a system exceeds the 
specified power limit or threshold defined in the SLA. 

[ ]
  (%)

(    ) /    
SLA violation

Actual PC SLA power limit SLA power limit
=

−
  (10) 
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Mathematically, the power limit (PL) based on the average 
value of neutral PMs can be expressed as: 

(1/ )*PL N Pi= Σ  (11) 

where 

PL is the power limit (average PC). 

N is the total number of neutral PMs. 

ΣPi represents the sum of PC values of all neutral PMs 

The improvement observed in the PC in kW OGrA+OFr 
with an average PC of 10.76524162 kW for 1,250 VMs, can 
be attributed to the utilisation of the Grasshopper and 
Firefly optimisation techniques within the OGrA+OFr 
algorithm. When compared to other methodologies, such as 
PC in kW Talwani et al. (2022). (11.73675885 kW), ‘PC in 
kW Kansal and Chana (2016)’ (11.74478644 kW), and ‘PC 
in kW Singh and Singh (2021)’ (11.63079994 kW),  
it becomes evident that the OGrA+OFr approach 
outperforms the others in terms of power efficiency. These 
nature-inspired algorithms, such as grasshopper and firefly, 
excel in efficiently selecting and placing VMs by 

considering factors like resource demands and VM 
migration strategies. By leveraging the collective 
intelligence of these optimisation methods, the OGrA+OFr 
algorithm achieves superior VM placement and migration 
decisions, ultimately leading to a significant reduction in 
PC. 

In the case of the OGrA+OFr, ‘SLA-V OGrA+OFr 
records a notably low SLA violation of 0.085716074, 
showcasing its effectiveness in meeting service-level 
requirements. This metric, ‘SLA-V OGrA+OFr’, represents 
the degree to which the OGrA+OFr algorithm adheres to the 
predefined service level agreement (SLA). In contrast, 
‘SLA-V Talwani et al. (2022)’, (0.094696604), ‘SLA-V 
Kansal and Chana (2016)’ (0.094192428), and ‘SLA-V 
Singh and Singh (2021)’ (0.093157854) show slightly 
higher SLA violation values, indicating that these 
algorithms may experience relatively more significant 
deviations from the specified SLAs. The OGrA+OFr 
algorithm excels in directly minimising SLA violations, 
underscoring its ability to maintain service quality while 
optimising PC and resource allocation. 

Table 3 Comparative analysis of PC 

Total number 
of PMs 

Total number 
of VMs 

Power 
consumption in kW 

OGrA+OFr 

Power consumption in kW  
Talwani et al. (2022) 

Power consumption in 
kW Kansal and Chana 

(2016) 

Power consumption in 
kW Singh and Singh 

(2021) 
10 50 8.20241825 9.41036164 9.40947362 9.26905356 
20 100 8.44126569 8.56809205 8.64360942 8.70471717 
30 150 8.647098 9.10156469 9.3189534 8.67120337 
40 200 8.8920332 8.97634621 10.0730238 9.3227766 
50 250 9.06739081 10.20679 10.1552512 9.35812619 
60 300 9.25533748 10.0228888 10.8907078 9.51590199 
70 350 9.43958284 10.0930988 10.4301495 9.8674329 
80 400 9.6215538 11.1911705 11.1450082 11.0378167 
90 450 9.8212016 10.8792815 10.6537092 11.0515121 
100 500 10.2049953 11.5245482 11.9843064 11.1810021 
110 550 10.2772765 11.0913943 11.252443 11.1234703 
120 600 10.6015424 11.9280635 10.7312915 11.0877528 
130 650 10.7257006 12.4941373 10.7279229 11.6185171 
140 700 11.0526153 11.9946018 11.3564497 11.7312727 
150 750 11.1078118 11.2899846 12.2598884 12.4741325 
160 800 11.4837127 11.9720174 11.7305129 12.7390514 
170 850 11.7539896 12.2965465 13.0518997 12.9858648 
180 900 11.8876926 13.0532678 13.2727998 13.0514914 
190 950 12.0129771 12.8039946 13.6639306 13.3707 
200 1,000 12.2651721 14.1663371 13.3355978 13.1338179 
210 1,050 12.59634 13.1468172 13.599417 14.1558084 
220 1,100 12.6333702 13.247967 13.0814719 14.5019697 
230 1,150 12.7242109 14.5345263 14.8984566 13.474453 
240 1,200 13.3305686 14.7415385 13.7018972 13.8101399 
250 1,250 13.0851828 14.683635 14.2514896 13.532014 
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Table 4 SLA-V comparison 

Total number 
of PMs 

Total number of 
VMs SLA-V OGrA+OFr SLA-V Talwani et al. 

(2022) 
SLA-V Kansal and 

Chana (2016) 
SLA-V  

Singh and Singh (2021) 

10 50 0.08403747 0.09401515 0.09188212 0.0987554 
20 100 0.08419547 0.09679518 0.0963706 0.08511192 
30 150 0.08473805 0.08728784 0.08635815 0.09041836 
40 200 0.08442284 0.09274834 0.09874877 0.09077092 
50 250 0.08416002 0.09929489 0.0867523 0.08465388 
60 300 0.08528328 0.09518106 0.09105944 0.08821415 
70 350 0.08450827 0.09389514 0.08854359 0.09704826 
80 400 0.08452146 0.09356391 0.08486396 0.09099129 
90 450 0.08557475 0.09541033 0.08609236 0.0866346 
100 500 0.08481286 0.08642543 0.09413995 0.0967023 
110 550 0.08640727 0.0944647 0.10108373 0.09632576 
120 600 0.08467212 0.09485055 0.09754149 0.08992207 
130 650 0.08537913 0.09246261 0.09721514 0.09033496 
140 700 0.08612586 0.08909842 0.09757344 0.08989068 
150 750 0.08604972 0.09264382 0.09603147 0.09608064 
160 800 0.08580055 0.09288515 0.09602369 0.09769692 
170 850 0.08629814 0.09981152 0.09041113 0.091239 
180 900 0.08724471 0.09545 0.10284989 0.09067882 
190 950 0.08766691 0.10238738 0.1030168 0.09069712 
200 1,000 0.08735716 0.09901291 0.09553461 0.09282469 
210 1,050 0.08588595 0.09726938 0.09198792 0.0964512 
220 1,100 0.08636457 0.10016552 0.09244575 0.09832093 
230 1,150 0.08785977 0.09479683 0.10104138 0.10001901 
240 1,200 0.08644173 0.09809122 0.09928741 0.09873317 
250 1,250 0.08709379 0.08940782 0.08795561 0.10043031 

Table 5 Number of migrations 

Total number 
of PMs 

Total number 
of VMs 

Number of migrations 
OGrA+OFr 

Migration count 
Talwani et al. (2022) 

Migration count Kansal 
and Chana (2016) 

Migration count Singh 
and Singh (2021) 

10 50 14 16 17 17 
20 100 28 30 31 31 
30 150 39 41 42 45 
40 200 72 77 77 76 
50 250 81 83 85 82 
60 300 86 89 90 94 
70 350 125 126 128 131 
80 400 114 117 116 119 
90 450 132 136 139 133 
100 500 150 151 152 151 
110 550 195 207 209 197 
120 600 194 198 197 211 
130 650 212 214 215 219 
140 700 243 262 266 244 
150 750 242 269 272 244 
160 800 239 241 242 251 
170 850 235 243 245 236 
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Table 5 Number of migrations (continued) 

Total number 
of PMs 

Total number 
of VMs 

Number of migrations 
OGrA+OFr 

Migration count 
Talwani et al. (2022) 

Migration count Kansal 
and Chana (2016) 

Migration count Singh 
and Singh (2021) 

180 900 234 236 237 246 
190 950 252 255 255 267 
200 1,000 265 274 275 266 
210 1,050 347 335 348 349 
220 1,100 330 354 355 333 
230 1,150 323 351 353 326 
240 1,200 338 340 343 343 
250 1,250 408 421 423 410 

Figure 3 Improvement graph for SLA (see online version for colours) 
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Figure 4 Improvement in PC (see online version for colours) 
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The ‘average migration count OGrA+OFr’, with an average 
value of 191.64, highlights the efficiency of the OGrA+OFr 
algorithm in minimising the total number of VM migrations 
for a scenario involving 1,250 VMs. This metric represents 
the average count of VM migrations required during the 
optimisation process. In contrast, ‘average migration count 
Talwani et al. (2022)’ (205.08), ‘average migration count 
Kansal and Chana (2016)’ (204.04), and ‘average migration 

count Singh and Singh (2021)’ (200.64) exhibit slightly 
higher average migration counts. This suggests that these 
alternative algorithms may require more migrations on 
average to achieve resource optimisation. The OGrA+OFr 
algorithm’s ability to reduce the average migration count 
highlights its effectiveness in resource allocation and VM 
placement, making it a compelling choice for minimising 
disruptions in large-scale virtualised environments. 
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Figure 5 Improvement in number of migration (see online version for colours) 
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Figure 3 visually illustrates the substantial improvements 
achieved by the OGrA+OFr optimisation algorithm in 
mitigating service level agreement violation (SLA-V) when 
compared to two existing algorithms, Talwani et al. (2022) 
Kansal and Chana (2016) and Singh and Singh (2021). This 
graphical representation presents a comprehensive view of 
the algorithm’s performance across various scenarios, 
including different numbers of PMs and VMs. The vertical 
axis represents the percentage improvement in SLA-V, 
which ranges from approximately 0.4% to 15%. Each data 
point on the graph corresponds to a specific scenario, 
making it evident that the OGrA+OFr algorithm 
consistently enhances the QoS delivery, thereby reducing 
SLA breaches. These improvements hold significant 
implications for ensuring a reliable and robust CC 
environment, particularly when accommodating diverse 
workloads and resource demands. Figure 4 provides a visual 
depiction of the positive impact of the OGrA+OFr 
optimisation algorithm on PC reduction in comparison to 
Talwani et al. (2022), Kansal and Chana (2016) and Singh 
and Singh (2021). This graphical representation further 
emphasises the algorithm’s effectiveness in optimising 
power utilisation within CC environment. 

The vertical axis represents the percentage improvement 
in PC, which spans from approximately 0.9% to 15%. Each 
data point on the graph corresponds to a specific scenario 
involving varying numbers of PMs and VMs. The upward 
trendline in Figure 4 underscores that the OGrA+OFr 
algorithm consistently achieves improved power efficiency. 
These improvements have dual benefits, contributing to 
environmental sustainability by reducing energy 
consumption and generating cost savings for cloud service 
providers. The ability to maintain high-quality service while 
minimising resource waste aligns with contemporary green 
computing initiatives and enhances the overall efficiency of 
cloud infrastructure. In Figure 5, a comparative analysis of 
the improvement percentages over the proposed OGrA+OFr 
method as discussed over the three different methods. Three 
different papers, namely Talwani et al. (2022), Kansal and 

Chana (2016), and Singh and Singh (2021), have proposed 
strategies to enhance the efficiency of OGrA+OFr in 
reducing the number of migrations. The improvement 
percentages, depicted in the graph, demonstrate the 
variability in effectiveness across these methods. Talwani  
et al. (2022) exhibit improvements ranging from 0.662% to 
12.5%, while Kansal and Chana (2016) show enhancements 
ranging from 1.28% to 17.65%. Similarly, Singh and Singh 
(2021) present improvements ranging from 0.423% to 
13.33%. These findings underline the diverse approaches 
taken to mitigate migrations in OGrA+OFr and highlight the 
potential for significant efficiency gains. 

7 Conclusions 
In this paper, a novel optimisation algorithm has been 
introduced to enhance resource allocation and management 
within CC environments. The approach leverages the 
Grasshopper optimisation algorithm for VM selection and 
the OFr algorithm for PM selection, with the aim of 
optimising critical QoS parameters while effectively 
addressing concerns related to SLA-V and PC. The 
integration of the OGrA for VM selection represents a 
notable innovation in this research. This phase plays a 
pivotal role in identifying the most suitable VMs for 
migration, considering parameters such as CPU utilisation 
and PC. The evaluation demonstrates that the OGrA+OFr 
algorithm consistently outperforms existing solutions in 
terms of SLA-V, achieving substantial improvements 
ranging from approximately 0.4% to 15%. This highlights 
the algorithm’s robustness in elevating the QoS delivery, a 
vital aspect in CC. Complementing the VM selection, the 
algorithm leverages the OFr algorithm for PM selection. 
This phase is pivotal in ensuring that VMs are strategically 
placed on PMs capable of efficiently accommodating their 
resource demands. This leads to a substantial reduction in 
PC and an overall enhancement in system performance. The 
OGrA+OFr consistently reduces PC, with improvements 
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ranging from approximately 0.9% to 15%, aligning 
seamlessly with green computing initiatives and presenting 
cost-saving opportunities for cloud service providers. The 
comprehensive evaluation underscores the algorithm’s 
versatility across diverse scenarios, encompassing varying 
numbers of PMs and VMs. The consistent positive trend in 
improvement percentages across these scenarios reaffirms 
the algorithm’s reliability and adaptability in diverse CC 
environments. 

In comparison to existing algorithms, including those 
developed by Talwani et al. (2022), Kansal and Chana 
(2016), and Singh and Singh (2021), the OGrA+OFr 
algorithm emerges as a promising solution. It adeptly 
addresses the complexities of VM selection and PM 
placement, aligning itself with contemporary green 
computing initiatives and ensuring cost-effective resource 
management. The OGrA+OFr algorithm consistently 
reduces PC across various scenarios, with improvements 
ranging from approximately 0.9% to 15%. This signifies its 
efficiency in resource allocation and environmental 
sustainability efforts. In the evaluations, the OGrA+OFr 
algorithm exhibits a notable reduction in the total number of 
migrations required, minimising operational disruptions and 
resource overhead. In comparison to the algorithm 
developed by Singh and Singh (2021), our OGrA+OFr 
algorithm showcases significant improvements in SLA-V, 
underscoring its effectiveness in ensuring consistent service 
quality. The OGrA+OFr algorithm consistently outperforms 
Singh and Singh’s (2021) algorithm in terms of PC 
reduction, highlighting its efficiency in optimising resource 
utilisation. 
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Authors have not received any funding for this research 
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