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Abstract: Currently, as an extension of cloud computing, edge computing has attracted much 
attention for its ability to reduce delay and energy and bandwidth consumption. For satisfying the 
demands of resource-intensive and delay-sensitive applications and solving the problems of 
existing computation offloading algorithms, such as inability to handle massive amounts of data 
in time and the need for strong computing capability, an intelligent computation offloading, 
resource allocation and collaborative caching scheme with joint optimisation of delay and energy 
consumption is proposed. Specifically, we formulate an optimisation problem of minimising the 
weighted sum of all tasks’ completion time and energy consumption under the constraints of 
delay, bandwidth, computing capability, and energy. To solve the above mixed integer nonlinear 
programming problem (MINLP), we develop a deep reinforcement learning (DRL)-based 
collaborative computation offloading and caching decision (DRL-CCOC) algorithm. The 
algorithm jointly optimises offloading decisions, caching decisions, the occupation ratio of the 
wireless channel bandwidth and the edge server’s computing capability which is allocated to the 
task. It can generate the optimal policy and adapt to dynamic network environment with the 
ability of autodidacticism. Finally, the simulation results demonstrate that the DRL-CCOC can 
converge at a faster rate and reduce the total cost significantly compared with other methods, 
they also confirm the strong dynamic adaptability of our algorithm. 

Keywords: computing; computation offloading; caching; deep reinforcement learning; DRL; 
resource allocation. 
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1 Introduction 
With the advancement of internet of things (IoT) and 
continuously increasing requirements of resource-intensive 
and delay-sensitive applications to the public, such as 
objective recognition and augmented reality (Ma et al., 
2020). IoT devices play important roles in our daily life. 
However, faced with application requirements for data 
collection, processing, the local IoT devices cannot handle 
them on time because of resource constrained. To deal with 
these puzzles, cloud computing attracts attention. In cloud 
computing, the local devices transmit their tasks to the 
cloud server, where the cloud server uses its vast computing 
resource for computation, thus greatly making up the 
shortcoming of local computing. Nevertheless, the cloud 
server is usually far away from the devices, which resides in 
the core network (Ale et al., 2021), transmitting and 
downloading massive data to/from the remote cloud server 
cause heavy traffic jams in wireless channel and 
unpredicted service delay. 

For coping with the issues in cloud computing, edge 
computing, as an extension of cloud computing, receives 
great interest (Lin et al., 2020; Jiang et al., 2019; Lin et al., 
2019). Compared with cloud computing, edge computing is 
closer to the devices. Therefore, the devices can offload 
tasks to nearby the edge server (ES) rather than sending 
them to remote cloud server (Zhang et al., 2015). 
Accordingly, the delay and energy consumption caused by 
transmission can be reduced. Chen et al. (2019) proposed a 
dynamic computation offloading algorithm, based on 
stochastic optimisation, which decomposes the optimisation 
problem into a series of sub-problems and solves these sub-
problems in an online and distributed way to minimise cost 
and queue length. Their experiments’ result verifies the 
effectiveness of computation offloading in edge computing. 
In order to fully utilise computing resources, Zhao et al. in 
[8] studied the design of computation offloading in fog 
radio access network to minimise the total cost in respect to 
the energy consumption and service latency. Zhao et al. 
(2019) proposed a multi-objective computation offloading 
algorithm combining multi-objective evolutionary algorithm 
based on decomposition with invasive weed optimisation 
and differential evolution. In Chowdhury (2021) first 
investigated different challenges, requirements, and  
latency-sensitive applications of emerging IoT and 
presented a flexible heuristic-based prioritised resource 
assignment strategy for IoT application execution in the 5G 
era to ensure low-latency for heavy weight IoT application 
processing. Dinh et al. (2018) introduced a model-free 
reinforcement learning offloading mechanism which helps 
users learn their long-term offloading strategies to maximise 
their long-term utilities. There is also combined cloud and 
edge computing to enable applications to be executed with 
low latency (Ning et al., 2019). However, in these studies, 
they do not consider caching in ES, so that the same tasks 
are computed repeatedly leading to redundant delay and 
energy consumption. 

To further improve the users’ quality of experience, 
caching mechanisms are studied in edge computing in 

works (Simon et al., 2020; Hao et al., 2018; Yu et al., 2018; 
Ndikumana et al., 2017), such as caching the content or the 
result. Xu et al. (2018) investigated the extremely 
compelling but much less studied problem of dynamic 
service caching in mobile edge computing-enabled dense 
cellular networks and optimised dynamic service caching 
and task offloading. Usually, the limited caching space at 
resource-constrained ES needs caching placement to 
determine which tasks to cache. Dave and Kotak (2023) 
proposed to analyse cache memory parameters before 
choosing the best cache to lower power and cost. Bi et al. 
(2020) introduced a single ES that mobile users can upload 
and run their programs at the ES, while the server can 
selectively cache the previously generated programs for 
future reuse. Liu et al. (2018) proposed a novel mobile edge 
computing enabled wireless blockchain framework where 
the cryptographic hashes of blocks can be cached. As to 
ignore the impact of tasks caching on computation 
offloading at ES, which leads to a longer competition time, 
Zhao et al. (2020) formally defined the problem of 
offloading dependent tasks with service caching, and 
designed an efficient convex programming-based algorithm 
to solve this problem. Yang et al. (2020) formulated a  
long-term reward maximisation problem optimising the task 
offloading and caching decisions and computation resource 
allocation. To tackle this optimisation problem, they 
propose a single-agent Q-learning algorithm which is 
invoked to learn a long-term resource allocation strategy. 
Chen et al. (2018) introduced a new concept of computing 
task caching and gave the optimal computing task caching 
policy to optimise computing, caching, and communication 
in edge cloud. The simulation results show that their 
algorithm had shorter delay than other schemes. To further 
reduce the data transmission cost and job delay, a shareable 
cache to the ES is added in Wei et al. (2020), namely, the 
authors proposed a cache-aware computation offloading 
strategy for edge cloud computing and minimise the 
equivalent weighted response. Accordingly, they design an 
online computation offloading algorithm to optimise the 
problem. Due to the allocation of resource in fog 
computing, Lan et al. (2019) introduced two computation 
offloading scenarios, in the first scenario, a task caching 
algorithm based on genetic algorithm (GA) is used to 
optimise the problem. In the second scenario, the 
optimisation problem of offloading and resource allocation 
is expressed as a mixed integer nonlinear programming 
problem (MINLP) which is solved by a distributed 
algorithm with Lagrange multiplier. 

Traditional algorithms cannot handle massive amounts 
of data in time and be applied in practical dynamic systems. 
As a result, deep learning (DL) is introduced into 
computation offloading collaborative caching. For example, 
Wang and Friderikos (2020a) proposed a framework to 
reduce the computational complexity of the underlying 
integer mathematical program by first predicting decision 
variables related to optimal locations using a deep 
convolutional neural network (CNN) and then CNN is 
trained offline to solve the optimisation problems. The work 
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of Lei et al. (2019) combines the predictions from CNN 
with the optimal branch and bound algorithm to reduce the 
feasible region of time slot allocation and improve the 
caching content delivery problem. Besides, there are many 
works studying caching and computation offloading with 
DL, such as Wang and Friderikos (2020b), that summarise 
the utilisation of DL for caching in edge network. By their 
analysis, caching and machine learning are effectively used 
in edge computing. However, the complex network 
structure of DL algorithms brings lots of hardware cost. 
What’s more, DL algorithms need plenty of labelled data 
and extremely strong computing capability. 

Inspired by the above challenges, we design an 
intelligent computation offloading, resource allocation and 
collaborative caching scheme. The key contributions are 
three-fold as follows: 

• In order to alleviate the pressure of current huge user 
numbers and energy consumption, we formulate a 
mixed integer nonlinear programming optimisation 
problem to minimise the weighted sum of the total 
completion time and energy consumption of tasks 
under the constraints of delay, bandwidth, computing 
capability, and energy with relatively small hardware 
and computing cost. 

• To solve the above optimisation problem, a deep 
reinforcement learning (DRL)-based collaborative 
computation offloading and caching decision  
(DRL-CCOC) algorithm is proposed. This algorithm 
jointly optimises offloading decisions, caching 
decisions, the occupation ratio of the wireless channel 
bandwidth and the ES’s computing capability which is 
allocated to the task. It can obtain the optimal policy 
and adapt to dynamic network environment with the 
ability of autodidacticism. 

• Compared with other benchmark schemes, the 
simulation results show that the proposed algorithm has 
the lowest cost under different system parameters, and 
it can converge at a faster rate. 

The rest of this article is organised as follows: Section 2 
describes the system model; in Section 3, an optimisation 
problem is formulated; Section 4 introduces the proposed 
DRL-CCOC algorithm in detail; Section 5 is the simulation 
results and discussions. Finally, Section 6 is conclusions. 

2 System model 
In this section, we construct a computation offloading 
model with content caching in which ES and N IoT devices 
are considered in our system model. We define i∈{1, 2, 3, 
…, N} as the task of the device i generated. The size of task 
i and the number of CPU cycles required to compute for 
task i are wi and ci, respectively. 

2.1 Network framework 
We consider a two-layer architecture. At the bottom of this 
architecture is IoT devices where tasks will be generated at 
the beginning of a time slot with a certain probability. We 
design the specific processing of computing tasks as shown 
in Figure 1. 

Figure 1 System mode (see online version for colours) 

 

Edge Server

IoT Devices

·····
 

• IoT devices: IoT devices include cameras, dermoscopy, 
ultrasound machine, and so on. The users generate the 
task through IoT devices and tasks can be computed 
locally or offloaded to the ES for calculation through 
the adjacent base station (BS). Denote the task set as κ 
= {1, 2, …, N}. 

• ES: The ES plays a role with two main functions:  
1 the ES can receive the tasks offloaded from IoT 

devices through the BS and process them 
2 it can also cache the tasks to obtain less delay and 

energy consumption. 

The ES identifies whether tasks generated by IoT devices 
are cached in the ES, computes them directly if they are; if 
there is no cache, caching decisions will be made. 
Meanwhile, the communication and computing resources of 
the ES will be allocated to tasks which are offloaded to the 
ES. 

2.2 Caching and computing model 
When the IoT device generates task i, it first makes the 
decision that the task is computed locally or offloaded to 
ES. The symbol φ = [φ1,φ2, …, φN] denotes the offloading 
decisions; the computation task will be executed at local if 
φi = 0. When φi = 1, the device needs check ES whether has 
cached task i. If it has cached, the device can hit cached task 
i and compute it at ES directly. Otherwise, we will offload 
task i to ES. 
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In system model, we assume that the caching decision 
for one computation task is defined as xi. xi∈X and X = [x1, 
x2, …, xN]. If xi = 1, it implies that ES has cached task i, i.e., 
the device hits the cached task at ES, the computation task 
will be computed directly. In our scenario, we also consider 
the allocation of communication and computing resources. 
Let σi as the wireless channel bandwidth occupation ratio of 
task i between devices and ES. ψi represents the computing 
resource occupation ratio which is allocated to task i. The 
ranges of σi and ψi are both [0, 1]. 

The aim of optimisation is to joint optimisation of 
offloading decisions, caching decisions, communication and 
computing resources to reduce the total cost of the tasks. 
The total cost includes delay and energy consumption. 

• Local computing: When task i was computed at local, 
i.e., φi = 0, σi = 0 and ψi = 0. Without loss of generality, 
delay of task i at local can be expressed as 

,iloc
i loc

i

ct
f

=  (1) 

where represents the computing capability of device i 
and the energy consumption of processing this task is 
given by 

,iloc loc
i ii i loc

i

ce Pt P
f

= =  (2) 

where represents the computing power of device i and 
the local computing capability varies from device to 
device. There is no delay and energy consumption for 
tasks’ transmission. 

Combining delay (1) and energy consumption (2) so 
that the total cost of task i computing locally can be 
given as 

(1 )loc loc
loc i iC t e= ∂ + − ∂  (3) 

where ∂ represents the weight coefficient of delay. To 
increase the robustness and dynamic adaptability of the 
model, we set a constrain for so that tasks completion 
time and energy consumption weights can be changed 
depending on IoT devices’ demands and the rang ∂ of is 
[0, 1]. 

• Computation offloading with cached task i: We set  
φi = 1 as the offloading decision of task i. Device i will 
check ES whether has the cached task i. If the task 
cached that is xi = 1, device i will hit the cached task 
and doesn’t have to offload the task and this task can be 
computed at ES directly. Delay and energy 
consumption for computing task i can be denoted 
respectively as 

,ie
i e

i i

ct
ψ f

=  (4) 

and 

= ,ie e
e ei i e

i i

ce P t P
ψ f

=  (5) 

where Pe is the computation power of the ES, e
if  

represents the computing capability of ES. According 
to equations (4) and (5), we could compute the total 
cost of the computation offloading with cached tasks i 
including delay and energy consumption as 

(1 )e e
cached i iC t e= ∂ + − ∂  (6) 

• Computation offloading without cached task i: 
Accordingly, if task i is not cached, we will upload task 
i from device i to ES through wireless access. In this 
case, φi = 1 and xi = 0. The device does not hit the task 
cache and the task can only be offloaded to ES. 
Therefore, delay can be expressed as 

_ ,e off up e
i i it t t= +  (7) 

and the energy consumption is 
_ ,e off up e

i i ie e e= +  (8) 

where up
it  represents the time taken to offload task i to 

ES. Similarly, up
ie  is the energy consumption by 

offloading task i. They are 

2

2

,
log 1

i iup
i i

u up
i

o i

w wt
R P h

σ B
g σ B

= =
 

+ 
 

 (9) 

where Ru represents the transmission speed of wireless 
channel, the bandwidth of wireless channel is defined 
as B, the transmission power of IoT devices is defined 
as Pup, the wireless channel gain between task i and ES 
is defined as h and the spectral density of the channel 
noise power is defined as go, and 

2

2log 1

i iup up
up up upi i

u up
i

o i

w we P t P P
R P h

σ B
g σ B

= = =
 

+ 
 

 (10) 

Therefore, according to equations (4), (7) and (9), the total 
delay for task i is 

_
2

2

= +
log 1

i ie off
i e

iup i
i

o i

w ct
ψ fP h

σ B
g σ B

 
+ 

 

 (11) 

and according to equations (5), (8) and (10), the energy 
consumption of offloading task i is 

_
2

2

+
log 1

i ie off
up ei e

iup i
i

o i

w ce P P
ψ fP h

σ B
g σ B

=
 

+ 
 

 (12) 

Combining equations (11) and (12), we can give the total 
cost of offloading task without cache hit as 
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_ _
_ (1 )e off e off

e off i iC t e= ∂ + − ∂  (13) 

Li et al. (2018) and Chen (2015) they do not fundamentally 
consider delay and energy consumption for data downlink 
because the cost of transmitting and computing tasks are 
much more than downlink. Therefore, we do not take the 
cost of tasks downlink into consideration as well. 

Through above analysis, we define delay and energy 
consumption for task i are Ti and Ei respectively. They are 

_

, 0
, 1 1

, 1 0

loc
ii

e
i i ii

e off
i ii

t
T t and x

t and x

=
= = =
 = =

φ
φ
φ

 (14) 

and 

_

, 0
, 1 1

, 1 0

loc
ii

e
i i ii

e off
i ii

e
E e and x

e and x

=
= = =
 = =

φ
φ
φ

 (15) 

3 Problem formulation 
In this section, we formulate an optimisation problem. The 
objective is to minimise the weighted sum of the total 
completion time and energy consumption of the task set κ. 
The weighted sum cost function for the task set κ can be 
expressed as 

( ), , , (1 )i i i iC x σ ψ T E= ∂ + − ∂φ  (16) 

We define the total task set delay as 

1 2max[ , ,..., ]NT T T T=  (17) 

and the total task set energy consumption as  

( )( )_

1 1

(1 ) 1
N N

e offloc e
i i i i ii i i

i i

E E e x e x e
= =

= = − + + −  φ φ  (18) 

Through the above system model and associated definitions, 
we can formulate the following optimisation problem by 
jointly optimising the offloading decision φi, caching 
decision xi, the wireless channel bandwidth occupation ratio 
θi and the computing resource occupation ratio ψi with a set 
of constraints. The specific optimisation problem is given as 
follows: 

, , ,
1

P: min (1 )
i i i i

N

x σ ψ
i

T E
=

∂ + − ∂φ
 (19) 

1

. . 1
N

i
i

s t σ
=

≤  (19a) 

1

1
N

i
i

ψ
=

≤  (19b) 

tolerateT T≤  (19c) 
tolerateE E≤  (19d) 

, {0,1}i ix ∈φ  (19e) 

, [0,1]i iσ ψ ∈  (19f) 

In (19), the objective function implies the minimisation of 
the weighted sum of completion and energy consumption 
for the task set κ. Equations (19a) and (19b) ensure that 
occupation ratios of communication and computing 
resources of ES do not exceed unity. Equations (19c) and 
constraint (19d) represent that delay and energy 
consumption of completing all tasks should not exceed the 
tolerable values. Equation (19e) demonstrates the value of 
caching decision and offloading decision is limited to 0 or 1. 
When they are 0, task i is not cached and computed at local. 
Equation (19f) indicates the range of the weight coefficient 
∂, σi and ψi. When θi and ψi are equal to 1, the meaning is 
that task i is cached and the task is offloaded to ES. Our 
computation offloading algorithm is based on DRL. We will 
explain in more detail below. 

4 Deep reinforcement learning-based 
collaborative computation offloading and 
caching decision 

The above non-convex optimisation problem P1 is MINLP, 
which is a non-deterministic polynomial hard (NP-hard) 
problem as well. Due to the demands of dynamic 
adaptability, it has difficulty in solving this problem  
with the conventional algorithm. Thus, we propose a  
DRL-CCOC algorithm to solve the weighted sum of the 
total completion time and energy consumption of the task 
set, i.e., to get the minimum cost. The specific solution 
procedures of the proposed algorithm are illustrated in 
Figure 2. 

Figure 2 Framework of DRL-CCOC (see online version  
for colours) 
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4.1 Elements definition 
At a certain time slot t, we can define that the environment 
state is St, the agent performs the action At. With the certain 
possibility, the environment is transferred to a new state St+1 
and the agent gets an immediate reward Rt. The aim is to 
maximise Rt by our optimal policy. The three elements are 
described as follows: 
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• State space:  

( ( ))tS C t=  (20) 

where is the weighted sum of the total completion time 
and energy consumption of the task set κ. 

• Action space 

( ),a b
t t tA A A=  (21) 

where ( )( ), ( ), ,a
i itA σ t ψ t i κ= ∈  σi and ψi(t) represent 

the wireless channel bandwidth occupation ratio and 
the computing resource occupation ratio, respectively. 

( )( ), ( ), ,b
i itA t x t i κ= ∈φ  φi(t) and xi(t) represent 

offloading decision and caching decision for task i. 

• Reward space: ES (i.e., the agent) will receive an 
immediate reward Rt(St, At) when the action At 
performed in a certain state St. Thus, the reward plays a 
critical role in the process of DRL-CCOC. Our 
optimisation problem is related to the reward function 
and the goal of the agent is to minimise Ci, i.e., 
maximise Rt(St, At), that is 

,( ) (17 ) (17 )

, .

i
i κt

C t a g
R

ν otherwise
∈

− −= 



 (22) 

where v (v ≤ 0 and ( )i
i κ

v C t
∈

< − ) denotes a constant that 

indicates environment gives a bad feedback for agent to 
study better. 

4.2 DRL-CCOC algorithm 
Based on deep deterministic policy gradient (DDPG) 
algorithm, the framework of the algorithm we design is 
composed of an agent, an environment and three elements. 
Three elements are state S, action A and reward function R. 
The network is divided into policy network and value 
network. They can be described into four networks: current 
actor network, current critic network, target actor network 
and target critic network. 

Current and target actor networks are policy network. 
Policy network outputs policy in which the current network 
outputs current action At according to current state St. The 
target network has the same networks structure as the 
current network. The responsibility of it is predicting the 
next action At+1 based on the next state St+1. 

Current and target critic networks are value network. 
We can obtain the corresponding value function Q(S, A, ω) 
according to current state St or next state St+1 and current 
action At or next action At+1 to critic the policy network. The 
current and target critic network have the same structure. 

When a random strategy is used, the action taken is 
based on a probability distribution and we will obtain an 
uncertain action. The deterministic strategy our algorithm 
used is simple. Although the probability of action is 
different in the same state, there is only one maximum 

probability. If only taking the action with the maximum 
probability, we remove the probability distribution. At a 
time slot t, the action is uniquely deterministic, that is, the 
offloading, caching and resources allocation strategy 
becomes πθ(St). The output of policy network is a 
deterministic action, i.e. 

( )t θ tA π S=  (23) 

Our algorithm adopts deterministic policy getting from 
function πθ. We can get the current action from networkπθ 
and θ is the parameters of its neural network. In order to add 
the randomness to the learning process, we will add 
Ornstein-Uhlenbeck (OU) noise Ht to the action a

tA  
selected by our algorithm, that is, the expression for the 
final resources allocation action interacting with the 
environment is 

( )a
θ t ttA π S ξH= +  (24) 

where ξ represents the annealing factor of noise. The value 
of ξ decreases with the increase of iterations, the 
convergence speed of the training process can be improved 
by using the noise. 

We define a probability range of Ω to represent the 
offloading and caching decision, which is discrete action 

.b
tA  By Ω, we can transform continuous inputs into discrete 

inputs. 

0, 0.5,
1, 0.5.

b
tA

Ω ≤
=  Ω >

 (25) 

ES, as the agent, performs the action At, then action At 
interacts with the environment to get the reward Rt and the 
initial state St switches to next state St+1. (St, At, St+1, Rt) will 
be stored into experience replay buffer. At each training 
session, G samples are randomly sampled from the 
experience replay buffer to train. After that, the target actor 
network will take next action At+1 according to the next state 
St+1 sampled in the experience replay buffer. 

The target critic network computes value function 
Q′(St+1, At+1, ω′) for sample ι + 1, ι∈{1, 2, …, G}, so the 
target Q value is 

( )1 1' , , 'ι ι ιy R Q S A ω+ += +ϖ  (26) 

where ϖ is the discount factor. 
In the value network, we use the mean square error loss 

function 

( )( )2

1

1( )= , ,
G

ι ι ι
ι

Loss ω y Q S A ω
G =

−  (27) 

where G is the number of samples of batch. We make use of 
gradient descent method to minimise Loss(ω) to update 
current critic network parameter ω as follow:  

( )ωω ω Loss ω← + ∇ϑ  (28) 

where ϑ is the learning rate of ω. 
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As for actor network, it updates the current actor 
network parameter θ by the feedback Q value of the current 
critic network. Therefore, the loss of actor network is 
defined as 

( )
1

1( ) , ,
G

ι ι
ι

J θ Q S A θ
G =

= −   (29) 

To make the loss smaller and Q value larger, we use 
gradient descent to update parameter θ as follows: 

( )θθ θ χ J θ← + ∇  (30) 

where χ is the learning rate of θ. 
The target network parameter θ′ and ω′ are both 

periodically replicated from θ and ω by soft update as 

' (1 ) 'θ λθ λ θ← + −  (31) 

and 

' (1 ) 'ω λω λ ω← + −  (32) 

where is the update speed coefficient, which is usually 
small, like 0.1 or 0.01. By it, the process of training can be 
very stable. After constantly learning, ES can fetch the 
optimal offloading, caching and resources allocation 
strategy by leveraging network parameters that are optimal. 
In order to better understand the process of the solution, we 
concise the process as follows: 

Algorithm 1 Deep reinforcement learning-based collaborative 
computation offloading and caching decision 
algorithm 

Input: wi and ci, i∈κ 

Output: Optimal policy ( )* * * *, , ,i i i ix σ ψφ , i∈κ. 

1 BEGIN 
2 Initialise target network parameters θ′ and ω′with θ′= θ, 

ω′ = ω; 
3 Initialise experience replay buffer 
4 FOR ζ from 0 to maximum episode DO 
5 Initialise OU noise and initial state St; 
6 FOR t = 0 to ℵ DO 
7 Based on the current state St, select action 

( ),a b
t t tA A A=  

8 Execute At 
9 Obtain next state St+1, reward Rt by interacting 

with environment 
10 Save (St, At, St+1, Rt) into experience replay buffer; 
11 Update state St to St+1 
12 Sample G samples from the experience replay 

buffer, compute target Q value based on equation 
(26) 

13 Update current critic network parameter ω by 
equations (27) and (28) 

14 Update current actor network parameter θ by 
equations (29) and (30) 

15 Soft update target critic network parameter θ′ by 
equation (31) 

16 Soft update target critic network parameter ω′ by 
equation (32) 

17 END FOR 
18 END FOR 
19 Obtain optimal policy ( )* * * *, , ,i i i ix σ ψφ  and minimum C*. 

20 END 

5 Simulation results and discussions 
In this section, we evaluate the effectiveness of the  
DRL-CCOC algorithm through simulation experiments. 
Compared with several typical related schemes, our 
algorithm is superior to the other. 

In our simulation environment, we choose 7 different 
tasks from 7 different IoT devices. The size of tasks w are 
randomly assigned from 100 Kb to 400 Kb. The numbers of 
CPU cycles c are set randomly from 10 to 30 Gcycle. The 
wireless channel bandwidth B is set to 100 Mb/s; the local 
computing capability of IoT devices loc

if  is range from 3 
Gcycle/s to 25 Gcycle/s; the computing capability of ES e

if  
is 180 Gcycle/s. We set every IoT device with the same 
computing and transmission power, i.e., Pi and Pup are 0.04 
J and 0.06 J, respectively. The computing power of the ES 
Pe is 0.1 J. The weight coefficient ∂ is 0.5. The update 
coefficient of the target network hyperparameter χ is set to 
0.001, and the discount factor γ is 0.99. TensorFlow and 
MATLAB are jointly used in our simulation. 

Figure 3 Convergence effect of the reward function under 
different learning rates of actor network (see online 
version for colours) 

  

5.1 The comparison of DRL-CCOC convergence 
We compare the reward of actor network under different 
learning rates: 0.00005, 0.0001 and 0.0005. We can 
conclude the following points. Firstly, to a certain extent, 
the reward converges more and more slowly as the learning 
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rate decreases; the efficiency of iterative optimisation is 
deficient. In contrast, as the learning rate increases, the 
agent will learn rather fast leading to missing the optimal 
reward and the reward will oscillate around the optimal 
reward. Therefore, the learning rate of actor network cannot 
be set really low or high. According to many simulation 
results, we set the learning rate to 0.0001. 

Figure 4 Convergence effect of the loss function under different 
learning rates of critic network (see online version  
for colours) 

  
Figure 4 depicts the loss of the critic network with different 
learning rates: 0.0005, 0.001 and 0.005. The higher the 
learning rate is, the faster the loss converges. However, if 
the learning rate is high, the loss function could fluctuate 
greatly. When the learning rate is rather low, the 
convergence rate will not reach the desired effect and the 
loss function cannot converge to the optimal value. Through 
many simulation experiments analysis of the results, setting 
the learning rate to 0.001 is more appropriate. 

5.2 The comparison of different methods 
In this subsection, we compare several methods with our 
method, which are ‘offloading fully’, ‘local fully’, 
‘offloading based on DRL-CCOC’, and ‘greedy’. 
‘offloading fully’ represents that all tasks are offloaded to 
ES without optimisation; ‘local fully’ expresses that tasks 
are computed at local totally; ‘offloading based on  
DRL-CCOC’ means that offloading all tasks using our 
algorithm without computing locally; ‘Greedy’ takes the 
best result from each iteration under current state. We 
compare the total cost by varying ES’s computing 
capability, bandwidth between the fog node and devices, 
and the number of tasks. 

Figure 5 describes the effect of different ES’s 
computing capabilities on the total cost. We can discover 
that ‘local fully’ has no relation to ES’s computing 
capability. Furthermore, the total costs of all methods 
decrease except ‘local fully’. When the capability value 
grows to about 225 Gcycle/s, the total cost of every 
offloading-related method is all less than ‘local fully’. 

Additionally, ‘DRL-CCOC’ is better than ‘offloading based 
on DRL-CCOC’ which offloads all tasks thus introducing 
significant transmission delay. Finally, ‘offloading based on 
DRL-CCOC’ is superior to ‘offloading fully’ since the 
former reduces calculation delay of cached tasks. The 
method we proposed is approximated to the ideal ‘Greedy’. 

Figure 5 ES’s computing capabilities effect of total cost under 
different methods (see online version for colours) 

  

Figure 6 Bandwidth effect of total cost under different methods 
(see online version for colours) 

  
In Figure 6, we compare the total cost under different 
bandwidth between the fog node and devices. From the 
figure, we can deduce that bandwidth has more effect on 
offloading-related methods. When bandwidth is large 
enough, offloading-related methods have a lower cost than 
local-related methods. Moreover, our method always 
follows ‘Greedy’ cost and achieves optimal results. The 
advantages of ‘DRL-CCOC’ are obvious when the 
bandwidth resource is scarce at first. As the bandwidth 
increases, the transmission speed increases and the trend of 
cost is more stable. Based on the consideration of 
computation offloading and caching, our method shows 
significant effectiveness and superiority. 
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Figure 7 Number of tasks effect of total cost under different 
methods (see online version for colours) 

  
Figure 7 presents the number of tasks connected with the 
total cost. When the number of tasks increases, the total cost 
tends to rise overall. Initially, all methods’ cost but 
‘offloading fully’ are the same. All tasks are computed 
locally for the tasks that do not exceed the local computing 
capacity. On the whole, the cost of ‘offloading fully’ is the 
highest, ‘offloading based on DRL-CCOC’ is the second, 
and then is ‘local fully’. ‘DRL-CCOC’ is the closest to the 
total cost of greedy algorithm. After massive experiences, 
our method is more suitable for large-scale users. 

Based on the above summation results, ‘DRL-CCOC’ 
we proposed has much robustness and steadiness in 
different ES’s computing capability, bandwidth between the 
fog node and devices, and the number of tasks. It is not 
affected by the dynamic environment and changing 
conditions. Offloading and caching decisions will be made 
optimally and the weighted sum of delay and energy 
consumption minimised. 

6 Conclusions 
For satisfying the demands of resource-intensive and  
delay-sensitive applications and solving the problems of 
existing computation offloading algorithms, such as  
inability to handle massive amounts of data in time and the 
need of strong computing capability, we propose an 
intelligent computation offloading, resource allocation and 
collaborative caching scheme to jointly optimise delay and 
energy consumption. The aim of our optimisation problem 
is to minimise the weighted sum of the total cost under 
constraints. Contingent on the optimisation problem, a 
DRL-CCOC algorithm is proposed which can generate the 
optimal policy to reduce the cost of all tasks. Finally, after 
lots of simulation experiments and results analysis, our 
algorithm can converge at a faster rate and reduce the total 
cost significantly compared with other benchmark schemes. 
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