

International Journal of Embedded Systems

ISSN online: 1741-1076 - ISSN print: 1741-1068
https://www.inderscience.com/ijes

Deep reinforcement learning-based collaborative computation
offloading and caching decision for internet of things

Jianxin Li, Ke Yuan, Qian Wang, Siguang Chen

DOI: 10.1504/IJES.2024.10066673

Article History:
Received: 23 October 2022
Last revised: 04 November 2023
Accepted: 07 January 2024
Published online: 10 February 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijes
https://dx.doi.org/10.1504/IJES.2024.10066673
http://www.tcpdf.org

Int. J. Embedded Systems, Vol. 17, Nos. 3/4, 2024 161

Copyright © 2024 Inderscience Enterprises Ltd.

Deep reinforcement learning-based collaborative
computation offloading and caching decision for
internet of things

Jianxin Li, Ke Yuan*, Qian Wang and Siguang Chen
School of Internet of Things,
Nanjing University of Posts and Telecommunications,
Nanjing 210000, China
Email: ljx19825089686@163.com
Email: keyuan98@126.com
Email: qian_wang96@163.com
Email: sgchen@njupt.edu.cn
*Corresponding author

Abstract: Currently, as an extension of cloud computing, edge computing has attracted much
attention for its ability to reduce delay and energy and bandwidth consumption. For satisfying the
demands of resource-intensive and delay-sensitive applications and solving the problems of
existing computation offloading algorithms, such as inability to handle massive amounts of data
in time and the need for strong computing capability, an intelligent computation offloading,
resource allocation and collaborative caching scheme with joint optimisation of delay and energy
consumption is proposed. Specifically, we formulate an optimisation problem of minimising the
weighted sum of all tasks’ completion time and energy consumption under the constraints of
delay, bandwidth, computing capability, and energy. To solve the above mixed integer nonlinear
programming problem (MINLP), we develop a deep reinforcement learning (DRL)-based
collaborative computation offloading and caching decision (DRL-CCOC) algorithm. The
algorithm jointly optimises offloading decisions, caching decisions, the occupation ratio of the
wireless channel bandwidth and the edge server’s computing capability which is allocated to the
task. It can generate the optimal policy and adapt to dynamic network environment with the
ability of autodidacticism. Finally, the simulation results demonstrate that the DRL-CCOC can
converge at a faster rate and reduce the total cost significantly compared with other methods,
they also confirm the strong dynamic adaptability of our algorithm.

Keywords: computing; computation offloading; caching; deep reinforcement learning; DRL;
resource allocation.

Reference to this paper should be made as follows: Li, J., Yuan, K., Wang, Q. and Chen, S.
(2024) ‘Deep reinforcement learning-based collaborative computation offloading and caching
decision for internet of things’, Int. J. Embedded Systems, Vol. 17, Nos. 3/4, pp.161–170.

Biographical notes: Jianxin Li received his BE in Internet of Things Engineering from Nanjing
University of Posts and Telecommunications in 2022. He is currently pursuing his Master’s
degree at Nanjing University of Posts and Telecommunications. His main research interests
include computation offloading and deep learning.

Ke Yuan received her Master’s degree at Nanjing University of Posts and Telecommunications.
Her main research includes computation offloading and internet of things.

Qian Wang received her Master’s degree at Nanjing University of Posts and
Telecommunications. She is currently pursuing her Doctoral degree at Nanjing University of
Posts and Telecommunications. Her main research interests are in the area of computation
offloading and federated learning.

Siguang Chen received his PhD in Information Security from Nanjing University of Posts and
Telecommunications. He is currently a Full Professor at Nanjing University of Posts and
Telecommunications. His main research interests include computation offloading and edge
intelligence.

162 J. Li et al.

1 Introduction
With the advancement of internet of things (IoT) and
continuously increasing requirements of resource-intensive
and delay-sensitive applications to the public, such as
objective recognition and augmented reality (Ma et al.,
2020). IoT devices play important roles in our daily life.
However, faced with application requirements for data
collection, processing, the local IoT devices cannot handle
them on time because of resource constrained. To deal with
these puzzles, cloud computing attracts attention. In cloud
computing, the local devices transmit their tasks to the
cloud server, where the cloud server uses its vast computing
resource for computation, thus greatly making up the
shortcoming of local computing. Nevertheless, the cloud
server is usually far away from the devices, which resides in
the core network (Ale et al., 2021), transmitting and
downloading massive data to/from the remote cloud server
cause heavy traffic jams in wireless channel and
unpredicted service delay.

For coping with the issues in cloud computing, edge
computing, as an extension of cloud computing, receives
great interest (Lin et al., 2020; Jiang et al., 2019; Lin et al.,
2019). Compared with cloud computing, edge computing is
closer to the devices. Therefore, the devices can offload
tasks to nearby the edge server (ES) rather than sending
them to remote cloud server (Zhang et al., 2015).
Accordingly, the delay and energy consumption caused by
transmission can be reduced. Chen et al. (2019) proposed a
dynamic computation offloading algorithm, based on
stochastic optimisation, which decomposes the optimisation
problem into a series of sub-problems and solves these sub-
problems in an online and distributed way to minimise cost
and queue length. Their experiments’ result verifies the
effectiveness of computation offloading in edge computing.
In order to fully utilise computing resources, Zhao et al. in
[8] studied the design of computation offloading in fog
radio access network to minimise the total cost in respect to
the energy consumption and service latency. Zhao et al.
(2019) proposed a multi-objective computation offloading
algorithm combining multi-objective evolutionary algorithm
based on decomposition with invasive weed optimisation
and differential evolution. In Chowdhury (2021) first
investigated different challenges, requirements, and
latency-sensitive applications of emerging IoT and
presented a flexible heuristic-based prioritised resource
assignment strategy for IoT application execution in the 5G
era to ensure low-latency for heavy weight IoT application
processing. Dinh et al. (2018) introduced a model-free
reinforcement learning offloading mechanism which helps
users learn their long-term offloading strategies to maximise
their long-term utilities. There is also combined cloud and
edge computing to enable applications to be executed with
low latency (Ning et al., 2019). However, in these studies,
they do not consider caching in ES, so that the same tasks
are computed repeatedly leading to redundant delay and
energy consumption.

To further improve the users’ quality of experience,
caching mechanisms are studied in edge computing in

works (Simon et al., 2020; Hao et al., 2018; Yu et al., 2018;
Ndikumana et al., 2017), such as caching the content or the
result. Xu et al. (2018) investigated the extremely
compelling but much less studied problem of dynamic
service caching in mobile edge computing-enabled dense
cellular networks and optimised dynamic service caching
and task offloading. Usually, the limited caching space at
resource-constrained ES needs caching placement to
determine which tasks to cache. Dave and Kotak (2023)
proposed to analyse cache memory parameters before
choosing the best cache to lower power and cost. Bi et al.
(2020) introduced a single ES that mobile users can upload
and run their programs at the ES, while the server can
selectively cache the previously generated programs for
future reuse. Liu et al. (2018) proposed a novel mobile edge
computing enabled wireless blockchain framework where
the cryptographic hashes of blocks can be cached. As to
ignore the impact of tasks caching on computation
offloading at ES, which leads to a longer competition time,
Zhao et al. (2020) formally defined the problem of
offloading dependent tasks with service caching, and
designed an efficient convex programming-based algorithm
to solve this problem. Yang et al. (2020) formulated a
long-term reward maximisation problem optimising the task
offloading and caching decisions and computation resource
allocation. To tackle this optimisation problem, they
propose a single-agent Q-learning algorithm which is
invoked to learn a long-term resource allocation strategy.
Chen et al. (2018) introduced a new concept of computing
task caching and gave the optimal computing task caching
policy to optimise computing, caching, and communication
in edge cloud. The simulation results show that their
algorithm had shorter delay than other schemes. To further
reduce the data transmission cost and job delay, a shareable
cache to the ES is added in Wei et al. (2020), namely, the
authors proposed a cache-aware computation offloading
strategy for edge cloud computing and minimise the
equivalent weighted response. Accordingly, they design an
online computation offloading algorithm to optimise the
problem. Due to the allocation of resource in fog
computing, Lan et al. (2019) introduced two computation
offloading scenarios, in the first scenario, a task caching
algorithm based on genetic algorithm (GA) is used to
optimise the problem. In the second scenario, the
optimisation problem of offloading and resource allocation
is expressed as a mixed integer nonlinear programming
problem (MINLP) which is solved by a distributed
algorithm with Lagrange multiplier.

Traditional algorithms cannot handle massive amounts
of data in time and be applied in practical dynamic systems.
As a result, deep learning (DL) is introduced into
computation offloading collaborative caching. For example,
Wang and Friderikos (2020a) proposed a framework to
reduce the computational complexity of the underlying
integer mathematical program by first predicting decision
variables related to optimal locations using a deep
convolutional neural network (CNN) and then CNN is
trained offline to solve the optimisation problems. The work

 Deep reinforcement learning-based collaborative computation offloading and caching decision 163

of Lei et al. (2019) combines the predictions from CNN
with the optimal branch and bound algorithm to reduce the
feasible region of time slot allocation and improve the
caching content delivery problem. Besides, there are many
works studying caching and computation offloading with
DL, such as Wang and Friderikos (2020b), that summarise
the utilisation of DL for caching in edge network. By their
analysis, caching and machine learning are effectively used
in edge computing. However, the complex network
structure of DL algorithms brings lots of hardware cost.
What’s more, DL algorithms need plenty of labelled data
and extremely strong computing capability.

Inspired by the above challenges, we design an
intelligent computation offloading, resource allocation and
collaborative caching scheme. The key contributions are
three-fold as follows:

• In order to alleviate the pressure of current huge user
numbers and energy consumption, we formulate a
mixed integer nonlinear programming optimisation
problem to minimise the weighted sum of the total
completion time and energy consumption of tasks
under the constraints of delay, bandwidth, computing
capability, and energy with relatively small hardware
and computing cost.

• To solve the above optimisation problem, a deep
reinforcement learning (DRL)-based collaborative
computation offloading and caching decision
(DRL-CCOC) algorithm is proposed. This algorithm
jointly optimises offloading decisions, caching
decisions, the occupation ratio of the wireless channel
bandwidth and the ES’s computing capability which is
allocated to the task. It can obtain the optimal policy
and adapt to dynamic network environment with the
ability of autodidacticism.

• Compared with other benchmark schemes, the
simulation results show that the proposed algorithm has
the lowest cost under different system parameters, and
it can converge at a faster rate.

The rest of this article is organised as follows: Section 2
describes the system model; in Section 3, an optimisation
problem is formulated; Section 4 introduces the proposed
DRL-CCOC algorithm in detail; Section 5 is the simulation
results and discussions. Finally, Section 6 is conclusions.

2 System model
In this section, we construct a computation offloading
model with content caching in which ES and N IoT devices
are considered in our system model. We define i∈{1, 2, 3,
…, N} as the task of the device i generated. The size of task
i and the number of CPU cycles required to compute for
task i are wi and ci, respectively.

2.1 Network framework
We consider a two-layer architecture. At the bottom of this
architecture is IoT devices where tasks will be generated at
the beginning of a time slot with a certain probability. We
design the specific processing of computing tasks as shown
in Figure 1.

Figure 1 System mode (see online version for colours)

Edge Server

IoT Devices

·····

• IoT devices: IoT devices include cameras, dermoscopy,
ultrasound machine, and so on. The users generate the
task through IoT devices and tasks can be computed
locally or offloaded to the ES for calculation through
the adjacent base station (BS). Denote the task set as κ
= {1, 2, …, N}.

• ES: The ES plays a role with two main functions:
1 the ES can receive the tasks offloaded from IoT

devices through the BS and process them
2 it can also cache the tasks to obtain less delay and

energy consumption.

The ES identifies whether tasks generated by IoT devices
are cached in the ES, computes them directly if they are; if
there is no cache, caching decisions will be made.
Meanwhile, the communication and computing resources of
the ES will be allocated to tasks which are offloaded to the
ES.

2.2 Caching and computing model
When the IoT device generates task i, it first makes the
decision that the task is computed locally or offloaded to
ES. The symbol φ = [φ1,φ2, …, φN] denotes the offloading
decisions; the computation task will be executed at local if
φi = 0. When φi = 1, the device needs check ES whether has
cached task i. If it has cached, the device can hit cached task
i and compute it at ES directly. Otherwise, we will offload
task i to ES.

164 J. Li et al.

In system model, we assume that the caching decision
for one computation task is defined as xi. xi∈X and X = [x1,
x2, …, xN]. If xi = 1, it implies that ES has cached task i, i.e.,
the device hits the cached task at ES, the computation task
will be computed directly. In our scenario, we also consider
the allocation of communication and computing resources.
Let σi as the wireless channel bandwidth occupation ratio of
task i between devices and ES. ψi represents the computing
resource occupation ratio which is allocated to task i. The
ranges of σi and ψi are both [0, 1].

The aim of optimisation is to joint optimisation of
offloading decisions, caching decisions, communication and
computing resources to reduce the total cost of the tasks.
The total cost includes delay and energy consumption.

• Local computing: When task i was computed at local,
i.e., φi = 0, σi = 0 and ψi = 0. Without loss of generality,
delay of task i at local can be expressed as

,iloc
i loc

i

ct
f

= (1)

where represents the computing capability of device i
and the energy consumption of processing this task is
given by

,iloc loc
i ii i loc

i

ce Pt P
f

= = (2)

where represents the computing power of device i and
the local computing capability varies from device to
device. There is no delay and energy consumption for
tasks’ transmission.

Combining delay (1) and energy consumption (2) so
that the total cost of task i computing locally can be
given as

(1)loc loc
loc i iC t e= ∂ + − ∂ (3)

where ∂ represents the weight coefficient of delay. To
increase the robustness and dynamic adaptability of the
model, we set a constrain for so that tasks completion
time and energy consumption weights can be changed
depending on IoT devices’ demands and the rang ∂ of is
[0, 1].

• Computation offloading with cached task i: We set
φi = 1 as the offloading decision of task i. Device i will
check ES whether has the cached task i. If the task
cached that is xi = 1, device i will hit the cached task
and doesn’t have to offload the task and this task can be
computed at ES directly. Delay and energy
consumption for computing task i can be denoted
respectively as

,ie
i e

i i

ct
ψ f

= (4)

and

= ,ie e
e ei i e

i i

ce P t P
ψ f

= (5)

where Pe is the computation power of the ES, e
if

represents the computing capability of ES. According
to equations (4) and (5), we could compute the total
cost of the computation offloading with cached tasks i
including delay and energy consumption as

(1)e e
cached i iC t e= ∂ + − ∂ (6)

• Computation offloading without cached task i:
Accordingly, if task i is not cached, we will upload task
i from device i to ES through wireless access. In this
case, φi = 1 and xi = 0. The device does not hit the task
cache and the task can only be offloaded to ES.
Therefore, delay can be expressed as

_ ,e off up e
i i it t t= + (7)

and the energy consumption is
_ ,e off up e

i i ie e e= + (8)

where up
it represents the time taken to offload task i to

ES. Similarly, up
ie is the energy consumption by

offloading task i. They are

2

2

,
log 1

i iup
i i

u up
i

o i

w wt
R P h

σ B
g σ B

= =

+

 (9)

where Ru represents the transmission speed of wireless
channel, the bandwidth of wireless channel is defined
as B, the transmission power of IoT devices is defined
as Pup, the wireless channel gain between task i and ES
is defined as h and the spectral density of the channel
noise power is defined as go, and

2

2log 1

i iup up
up up upi i

u up
i

o i

w we P t P P
R P h

σ B
g σ B

= = =

+

 (10)

Therefore, according to equations (4), (7) and (9), the total
delay for task i is

_
2

2

= +
log 1

i ie off
i e

iup i
i

o i

w ct
ψ fP h

σ B
g σ B

+

 (11)

and according to equations (5), (8) and (10), the energy
consumption of offloading task i is

_
2

2

+
log 1

i ie off
up ei e

iup i
i

o i

w ce P P
ψ fP h

σ B
g σ B

=

+

 (12)

Combining equations (11) and (12), we can give the total
cost of offloading task without cache hit as

 Deep reinforcement learning-based collaborative computation offloading and caching decision 165

_ _
_ (1)e off e off

e off i iC t e= ∂ + − ∂ (13)

Li et al. (2018) and Chen (2015) they do not fundamentally
consider delay and energy consumption for data downlink
because the cost of transmitting and computing tasks are
much more than downlink. Therefore, we do not take the
cost of tasks downlink into consideration as well.

Through above analysis, we define delay and energy
consumption for task i are Ti and Ei respectively. They are

_

, 0
, 1 1

, 1 0

loc
ii

e
i i ii

e off
i ii

t
T t and x

t and x

=
= = =
 = =

φ
φ
φ

 (14)

and

_

, 0
, 1 1

, 1 0

loc
ii

e
i i ii

e off
i ii

e
E e and x

e and x

=
= = =
 = =

φ
φ
φ

 (15)

3 Problem formulation
In this section, we formulate an optimisation problem. The
objective is to minimise the weighted sum of the total
completion time and energy consumption of the task set κ.
The weighted sum cost function for the task set κ can be
expressed as

(), , , (1)i i i iC x σ ψ T E= ∂ + − ∂φ (16)

We define the total task set delay as

1 2max[, ,...,]NT T T T= (17)

and the total task set energy consumption as

()()_

1 1

(1) 1
N N

e offloc e
i i i i ii i i

i i

E E e x e x e
= =

= = − + + − φ φ (18)

Through the above system model and associated definitions,
we can formulate the following optimisation problem by
jointly optimising the offloading decision φi, caching
decision xi, the wireless channel bandwidth occupation ratio
θi and the computing resource occupation ratio ψi with a set
of constraints. The specific optimisation problem is given as
follows:

, , ,
1

P: min (1)
i i i i

N

x σ ψ
i

T E
=

∂ + − ∂φ
 (19)

1

. . 1
N

i
i

s t σ
=

≤ (19a)

1

1
N

i
i

ψ
=

≤ (19b)

tolerateT T≤ (19c)
tolerateE E≤ (19d)

, {0,1}i ix ∈φ (19e)

, [0,1]i iσ ψ ∈ (19f)

In (19), the objective function implies the minimisation of
the weighted sum of completion and energy consumption
for the task set κ. Equations (19a) and (19b) ensure that
occupation ratios of communication and computing
resources of ES do not exceed unity. Equations (19c) and
constraint (19d) represent that delay and energy
consumption of completing all tasks should not exceed the
tolerable values. Equation (19e) demonstrates the value of
caching decision and offloading decision is limited to 0 or 1.
When they are 0, task i is not cached and computed at local.
Equation (19f) indicates the range of the weight coefficient
∂, σi and ψi. When θi and ψi are equal to 1, the meaning is
that task i is cached and the task is offloaded to ES. Our
computation offloading algorithm is based on DRL. We will
explain in more detail below.

4 Deep reinforcement learning-based
collaborative computation offloading and
caching decision

The above non-convex optimisation problem P1 is MINLP,
which is a non-deterministic polynomial hard (NP-hard)
problem as well. Due to the demands of dynamic
adaptability, it has difficulty in solving this problem
with the conventional algorithm. Thus, we propose a
DRL-CCOC algorithm to solve the weighted sum of the
total completion time and energy consumption of the task
set, i.e., to get the minimum cost. The specific solution
procedures of the proposed algorithm are illustrated in
Figure 2.

Figure 2 Framework of DRL-CCOC (see online version
for colours)

Environment

Policy
Network

Value
Network

Actor
Network

Target
Network

Critic
Network

Target
Network

Experience Replay

... ...

... ...

... ...

... ...

'Q'w w→'θ θ→

1tA +

tA
tS

1tS +
∇

{ }1, , ,t t t tL S A S R+=

tR

4.1 Elements definition
At a certain time slot t, we can define that the environment
state is St, the agent performs the action At. With the certain
possibility, the environment is transferred to a new state St+1
and the agent gets an immediate reward Rt. The aim is to
maximise Rt by our optimal policy. The three elements are
described as follows:

166 J. Li et al.

• State space:

(())tS C t= (20)

where is the weighted sum of the total completion time
and energy consumption of the task set κ.

• Action space

(),a b
t t tA A A= (21)

where ()(), (), ,a
i itA σ t ψ t i κ= ∈ σi and ψi(t) represent

the wireless channel bandwidth occupation ratio and
the computing resource occupation ratio, respectively.

()(), (), ,b
i itA t x t i κ= ∈φ φi(t) and xi(t) represent

offloading decision and caching decision for task i.

• Reward space: ES (i.e., the agent) will receive an
immediate reward Rt(St, At) when the action At
performed in a certain state St. Thus, the reward plays a
critical role in the process of DRL-CCOC. Our
optimisation problem is related to the reward function
and the goal of the agent is to minimise Ci, i.e.,
maximise Rt(St, At), that is

,() (17) (17)

, .

i
i κt

C t a g
R

ν otherwise
∈

− −=

 (22)

where v (v ≤ 0 and ()i
i κ

v C t
∈

< −) denotes a constant that

indicates environment gives a bad feedback for agent to
study better.

4.2 DRL-CCOC algorithm
Based on deep deterministic policy gradient (DDPG)
algorithm, the framework of the algorithm we design is
composed of an agent, an environment and three elements.
Three elements are state S, action A and reward function R.
The network is divided into policy network and value
network. They can be described into four networks: current
actor network, current critic network, target actor network
and target critic network.

Current and target actor networks are policy network.
Policy network outputs policy in which the current network
outputs current action At according to current state St. The
target network has the same networks structure as the
current network. The responsibility of it is predicting the
next action At+1 based on the next state St+1.

Current and target critic networks are value network.
We can obtain the corresponding value function Q(S, A, ω)
according to current state St or next state St+1 and current
action At or next action At+1 to critic the policy network. The
current and target critic network have the same structure.

When a random strategy is used, the action taken is
based on a probability distribution and we will obtain an
uncertain action. The deterministic strategy our algorithm
used is simple. Although the probability of action is
different in the same state, there is only one maximum

probability. If only taking the action with the maximum
probability, we remove the probability distribution. At a
time slot t, the action is uniquely deterministic, that is, the
offloading, caching and resources allocation strategy
becomes πθ(St). The output of policy network is a
deterministic action, i.e.

()t θ tA π S= (23)

Our algorithm adopts deterministic policy getting from
function πθ. We can get the current action from networkπθ
and θ is the parameters of its neural network. In order to add
the randomness to the learning process, we will add
Ornstein-Uhlenbeck (OU) noise Ht to the action a

tA
selected by our algorithm, that is, the expression for the
final resources allocation action interacting with the
environment is

()a
θ t ttA π S ξH= + (24)

where ξ represents the annealing factor of noise. The value
of ξ decreases with the increase of iterations, the
convergence speed of the training process can be improved
by using the noise.

We define a probability range of Ω to represent the
offloading and caching decision, which is discrete action

.b
tA By Ω, we can transform continuous inputs into discrete

inputs.

0, 0.5,
1, 0.5.

b
tA

Ω ≤
= Ω >

 (25)

ES, as the agent, performs the action At, then action At
interacts with the environment to get the reward Rt and the
initial state St switches to next state St+1. (St, At, St+1, Rt) will
be stored into experience replay buffer. At each training
session, G samples are randomly sampled from the
experience replay buffer to train. After that, the target actor
network will take next action At+1 according to the next state
St+1 sampled in the experience replay buffer.

The target critic network computes value function
Q′(St+1, At+1, ω′) for sample ι + 1, ι∈{1, 2, …, G}, so the
target Q value is

()1 1' , , 'ι ι ιy R Q S A ω+ += +ϖ (26)

where ϖ is the discount factor.
In the value network, we use the mean square error loss

function

()()2

1

1()= , ,
G

ι ι ι
ι

Loss ω y Q S A ω
G =

− (27)

where G is the number of samples of batch. We make use of
gradient descent method to minimise Loss(ω) to update
current critic network parameter ω as follow:

()ωω ω Loss ω← + ∇ϑ (28)

where ϑ is the learning rate of ω.

 Deep reinforcement learning-based collaborative computation offloading and caching decision 167

As for actor network, it updates the current actor
network parameter θ by the feedback Q value of the current
critic network. Therefore, the loss of actor network is
defined as

()
1

1() , ,
G

ι ι
ι

J θ Q S A θ
G =

= − (29)

To make the loss smaller and Q value larger, we use
gradient descent to update parameter θ as follows:

()θθ θ χ J θ← + ∇ (30)

where χ is the learning rate of θ.
The target network parameter θ′ and ω′ are both

periodically replicated from θ and ω by soft update as

' (1) 'θ λθ λ θ← + − (31)

and

' (1) 'ω λω λ ω← + − (32)

where is the update speed coefficient, which is usually
small, like 0.1 or 0.01. By it, the process of training can be
very stable. After constantly learning, ES can fetch the
optimal offloading, caching and resources allocation
strategy by leveraging network parameters that are optimal.
In order to better understand the process of the solution, we
concise the process as follows:

Algorithm 1 Deep reinforcement learning-based collaborative
computation offloading and caching decision
algorithm

Input: wi and ci, i∈κ

Output: Optimal policy ()* * * *, , ,i i i ix σ ψφ , i∈κ.

1 BEGIN
2 Initialise target network parameters θ′ and ω′with θ′= θ,

ω′ = ω;
3 Initialise experience replay buffer
4 FOR ζ from 0 to maximum episode DO
5 Initialise OU noise and initial state St;
6 FOR t = 0 to ℵ DO
7 Based on the current state St, select action

(),a b
t t tA A A=

8 Execute At
9 Obtain next state St+1, reward Rt by interacting

with environment
10 Save (St, At, St+1, Rt) into experience replay buffer;
11 Update state St to St+1
12 Sample G samples from the experience replay

buffer, compute target Q value based on equation
(26)

13 Update current critic network parameter ω by
equations (27) and (28)

14 Update current actor network parameter θ by
equations (29) and (30)

15 Soft update target critic network parameter θ′ by
equation (31)

16 Soft update target critic network parameter ω′ by
equation (32)

17 END FOR
18 END FOR
19 Obtain optimal policy ()* * * *, , ,i i i ix σ ψφ and minimum C*.

20 END

5 Simulation results and discussions
In this section, we evaluate the effectiveness of the
DRL-CCOC algorithm through simulation experiments.
Compared with several typical related schemes, our
algorithm is superior to the other.

In our simulation environment, we choose 7 different
tasks from 7 different IoT devices. The size of tasks w are
randomly assigned from 100 Kb to 400 Kb. The numbers of
CPU cycles c are set randomly from 10 to 30 Gcycle. The
wireless channel bandwidth B is set to 100 Mb/s; the local
computing capability of IoT devices loc

if is range from 3
Gcycle/s to 25 Gcycle/s; the computing capability of ES e

if
is 180 Gcycle/s. We set every IoT device with the same
computing and transmission power, i.e., Pi and Pup are 0.04
J and 0.06 J, respectively. The computing power of the ES
Pe is 0.1 J. The weight coefficient ∂ is 0.5. The update
coefficient of the target network hyperparameter χ is set to
0.001, and the discount factor γ is 0.99. TensorFlow and
MATLAB are jointly used in our simulation.

Figure 3 Convergence effect of the reward function under
different learning rates of actor network (see online
version for colours)

5.1 The comparison of DRL-CCOC convergence
We compare the reward of actor network under different
learning rates: 0.00005, 0.0001 and 0.0005. We can
conclude the following points. Firstly, to a certain extent,
the reward converges more and more slowly as the learning

168 J. Li et al.

rate decreases; the efficiency of iterative optimisation is
deficient. In contrast, as the learning rate increases, the
agent will learn rather fast leading to missing the optimal
reward and the reward will oscillate around the optimal
reward. Therefore, the learning rate of actor network cannot
be set really low or high. According to many simulation
results, we set the learning rate to 0.0001.

Figure 4 Convergence effect of the loss function under different
learning rates of critic network (see online version
for colours)

Figure 4 depicts the loss of the critic network with different
learning rates: 0.0005, 0.001 and 0.005. The higher the
learning rate is, the faster the loss converges. However, if
the learning rate is high, the loss function could fluctuate
greatly. When the learning rate is rather low, the
convergence rate will not reach the desired effect and the
loss function cannot converge to the optimal value. Through
many simulation experiments analysis of the results, setting
the learning rate to 0.001 is more appropriate.

5.2 The comparison of different methods
In this subsection, we compare several methods with our
method, which are ‘offloading fully’, ‘local fully’,
‘offloading based on DRL-CCOC’, and ‘greedy’.
‘offloading fully’ represents that all tasks are offloaded to
ES without optimisation; ‘local fully’ expresses that tasks
are computed at local totally; ‘offloading based on
DRL-CCOC’ means that offloading all tasks using our
algorithm without computing locally; ‘Greedy’ takes the
best result from each iteration under current state. We
compare the total cost by varying ES’s computing
capability, bandwidth between the fog node and devices,
and the number of tasks.

Figure 5 describes the effect of different ES’s
computing capabilities on the total cost. We can discover
that ‘local fully’ has no relation to ES’s computing
capability. Furthermore, the total costs of all methods
decrease except ‘local fully’. When the capability value
grows to about 225 Gcycle/s, the total cost of every
offloading-related method is all less than ‘local fully’.

Additionally, ‘DRL-CCOC’ is better than ‘offloading based
on DRL-CCOC’ which offloads all tasks thus introducing
significant transmission delay. Finally, ‘offloading based on
DRL-CCOC’ is superior to ‘offloading fully’ since the
former reduces calculation delay of cached tasks. The
method we proposed is approximated to the ideal ‘Greedy’.

Figure 5 ES’s computing capabilities effect of total cost under
different methods (see online version for colours)

Figure 6 Bandwidth effect of total cost under different methods
(see online version for colours)

In Figure 6, we compare the total cost under different
bandwidth between the fog node and devices. From the
figure, we can deduce that bandwidth has more effect on
offloading-related methods. When bandwidth is large
enough, offloading-related methods have a lower cost than
local-related methods. Moreover, our method always
follows ‘Greedy’ cost and achieves optimal results. The
advantages of ‘DRL-CCOC’ are obvious when the
bandwidth resource is scarce at first. As the bandwidth
increases, the transmission speed increases and the trend of
cost is more stable. Based on the consideration of
computation offloading and caching, our method shows
significant effectiveness and superiority.

 Deep reinforcement learning-based collaborative computation offloading and caching decision 169

Figure 7 Number of tasks effect of total cost under different
methods (see online version for colours)

Figure 7 presents the number of tasks connected with the
total cost. When the number of tasks increases, the total cost
tends to rise overall. Initially, all methods’ cost but
‘offloading fully’ are the same. All tasks are computed
locally for the tasks that do not exceed the local computing
capacity. On the whole, the cost of ‘offloading fully’ is the
highest, ‘offloading based on DRL-CCOC’ is the second,
and then is ‘local fully’. ‘DRL-CCOC’ is the closest to the
total cost of greedy algorithm. After massive experiences,
our method is more suitable for large-scale users.

Based on the above summation results, ‘DRL-CCOC’
we proposed has much robustness and steadiness in
different ES’s computing capability, bandwidth between the
fog node and devices, and the number of tasks. It is not
affected by the dynamic environment and changing
conditions. Offloading and caching decisions will be made
optimally and the weighted sum of delay and energy
consumption minimised.

6 Conclusions
For satisfying the demands of resource-intensive and
delay-sensitive applications and solving the problems of
existing computation offloading algorithms, such as
inability to handle massive amounts of data in time and the
need of strong computing capability, we propose an
intelligent computation offloading, resource allocation and
collaborative caching scheme to jointly optimise delay and
energy consumption. The aim of our optimisation problem
is to minimise the weighted sum of the total cost under
constraints. Contingent on the optimisation problem, a
DRL-CCOC algorithm is proposed which can generate the
optimal policy to reduce the cost of all tasks. Finally, after
lots of simulation experiments and results analysis, our
algorithm can converge at a faster rate and reduce the total
cost significantly compared with other benchmark schemes.

References
Ale, L., Zhang, N., Fang, X. et al. (2021) ‘Delay-aware and

energy-efficient computation offloading in mobile-edge
computing using deep reinforcement learning’, IEEE
Transactions on Cognitive Communications and Networking,
September, Vol. 7, No. 3, pp.881–892.

Bi, S., Huang, L. and Zhang, Y.A. (2020) ‘Joint optimization of
service caching placement and computation offloading in
mobile edge computing systems’, IEEE Transactions
on Wireless Communications, July, Vol. 19, No. 7,
pp.4947–4963.

Chen, M., Hao, Y., Hu, L. et al. (2018) ‘Edge-CoCaCo:
toward joint optimization of computation, caching, and
communication on edge cloud’, IEEE Wireless
Communications, June, Vol. 25, No. 3, pp.21–27.

Chen, X. (2015) ‘Decentralized computation offloading game for
mobile cloud computing’, IEEE Transactions on Parallel and
Distributed Systems, April, Vol. 26, No. 4, pp.974–983.

Chen, Y., Zhang, N., Zhang, Y. et al. (2019) ‘Dynamic
computation offloading in edge computing for internet of
things’, IEEE Internet of Things Journal, June, Vol. 6, No. 3,
pp.4242–4251.

Chowdhury, M. (2021) ‘Flexible heuristic-based prioritized
latency-sensitive IoT application execution scheme in the 5G
era’, International Journal of Embedded Systems, September,
Vol. 14, No. 4, pp.363–377.

Dave, H.V. and Kotak, N.A. (2023) ‘Critical analysis of cache
memory performance concerning miss rate and power
consumption’, International Journal of Embedded Systems,
March, Vol. 15, No. 6, pp.516–524.

Dinh, T.Q., La, Q.D., Que, T.Q.S. et al. (2018) ‘Learning
forcComputation offloading in mobile edge computing’,
IEEE Transactions on Communications, December, Vol. 66,
No. 12, pp.6353–6367.

Hao, Y., Chen, M., Hu, L. et al. (2018) ‘Energy efficient task
caching and offloading for mobile edge computing’, IEEE
Access, March, Vol. 6, pp.11365–11373, DOI: 10.1109/
ACCESS.2018.2805798.

Jiang, C., Cheng, X., Gao, H. et al. (2019) ‘Toward computation
offloading in edge computing: a survey’, IEEE Access,
August, Vol. 7, No. 1, pp.131543–131558.

Lan, Y., Wang, X., Wang, D. et al. (2019) ‘Task caching,
offloading, and resource allocation in D2D-aided
fog computing networks’, IEEE Access, July, Vol. 7,
pp.104876–104891.

Lei, L. et al. (2019) ‘Learning-based resource allocation: efficient
content delivery enabled by convolutional neural network’, in
Proc. IEEE 20th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC),
pp.1–5.

Li, J., Gao, H., Lv, T. et al. (2018) ‘Deep reinforcement learning
based computation offloading and resource allocation for
mec’, in Proc. IEEE Wireless Communications and
Networking Conference (WCNC), pp.1–6.

Lin, H., Zeadally, S., Chen, Z. et al. (2020) ‘A survey on
computation offloading modeling for edge computing’,
Journal of Network and Computer Applications, November,
Vol. 169, pp.1–25, DOI: 10.1016/j.jnca.2020.102781.

Lin, L., Liao, X., Jin, H. et al. (2019) ‘Computation offloading
toward edge computing’, Proceedings of the IEEE, August,
Vol. 107, No. 8, pp.1584–1607.

170 J. Li et al.

Liu, L., Lei, X. and Wang, Q. (2022) ‘A multi-objective
computation offloading algorithm in MEC environments’,
International Journal of Computational Science and
Engineering, May, Vol. 25, No. 3, pp.298–307.

Liu, M., Yu, F.R., Teng, Y. et al. (2018) ‘Computation offloading
and content caching in wireless blockchain networks with
mobile edge computing’, IEEE Transactions on Vehicular
Technology, November, Vol. 67, No. 11, pp.11008–11021.

Ma, X., Zhou, A., Zhang, S. et al. (2020) ‘Cooperative service
caching and workload scheduling in mobile edge computing’,
in Proc. IEEE Conference on Computer Communications
(ICCC), pp.2076–2085.

Ndikumana, A., Ullah, S., LeAnh, T. et al. (2017) ‘Collaborative
cache allocation and computation offloading in mobile edge
computing’, in Proc. 19th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pp.366–369.

Ning, Z., Dong, P., Kong, X. et al. (2019) ‘A cooperative partial
computation offloading scheme for mobile edge computing
enabled internet of things’, IEEE Internet of Things Journal,
June, Vol. 6, No. 3, pp.4804–4814.

Simon, W.A., Qureshi, Y.M., Rios, M. et al. (2020) ‘BLADE: an
in-cache computing architecture for edge devices’, IEEE
Transactions on Computers, September, Vol. 69, No. 9,
pp.1349–1363.

Wang, Y. and Friderikos, V. (2020a) ‘A survey of deep learning
for data caching in edge network’, Informatics, October, No.
43, pp.1–29.

Wang, Y. and Friderikos, V. (2020b) ‘Network orchestration in
mobile networks via a synergy of model-driven and AI-based
techniques’, in Proc. IEEE Eighth International Conference
on Communications and Networking (ComNet), pp.1–5.

Wei, H., Luo, H., Sun, Y. et al. (2020) ‘Cache-aware computation
offloading in IoT systems’, IEEE Systems Journal, March,
Vol. 14, No. 1, pp.61–72.

Xu, J., Chen, L. and Zhou, P. (2018) ‘Joint service caching and
task offloading for mobile edge computing in dense
networks’, in Proc. IEEE INFOCOM, pp.207–215.

Yang, Z., Liu, Y., Chen, Y. et al. (2020) ‘Cache-aided NOMA
mobile edge computing: a reinforcement learning approach’,
IEEE Transactions on Wireless Communications, October,
Vol. 19, No. 10, pp.6899–6915.

Yu, S., Langar, R., Fu, X. et al. (2018) ‘Computation offloading
with data caching enhancement for mobile edge computing’,
IEEE Transactions on Vehicular Technology, November,
Vol. 67, No. 11, pp.11098–11112.

Zhang, N., Cheng, N., Gamage, A.T. et al. (2015) ‘Cloud assisted
hetnets toward 5G wireless networks’, IEEE Commun. Mag.,
June, Vol. 53, No. 6, pp.59–65.

Zhao, G., Xu, H., Zhao, Y. et al. (2020) ‘Offloading dependent
tasks in mobile edge computing with service caching’, in
Proc. IEEE INFOCOM, pp.1997–2006.

Zhao, Z., Bu, S., Zhao, T. et al. (2019) ‘On the design of
computation offloading in fog radio access networks’, IEEE
Transactions on Vehicular Technology, July, Vol. 68, No. 7,
pp.7136–7149.

