
 
International Journal of Embedded Systems
 
ISSN online: 1741-1076 - ISSN print: 1741-1068
https://www.inderscience.com/ijes

 
The correction method of block authentication information in
edge computing mode
 
Jianbo Xu, Wei Jian, Hongbo Zhou, Wei Liang, Meng-Yen Hsieh, Changxu Wan
 
DOI: 10.1504/IJES.2024.10065506
 
Article History:
Received: 24 October 2023
Last revised: 09 March 2024
Accepted: 10 April 2024
Published online: 10 February 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijes
https://dx.doi.org/10.1504/IJES.2024.10065506
http://www.tcpdf.org


Int. J. Embedded Systems, Vol. 17, Nos. 3/4, 2024 213

The correction method of block authentication
information in edge computing mode

Jianbo Xu
School of Software,
Quanzhou University of Information Engineering,
Fujian, Quanzhou, China
Email: jbxu@hnust.edu.cn

Wei Jian
Hunan University of Science and Technology,
Taoyuan Road, Yuhu District,
Xiangtan City, Hunan Province, China
Email: jian2391477260@163.com

Hongbo Zhou
School of Software,
Quanzhou University of Information Engineering,
Fujian, Quanzhou, China
Email: zhb591111@163.com

Wei Liang
Hunan University of Science and Technology,
Taoyuan Road, Yuhu District,
Xiangtan City, Hunan Province, China
Email: wliang@hnust.edu.cn

Meng-Yen Hsieh*
Providence University,
Dadu Mountain in Shalu District, Taichung City, Taiwan
Email: mengyen@pu.edu.tw
*Corresponding author

Changxu Wan
Hunan University of Science and Technology,
Taoyuan Road, Yuhu District,
Xiangtan City, Hunan Province, China
Email: wan_changxu@yeah.net

Abstract: In many industrial edge computing applications, terminal devices are often remote and 
widely distributed. To achieve cross-domain authentication, some researchers store authentication 
information on a blockchain network built by edge nodes. However, since terminal equipment 
may be damaged or require updates to its authentication parameters, a trusted solution for 
deleting and modifying blockchain-stored authentication information is needed. This paper 
proposes using chameleon hash trap technology to maintain blockchain integrity while enabling 
data correction. Experimental results show that the scheme efficiently generates and distributes 
sub-private keys for modifying on-chain authentication data. The modifiable blockchain is 
well-suited for maintaining device authentication information, ensuring system security and 
maintainability, and improving communication efficiency.

Keywords: blockchain; edge computing; authentication; key agreement.

Reference to this paper should be made as follows: Xu, J., Jian, W., Zhou, H., Liang, W., 
Hsieh, M-Y. and Wan, C. (2024) ‘The correction method of block authentication information in 
edge computing mode’, Int. J. Embedded Systems, Vol. 17, Nos. 3/4, pp.213–223.

Copyright © 2024 Inderscience Enterprises Ltd.



214 J. Xu et al.

Biographical notes: Jianbo Xu received his MS in Department of Computer Science and
Technology from the National University of Defense Technology, China, in 1994 and PhD
in College of Computer Science and Electronic Engineering from Hunan University, China,
in 2003. Since 2003, he has been a Professor with the School of Computer science and
Engineering, Hunan University of Science and Technology. His research interests include
network security and distributed computing.

Wei Jian is a postgraduate of Computer Science and Technology from Hunan University of
Science and Technology.

Hongbo Zhou is a Professor in the School of Software, Quanzhou University of Information
Engineering, China. He received his MS in Computer Science and Technology from the Beijing
Institute of Technology in 1993. He has published more than20 journal/conference papers and
PI for more than 20 large scale scientific projects. His research interests include dependable
systems/networks, network security, network measurement, hardware security, and IP protection.

Wei Liang is a Professor, Dean, and a Doctoral Supervisor at the School of Computer Science
and Engineering, Hunan University of Science and Technology. He is also a Yue Lu Scholar
at Hunan University, a distinguished talent of the New Century in Fujian Province, and the
Executive Director of the Hunan Computer Society.

Meng-Yen Hsieh is with the Department of Computer Science and Information Engineering at
Providence University.

Changxu Wan is a postgraduate of Computer Science and Technology from Hunan University
of Science and Technology.

1 Introduction

With the popularity of terminal equipment such as mobile
phones and portable mobile computers, a large number of
terminal devices are connected to the network. In this case,
the cloud server needs to provide services for every user,
which is bound to add a huge burden to the computing and
communication capabilities of the cloud server and easily
form a bottleneck. In this context, the edge computing
model came into being. Edge computing’s way of sinking
the computing services of cloud servers located in a trusted
environment to edge nodes can well alleviate the heavy
computing bottleneck problem of cloud servers. However,
although the edge computing model improves the system
performance of the cloud computing model, the security of
the system does not improve, and even brings new security
risks due to the wide geographical distribution of edge
nodes and terminal devices. In recent years, many scholars
have applied blockchain technology to edge computing to
solve the problem of device security authentication in the
edge computing mode, and applying blockchain technology
to edge computing can improve the service quality of
edge computing in terms of credibility, data integrity and
secure sharing. Zhang et al. (2023) stored the temporary
public key issued by the certificate authority in the
blockchain to achieve cross-domain batch authentication.
That is, the certificate is written to the blockchain, because
the blockchain has the characteristics of non-tampering,
therefore, the temporary public key is deployed on the
blockchain, which realises the purpose of temporary public
key authentication in disguise. A certificate authority is not
required to verify the authenticity of the certificate, but this
method does not consider the issue of certificate revocation.

Liu et al. (2023b) adopted a similar approach, putting the
public key into the blockchain to achieve proof of validity,
while writing the user login process into the smart contract
to complete the transaction confirmation. Guo et al. (2019)
write the user login process to the blockchain, making it
impossible for users to repudiate. Wang et al. (2020) further
innovated on this basis, proposing to store the public key
in the blockchain. Liu et al. (2023a) write the certificate
information to the blockchain, verify the validity of the
public key by verifying the validity of the blockchain data,
and avoid viewing the certificate revocation list.

The above methods do not take into account that
the information uploaded by the terminal device is not
necessarily reliable, and the changes and damage of the
terminal equipment are likely to cause the data on the
chain to be unavailable. Due to the immutability of the
blockchain, the data after the chain cannot be deleted or
modified. Therefore, we need to study a modifiable method
of blockchain to conditionally break the immutability
feature of blockchain. In the research of blockchain security
correction method, Aizherson proposed editable blockchain
technology based on the chameleon hash function. As long
as you know the trapdoor of the chameleon hash function,
you can find a collision of existing data, so as to realise
the editing of blockchain data. In the company’s solution,
the trapdoor is handed over to the trusted centre, and once
the trusted centre is attacked, there is a risk of the trapdoor
leakage, and the scheme is not highly decentralised.

Li et al. (2023) proposed a ledger modification scheme
based on gate ring signature, which relies on the block
structure of the proof-of-space consensus mechanism. When
the data expires or expires, one node puts forward a deletion
proposal, other nodes vote for the proposal, and when the



The correction method of block authentication information in edge computing mode 215

node that agrees to the proposal exceeds the set threshold,
the system generates an exclusive deletion message; then,
the node that agrees to the proposal becomes the signature
node, which generates a threshold loop signature on behalf
of the entire system; finally, the proponent stores the
generated ring signature in the original location of the
transaction data, and then broadcasts it to the whole
network to complete the deletion operation. Later, Ren
et al. (2019, 2020) improved their scheme (Zhang and Lee,
2019), by reconstructing the signature subblock in the block
body, adding the manoeuvre factor to the block so that it
did not change the hash value of the block before and after
the modification. However, the disadvantage of this method
is that it depends on a specific block structure and is not
universal to most block structures.

Based on the alliance chain, Guo et al. (2019) improved
the chameleon hash algorithm, generated the chameleon
hash subkey of the system on a trusted node, and then used
the random number generation protocol and secret sharing
technology to randomly select the modifiers to modify the
block when there is a need for modification. The scheme
improves the chameleon hash algorithm in several aspects,
and when the ledger modification operation is required, the
modification operation can be completed without additional
calculations by other nodes, and the scheme is based on a
trusted central node, and the modification does not skip the
step of centralisation.

Wang et al. (2020) optimised the chameleon hash
algorithm, which also generates the chameleon hash key of
the system by a trusted node, splits the system private key
into multiple private key shares through secret sharing, and
distributes it to all nodes in the network or the nodes with
the highest shares; when the ledger modification operation
is required, the sub-private key of each node is restored
to the system private key, so as to modify the transaction
content. There is a problem with this scheme: although the
sub-private key of the chameleon hash is stored on multiple
nodes, and the ledger modification process reaches a certain
degree of decentralisation, the generation and restoration of
the key requires a centralised trusted node, so the degree of
decentralisation of the scheme is not high.

In this paper, in the edge computing mode, the
edge nodes constitute a blockchain, which solves the
cross-domain authentication problem of terminal devices.
The chameleon hash method is adopted to realise block
modification, which solves the problem of modification
of authentication information caused by terminal device
changes and damage. The modification method is that the
service centre stores the private key of the chameleon hash
in the form of a time slice and publishes the public key
of the chameleon hash, and when the edge node needs to
modify the data in the blockchain, the service centre splits
the private key into multiple copies and distributes it to
multiple edge power nodes. After the edge node receives
the sub-private key of each edge power node, it synthesises
the trapdoor master private key for the edge node to modify
the data.

2 Preliminaries

2.1 Chameleon hashing algorithm

The reason why blocks in a blockchain are difficult to
modify between each other is that blocks are generated by
hashing. Modification of one hash in the hash link causes
subsequent link hash errors (Gong et al., 2023; Zhang et al.,
forthcoming, 2023). The chameleon hash function, also
known as the trapdoor hash function, was first proposed by
Krawczyk and Rabin (Ren et al., 2019; Hu et al., 2022;
Zhou et al., 2023), and the corresponding collision can
be easily calculated when the trapdoor key is mastered.
The existing method of modifying the blockchain uses the
chameleon hash function to modify the block data without
changing the hash value.

The chameleon hashing algorithm consists of three main
parts: hash function, chameleon trapdoor generation, and
hash value generation.

• Hash function: The chameleon hash algorithm uses a
basic hash function as its base. The function accepts
an input message and outputs a fixed-length hash
value. This hash function can be any commonly used
hash function such as SHA-256 or MD5. In the
chameleon hash algorithm, we use a hash function to
generate a hash value h, which will be used to
generate the chameleon trapdoor and hash value.

• Chameleon trapdoor generation: A chameleon
trapdoor is a secret parameter that generates a hash
value associated with a specific key. Specifically, the
chameleon trapdoor is generated by a public
parameter (hash value h) and a secret parameter (key
k). In the chameleon hash algorithm, we use a special
chameleon trapdoor generation algorithm to generate
the chameleon trap. The algorithm first selects a
random number b and computes a parameter a that is
independent of the key k, and then it calculates a
random number r such that r = h−b

a , while the
chameleon trapdoor t can be generated by using the
chameleon trapdoor generation algorithm, t = k−b

r . Its
chameleon trapdoor t is a secret parameter associated
with the key k.

• Hash value generation: The generation of hash value
is the final step of the chameleon’s hashing algorithm.
In the hash generation phase, we use the chameleon
trapdoor t to generate the hash value associated with
the key k. Specifically, we use the common parameter
h, the chameleon trapdoor t, and a random number x
to generate the hash value. The hash value is
calculated as: h′ = t ∗ x+ b mod p, where b and p
are the random numbers and large prime numbers
used in the chameleon trapdoor generation algorithm.

For Krawczyk and Rabin (1998), the chameleon hash
algorithm has five functions, which are described as
follows:



216 J. Xu et al.

• Initialise Setup(λ): From the security parameter λ,
calculate the public parameter pp = {p, q, g}. And p
and q satisfy the equation: p = kq + 1, g is the
generator of the multiplicative cyclic group Z∗

p .

• Generate key GenKey (pp): According to the
parameters pp generated by initialisation, output the
public key h, private key s. s is the element
randomly selected in the multiplicative cyclic group
Z∗
p above, and the public key h = gs mod q.

• Calculate the hash value CalHash(h,m, t): Through
the known public key h, plaintext m, and variadic r,
the corresponding chameleon hash value
CH = gmhr mod p is obtained.

• Parameter t forge function Forge(s,m, t,m′): via the
trapdoor key s, the original m and the modified
original text m′ and the parameter t. Output the
variadic parameter t′ matched by m′ after
modification.

• Verify the chameleon hash V erify(h,m, t, CH):
Verify whether the chameleon hash CH corresponds
to the plaintext m, parameter t, and enter the above
parameters. If output 1 is matched, output 0 is not
matched.

According to the above principle and algorithm, the
processing of the message using the chameleon hash
requires two parameters: message m and parameter t. The
parameter t is mutable, and after the message m is modified
by the edge node, the parameter t can be changed so that
H(m, t) = H(m′, t′).

2.2 Shamir key distribution and recovery algorithm

The method of modifying blockchain data is to replace the
traditional hash function with a chameleon hash, in this
scheme, most of the research scheme is a decentralised
method, each node’s private key generation algorithm
can only generate its own sub-private key, the modified
trapdoor private key is the total private key s = s1 + s2 +
. . .+ sk.

In the mode of edge computing, the location and
security status of edge nodes is complex and changeable,
and the location and security of the registry can be
guaranteed. A centralised approach can be adopted in this
environment. That is, in the blockchain composed of edge
nodes and registration centres, the registry is used as the
central trusted node in the blockchain, the registry is used
as the key distribution centre, and the private key of the
chameleon hash is split into multiple copies for distribution.

The key splitting and recovery algorithm in this paper
is the Shamir key distribution and recovery algorithm (Ren
et al., 2020; Ateniese et al., 2017; Krawczyk and Rabin,
1998). Shamir’s secret sharing, a cryptographic technique
used to distribute secret information among multiple
participants, was first proposed by Israeli cryptographer Adi
Shamir in 1979 (Li et al., 2018; Rong et al., 2015; Shamir,
1979; Lv et al., 2021). It can be used to securely distribute

passwords or other sensitive information so that the original
secret can only be recovered if certain conditions are met.

In the chameleon hash key generation algorithm, the
private key s generated by the GenKey (pp) algorithm
is a randomly selected element in the multiplicative loop
group Z∗

p . Therefore, the Shamir key distribution and
recovery algorithm is used to fit the key distribution and
recovery scenario. The specific methods of splitting the key,
distributing the key, and recovering the key are as follows.

• Initialisation: The registry CS randomly selects n (the
number of power nodes) different non-zero element x1

from the finite field GF (p), x2 . . ., xn, the registry
CS has non-zero element information corresponding
to n power nodes, and exposes its non-zero element
xr(1 ≤ r ≤ n) for each power node r.

• Subkey distribution phase: The secret to be distributed
by the registry is a subkey of the chameleon hashgate.
Randomly select (t− 1) elements in GF (p), the
ai(i = 1, 2 . . . , t− 1) to form a polynomial of order
t− 1, see equation (1).

f (x) =

t−1∑
i=1

a0 + aix
i mod p (1)

p is a large prime number, and p > s, private key
s = f (0) = a0. The registry generates a subkey for
the authority edge node, as shown in equation (2), and
sends it to the corresponding authority edge node in a
secure manner.

sr = f (xr)

=

t−1∑
i=1

a0 + aix
i mod p (r = 1, 2, . . . , n)

(2)

• Chameleon hash trapdoor recovery: Nodes that hold
subkeys of t or greater than t power edge nodes can
recover the hash trapdoor private key S using the
Lagrange interpolation formula, and nodes with less
than t subkeys cannot recover the private key s, see
equation (3) for the Lagrange interpolation formula.

s = f (0)

=

t−1∑
i=1

f(xi)

t∏
v=1,v ̸=l

−xv

xi − xv
mod p

(3)

3 Method details

3.1 Network model

The model architecture is shown in Figure 1 and consists of
three main parts. User devices, edge computing nodes (edge
servers) and cloud service centres (registration centre). The
architecture diagram is roughly the same as that studied by
the majority of scholars, the only difference is the addition
of the concept of power nodes, power nodes are special



The correction method of block authentication information in edge computing mode 217

edge nodes, edge nodes can be upgraded to power nodes
after meeting certain conditions (see below for promotion
conditions), power nodes are in charge of the sub-keys
assigned by the cloud service centre. An edge computing
node and several end devices form an edge service domain.
In the system architecture, there is one blockchain for
storing the digital certificate after the terminal device is
successfully authenticated, and the other blockchain stores
the device information of the active terminal.

Figure 1 Network architecture (see online version for colours)

3.2 Authentication information modification methods

Terminal device authentication process: when a terminal
device initiates an authentication request to an edge node,
the edge node first checks whether the terminal device has
ID information locally, that is, the edge node determines
whether the terminal device is a recently active terminal
device, and if the ID information of the terminal device
is found locally on the edge node, it directly returns the
authentication success. If the terminal device information
does not exist at the edge node, it will go to the full node
on the chain to query whether there is digital certificate
information, and the authentication is successful if there is
a digital certificate.

Modify the process of block authentication information:
the flow chart of modifying authentication information is
shown in Figure 2, and the specific modification process is
as follows:

• When the terminal device changes and needs to
modify the authentication information on the
blockchain, we need the edge node to generate a
proposal to modify the on-chain information and send
the modification proposal to the service centre, and
the information proposal is accompanied by the
device ID of the terminal device, the reason for

modifying the authentication information and the time
when the information is sent.

Figure 2 Block modification flowchart (see online version
for colours)

• The service centre accepts the proposal and verifies
its modification request, if the verification is not
passed, it sends an objection to the modification
message to the proposal initiator, if the verification is
passed, the service centre finds the trapdoor private
key of the chameleon hash in the period (the
modification of the period requires the chameleon
hash key for operation), splits it into multiple
sub-private keys and assigns it to the power node (the
power node is generated by the edge node with a
large number of service terminal devices), and the
number of split sub-private keys determines the
security of its chameleon hash private key. Because
the private key is formed by merging sub-private
keys, the greater the number of sub-private keys that
are split, the lower the risk of leakage of the merged
private key and the higher the system security.

• When each power node receives and verifies the
message sent by the service centre, it encrypts the
sub-private key it holds and sends it to the edge node
that initiated the modification request, after the
sub-private key is sent, the power node can choose to



218 J. Xu et al.

destroy or retain the sub-private key, even if the
power node retains the sub-private key, privately
owning a sub-private key can not modify the
corresponding block of the blockchain, even if it has
all the sub-private keys, becomes a malicious node,
and privately modifies the local blockchain node. It is
also impossible to synchronise other edge nodes with
their local blockchain information due to the lack of
participation of the service centre.

• Once the modification operation is completed, the
edge node also needs to return a reply message to the
service centre, telling the service centre that it has
been modified, and with the identity sent by the
service centre, proving that the modification is
completed by the key distributed by the service
centre, then the service centre can send
synchronisation requests to other edge nodes to
update the blockchain information of other nodes in
the entire distributed system.

3.3 A method by which an edge node is promoted to a
power node

Compared with ordinary edge nodes, the only difference
between the power node and ordinary edge nodes is that it
needs to accept the sub-private key issued by the service
centre and send its sub-private key to the edge node that
made the modification request, which can judge the request
issued by the edge node to modify the on-chain data, and
determine that the request for joint issue will send the
sub-private key it holds to the edge node. There are two
more suitable scenarios for promoting an edge node to a
power node:

• Vote based on the edge node. That is, the edge node
that wants to be promoted to a power node initiates a
promotion request to other nodes, and the other edge
nodes judge the authenticity of the node after
receiving the promotion request, and return the
consent request if it is reliable. After receiving a
consent request from a certain threshold, the edge
node that wants to be promoted to an authority node
is promoted to an edge node. The communication
overhead caused by this method will be relatively
high.

• Based on the edge node workload. This is the
approach we have adopted. The workload refers to
the number of service terminal devices, because the
edge node will regularly transmit its successfully
authenticated terminal devices to the service centre,
so the service centre stores the number of terminals
served by each edge node. We select the edge node
with the top x of the workload to promote to the
power node. Compared with the above scheme, this
scheme has less communication overhead, and it does
not need to vote for power nodes, because the service
centre stores the workload information of each edge
node, and only needs the service centre to select the

top x (0 < x < 100) nodes with the highest workload
as power nodes.

3.4 Chameleon hash key generation granularity

The chameleon hashing algorithm requires a pair of public
and private keys when modifying data. In addition to
the service node’s need to store the private key for each
modification, which adds a burden to the storage space
of the service centre, the service centre’s broadcast of the
public key and the process of sending the sub-private key
to the power node, and the service centre’s acceptance of
the process of initiating the modification node proposal
delivery process also require additional communication
costs. Therefore, in this case, different key generation
granularity has a greater impact on the communication
efficiency and storage space of the system, according to the
research of Lv et al. (Jian et al., 2022; Liang et al., 2020;
Cai et al., forthcoming) commonly used key generation
granularity is divided into the following:

• Key generation granularity: Every time the data is on
the chain. For each data write in the blockchain, a
chameleon hash key pair needs to be generated. This
method is very secure, and leaking a chameleon hash
public private key will only cause the corresponding
data to be tampered with, and any other on-chain data
cannot be modified. But the biggest disadvantage of
this method is that it brings great storage pressure and
communication pressure to the entire blockchain
distributed system, once the device writes a large
amount of data to the blockchain, this will greatly
increase the burden of the entire distributed system,
because the full nodes in the blockchain will
synchronise all newly added and modified data.

• Key generation granularity: Each block produced.
Every time a new block is generated, the
corresponding chameleon hash key pair is generated
at the same time, which is equivalent to the previous
key generation granularity, and its time and space cost
is much less. In the Bitcoin system, a block size is
about 1 MB, and a transaction data requires about
250 B of space, that is, a block can hold about 2,500
transactions, so the key generated by the block for
granularity is equivalent to the granularity of each
data on the chain, and the efficiency can be increased
by about 2 ∗ 103 times. When an attacker obtains the
key pair, it can modify any data of the corresponding
block at will, and this key generation density is only
suitable for cases where the number of modifications
on the chain is relatively small.

• Key generation granularity: Per time period. The key
generation granularity used in this article is generated
for each time period, and we put the key generation
density in each time period to save overhead and
ensure data security. The service centre publishes a
key pair per time period, and the data on the chain
during that time period is hashed by the chameleon.



The correction method of block authentication information in edge computing mode 219

The specific time period size can be determined
according to the frequency of specific modification
operations, and the time period can be adjusted longer
with high modification frequency to prevent excessive
communication and storage overhead caused by the
private key pair.

• Key generation granularity: Only one key is generated
in the chain. That is, all data on-chain operations of
the blockchain only use this chameleon hash key pair,
which can modify all data on the chain. This scheme
has the lowest communication overhead and storage
overhead, and it has the lowest security factor, and
once the attacker has its key, he can modify any data
on the chain. This solution is suitable for scenarios
where the value of on-chain data is low, and the
communication overhead and storage overhead are
extremely low.

4 Experiment details

Due to the limited experimental environment and funds,
we cannot construct a real distributed system for complete
experiments. Therefore, the experimental step we use is
to go through the above technical route to prove that the
proposed method is indeed feasible and effective.

This section will show Shamir key distribution
and recovery, chameleon hash technology modification
experiments, and blockchain initialisation, storage of
authentication information, modification of authentication
information and other experiments in a stand-alone
environment. And analyse the time and performance
overhead of these experiments.

4.1 Experimental environment

Our experimental environment is as follows:

• Hardware: This section conducts simulation
experiments in the Intel i5 9300H processor
(2.4 GHz), 16 G memory, and 1 T mechanical disk
Lenovo computer.

• Software: Under the Windows 10 operating system.
Use the jpbc 2.0.0 cryptography package in the Java
JDK 1.8 environment.

4.2 Shamir key distribution and recovery experiment

This experiment was performed using a Shamir toolkit
packaged according to the jpbc (Long et al., 2023;
Diao et al., 2023; Hu et al., 2023; Liang et al., 2022,
2023) cryptography package. The Shamir key distribution
algorithm requires two parameters n and t, n is the number
of copies of the key distribution, t represents the minimum
score required to recover the key, Figure 3 is Shamir’s
demo code.

Figure 3 Shamir key distribution code

In the demo code, we use a simple English paragraph to
represent our private key, and then pass in the required
parameters n, t in the doIt method, where we get n is 10
and t is 8. It represented the distribution of ten different
paragraphs of information in English and the restoration
of the eight paragraphs of information that needed to
be distributed in English. After this code passes through
the compiler runner, it can be found that the value of
the sumsecret is summarised by 8 pieces of information
and successfully restored to the beginning of the English
paragraph, that is, our private key.

4.3 Chameleon hash technique modification experiment

First, after encapsulating the chameleon hash class
according to the cryptography JPBC library in Java, then
implementing the initialisation Setup(λ), generating the
key GenKey (pp), trapdoor Forge(s,m, t,m′) and other
methods required to achieve the chameleon hash, and
finally start the corresponding experiment.

At the beginning of the experiment, the hash value
of key generation and initial information was calculated
through the encapsulated chameleon hash class, and then
the initial value of the initial value was changed, and then
the hash value was calculated.

This is known from the compiler result, strMsg1 and
strMsg2 are two completely different initial information,
calculated by the Forge trapdoor function, and their hash
values are found separately, and it can be found that the
hash values of the two are exactly the same. Therefore, for
the chameleon hash, even if two completely different pieces
of information, after mastering the trap, the same chameleon
hash value can be constructed.

Compared with the traditional hashing algorithm, the
chameleon hashing algorithm mainly has the following
disadvantages:

• Key compromise risk: Traditional hash functions do
not have a key, and if the key of the chameleon hash



220 J. Xu et al.

is compromised, an attacker can use the key to forge
the hash value, thereby compromising the security of
the system.

• Attacks that can target keys: The security of
chameleon hashes relies on the confidentiality of the
keys. If an attacker is able to crack the key, they can
impersonate a legitimate user by generating a valid
hash value to access sensitive data or perform other
malicious behaviour, threatening the security of the
entire system.

• Computationally inefficient: Chameleon hashes are
slower to compute compared to traditional hash
functions, which can negatively impact the
performance of the system.

• Chameleon hashing implementation complexity:
Because the algorithm for chameleon hashing is
complex, the software or hardware that implements
the algorithm may require more time and resources.

4.4 Blockchain experiment in a stand-alone
environment

Chain initialisation: the initialisation process of a
blockchain typically consists of the following three steps:

• Create a genesis block: A genesis block is the first
block of the blockchain and contains some initial
parameters and states of the blockchain.

• Define blockchain rules: Define the transaction rules,
consensus algorithm, block size, mining reward, etc.
of the blockchain to ensure the stability and security
of the network.

• Setup nodes: Start nodes and connect them to the
network, ensuring that nodes can receive and
broadcast transaction information.

During chain initialisation, the main work is to complete the
genesis block generation step and generate the chameleon
hash key on a regular basis. The genesis block is the
starting point of the entire blockchain. It is generated by
the creator or initial team of the blockchain and usually
contains some initial metadata such as initial parameters,
initial state, etc. The genesis block can also be thought of as
the ‘initial state’ of a blockchain network, as all subsequent
blocks are built on top of it. The genesis block header JSON
format of the blockchain in our stand-alone environment in
Figure 4.

The meaning of the symbols shown in Figure 4 is
as follows, ‘id’ is 0 means that it is the genesis block,
the ‘hash’ value is the hash value of all parameters of
the current block together to calculate the hash value,
‘previous_hash’ represents the hash value of the previous
block, the above value is 0 because the genesis block
does not have a predecessor block, ‘Merkel’ represents the
last hash obtained after many authentication information
is obtained after seeking hash separately, and ‘Merkel’ in

the genesis block the root value is still empty because
the authentication information has not been stored in the
genesis block body.

Figure 4 Genesis block header

Since the chameleon hash key is required to modify the
authentication information, we write a method to generate
the chameleon hash key, the main code of which is shown
in Figure 5.

Figure 5 Generate key code

According to the concept of key generation granularity
mentioned in the above subsection, the granularity we
took in the experiment for each time period to generate a
chameleon hash key, in the service centre we must generate
a chameleon hash key at regular intervals, the key includes
the public key and the private key, and broadcast the public
key in the key to other edge nodes, so that the hash value of
all authentication information during this period is obtained
by the chameleon hash algorithm with the public key as a
parameter. Therefore, in order to generate the corresponding
chameleon hash key, we set the corresponding timing task
in the system, the timing time is set by ourselves, I set it
to an hour here, let the code run every hour to generate
the corresponding chameleon hash key, and then we use
class serialisation to store the chameleon hash key into the
service centre database.

Stores authentication information: To store
authentication information, you need to obtain the
chameleon hash public key for the chameleon hash
operation in the current time period, which is broadcast by
the service centre regularly, and the edge node needs to



The correction method of block authentication information in edge computing mode 221

listen to the channel at regular intervals to accept the public
key broadcast by the service centre in order to calculate the
chameleon hash value of the authentication information.

Figure 6 Stored authentication information

In the authentication information, the authentication
information needs to specify the block number stored, and
the authentication information stored in each block has an
upper limit, that is, the authentication information that can
be stored in a block is limited, and the upper limit needs to
be specified by the system, and the upper limit is specified
as four pieces of information in this experiment. After
storing the information, the block header and block body
are shown in Figure 6.

The block header is mainly composed of its own
block ID, block hash value, as well as the four parts of
the precursor block hash value and Merkel root value,
and the relevant information of block generation, such
as timestamp and block generation difficulty coefficient
nonce two parts. The block body is mainly composed
of authentication information and key information used to
store authentication information, and hash and r are the
trapdoor information generated by the chameleon hash,
which is used to obtain its chameleon hash trap when
modifying the authentication information. Each time the
authentication information is stored, the Merkle root value
in the block body will be changed, and when the block
authentication information storage reaches its storage limit,
the Merkle root value information will not be modified.

Modify the authentication information: the chameleon
hash is used in the block structure as shown in Figure 7,
the lock on the authentication data represents that the hash
function of the transaction data hash is replaced with the
chameleon hash function, and the change chameleon hash
trap and the chameleon hash private key need to be obtained
to modify the authentication information.

Figure 7 The position of the chameleon hash in the block
(see online version for colours)

Figure 8 Modified authentication information

Chameleon hash trap: The chameleon hash trap is calculated
when the authentication information is found when the
chameleon hash, it is stored in the relevant place of the
authentication information, that is, in the authentication
information in the block body can find its chameleon hash
trap, whenever the authentication information is modified,
directly make these three parameters ‘modified information,
chameleon hash trap, chameleon hash private key’ can find
the hash value of the original information. Although the
chameleon hash trap can be calculated by the public key
and the original information, the amount of computation
and time overhead associated with the latter method is
significantly reduced compared to the method of directly
storing in the block and obtaining it directly from the block
information.

Chameleon hash private key: The chameleon hash
private key requires the edge node to query the current
block generation time key_gen_time. The generation time
is attached to the information modification proposal and
sent to the service centre, which verifies the proposal
and distributes the chameleon hash private key to the
corresponding permission node. When the edge node



222 J. Xu et al.

merges the chameleon hash private key from the permission
node through the key merging algorithm, it can modify the
data in the block body together with the chameleon hash
trap.

The specific modification of the block structure before
and after the change is shown in Figure 8, see that the
information in the ‘message’ has changed before and after,
after modifying the single authentication data, due to the
use of the chameleon hash trap, the single data hash value
will not change, the hash value of the two hashes will
not change, see Merkle root structure diagram, so the hash
value and Merkle root value before and after modification
will not change, and the block structure of the precursor
block will not change with modification. The rear-drive
block will also not change.

For the question of how to synchronise blocks, the
updated block will be sent to the service centre by
modifying the node, and after the block is verified by the
service centre, each edge node in each domain is notified
to synchronise its own local block.

So, when the authentication device is damaged or
changed, the invalid authentication information of the
endpoint can be deleted or changed, saving the storage
space of the edge device and facilitating the management
and maintenance of the authentication information.

5 Conclusions

In the edge computing environment, in order to solve
the problem of editing and modifying the authentication
information in the blockchain formed by edge nodes, this
paper adopts the method of chameleon hash and key
generation time slice to edit and modify the authentication
data in the blockchain. For the distribution and recovery of
chameleon hash keys during the modification process, we
adopt the policy of using the service centre as the centre
of key distribution, distributing the key through the service
centre, and restoring the key at the modification node.

In the experimental part, this paper tests the Shamir
key distribution and recovery algorithm and tests the time
overhead of the algorithm. The algorithm has less time
overhead when the number of distribution keys is small and
the number of subkeys required for merging is small. After
the chameleon hash and key distribution experiments, it is
verified that there are no technical obstacles to the method
of chameleon hashing and key distribution technology to
modify the on-chain data, and finally, this paper conducts
the storage and modification of authentication information
experiments in the stand-alone blockchain to simulate the
storage and modification process in the actual situation.

After the above experiments, it is proved that when
the authentication equipment is damaged or changed, that
is, when the corresponding authentication data on the
edge node needs to be modified, the proposed scheme
can reliably and effectively modify the authentication
information in the actual environment, and will not change
the block structure before and after, and adapt to a variety
of consensus algorithms.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (Grant 61872138, 61572188) and
the Natural Science Foundation of Fujian Province, China
(Grant 2023J011800).

References

Ateniese, G., Magri, B., Venturi, D. et al. (2017) ‘ Redactable
blockchain-or-rewriting history in bitcoin and friends’, 2017
IEEE European Symposium on Security and Privacy (EuroS&P),
IEEE, pp.111–126.

Cai, J., Liang, W., Li, X., Gui, Z., Li, K-C., Khan, MK.
(forthcoming) ‘GTxChain: a secure IoT smart blockchain
architecture based on GNN’, IEEE Internet of Things Journal,
IEEE, DOI: 10.1109/JIOT.2023.3296469.

Diao, C., Zhang, D., Liang, W., Li, K-C., Hong, Y. and Gaudiot, J-L.
(2023) ‘A novel spatial-temporal multi-scale alignment graph
neural network security model for vehicles prediction’, IEEE
Transactions on Intelligent Transportation Systems, Vol. 24,
No. 1, pp.904–914, January, DOI: 10.1109/TITS.2022.3140229.

Gong, Y., Li, K., Xiao, L., Cai, J. et al. (2023) ‘VASERP:
an adaptive, lightweight, secure, and efficient RFID-based
authentication scheme for IoV’, Sensors, Vol. 23, No. 11,
p.5198, DOI: 10.3390/s23115198.

Guo, S., Hu, X., Guo, S. et al. (2019) ‘Blockchain meets edge
computing: a distributed and trusted authentication system’,
IEEE Transactions on Industrial Informatics, Vol. 16, No. 3,
pp.1972–1983.

Hu, N., Zhang, D., Xie, K., Liang, W., Diao, C. and
Li, K-C. (2022) ‘Multi-range bidirectional mask graph
convolution based GRU networks for traffic prediction’,
Journal of Systems Architecture, Vol. 133, p.102775, Elsevier,
DOI: 10.1016/j.sysarc.2022.102775.

Hu, N., Zhang, D., Xie, K., Liang, W., Li, K. and Zomaya, A.
(2023) ‘Multi-graph fusion based graph convolutional networks
for traffic prediction’, Computer Communications, Vol. 210,
pp.194–204, Elsevier, DOI: 10.1016/j.comcom.2023.08.004.

Jian, W., Xu, J., Liang, W. and Li, K-C. (2022) ‘Dual chain
authentication and key agreement protocol based on blockchain
technology in edge computing’, 2022 IEEE 24th Int. Conf.
on High Performance Computing & Communications; 8th Int.
Conf. on Data Science & Systems; 20th Int. Conf. on Smart
City; 8th Int. Conf. on Dependability in Sensor, Cloud & Big
Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
Hainan, China, 2022, pp.396–401, DOI: 10.1109/HPCC-
DSS-SmartCity-DependSys57074.2022.00082.

Krawczyk, H. and Rabin, T. (1998) Chameleon Hashing and
Signatures, Cryptology ePrint Archive.

Li, P., Xu, H., Ma, T. et al. (2018) ‘Research on fault-correcting
blockchain technology’, Journal of Cryptologic Research,
Vol. 5, No. 5, pp.501–509.

Li, Y., Liang, W., Xie, K., Zhang, D., Xie, S. and Li, K-C.
(2023) ‘LightNestle: quick and accurate neural sequential tensor
completion via meta learning’, IEEE INFOCOM 2023, IEEE,
DOI: 10.1109/INFOCOM53939.2023.10228967.



The correction method of block authentication information in edge computing mode 223

Liang, W., Li, Y., Xie, K., Zhang, D., Li, K-C., Souri, A. and Li, K.
(2022) ‘Spatial-temporal aware inductive graph neural network
for C-ITS data recovery’, IEEE Transactions on Intelligent
Transportation Systems, Vol. 24, No. 8, pp.8431–8442, IEEE,
DOI: 10.1109/TITS.2022.3156266.

Liang, W., Yang, Y., Yang, C., Hu, Y., Xie, S., Li, K-C. and
Cao, J. (2023) ‘PDPChain: a consortium blockchain-based
privacy protection scheme for personal data’, IEEE
Transactions on Reliability, Vol. 72, No. 2, pp.586–598,
DOI: 10.1109/TR.2022.3190932.

Liang, W., Zhang, D., Lei, X., Tang, M. and Zomaya, Y.
(2020) ‘Circuit copyright blockchain: block chainbased
homomorphic encryption for IP circuit protection’,
IEEE Transactions on Emerging Topics in Computing,
DOI: 10.1109/TETC.2020.2993032.

Liu, S., Xiao, L., Han, D., Xie, K., Li, X. and Liang, W. (2023a)
‘HCVC: a high-capacity off-chain virtual channel scheme based
on bidirectional locking mechanism’, IEEE Transactions on
Network Science and Engineering.

Liu, Y., Liang, W., Xie, K., Xie, S., Li, K. and Meng,
W. (2023b) ‘LightPay: a lightweight and secure off-chain
multi-path payment scheme based on adapter signatures’, IEEE
Transactions on Services Computing.

Long, J., Liang, W., Li, K-C., Wei, Y. and Marino, M.D. (2023)
‘A regularized cross-layer ladder network for intrusion detection
in industrial internet-of-things’, IEEE Transactions on Industrial
Informatics, February, Vol. 19, No. 2, pp.1747–1755, DOI:
10.1109/TII.2022.3204034.

Lv, W., Wei, S., Yu, M. et al. (2021) ‘Research on verifiable
blockchain ledger redaction method for trusted consortium’,
Chinese Journal of Computer, Vol. 44, No. 10.

Ren, Y., Xu, D., Zhang, X. et al. (2019) ‘Deletable blockchain
based on threshold ring signature’, Journal on Communications,
Vol. 40, pp.71–82.

Ren, Y., Xu, D., Zhang, X. et al. (2020) ‘Scheme of revisable
blockchain’, Journal of Software, Vol. 31, No. 12.

Rong, H., Mo, J., Chang, B. et al. (2015) ‘Key distribution and
recovery algorithmbased on Shamir’s secret sharing’, Journal
on Communications.

Shamir, A. (1979) ‘How to share a secret’, Communications of the
ACM, Vol. 22, No. 11, pp.612–613.

Wang, J., Wu, L., Choo, K.K.R. et al. (2020) ‘Blockchain-based
anonymous authentication with key management for smart grid
edge computing infrastructure’, IEEE Transactions on Industrial
Informatics, Vol. 16, No. 3, pp.1984–1992.

Xu, Z., Liang, W., Li, K-C., Xu, J., Zomaya, A.Y. and Zhang, J.
(2022) ‘A time-sensitive token-based anonymous authentication
and dynamic group key agreement scheme for Industry 5.0’,
IEEE Transactions on Industrial Informatics, Vol. 18, No. 10,
pp.7118–7127, DOI: 10.1109/TII.2021.3129631.

Zhang, S. and Lee, J.H. (2019) ‘A group signature and authentication
scheme for blockchain-based mobile-edge computing’, IEEE
Internet of Things Journal, Vol. 7, No. 5, pp.4557–4565.

Zhang, S., Hu, B., Liang, W., Li, K-C. and Gupta, B.B.
(2023) ‘A caching-based dual K-anonymous location
privacy-preserving scheme for edge computing’, IEEE
Internet of Things Journal, Vol. 10, No. 11, pp.9768–9781,
DOI: 10.1109/JIOT.2023.3235707.

Zhang, S., Hu, B., Liang, W., Li, K-C. and Pathan, A-S.K.
(forthcoming) ‘A trajectory privacy-preserving scheme based on
transition matrix and caching for IIoT’, IEEE Internet of Things
Journal, IEEE, DOI: 10.1109/JIOT.2023.3308073.

Zhang, S., Yan, Z., Liang, W., Li, K-C. and Dobre, C.
(2023) ‘BAKA: biometric authentication and key agreement
scheme based on fuzzy extractor for wireless body
area networks’, IEEE Internet of Things Journal, IEEE,
DOI: 10.1109/JIOT.2023.3302620.

Zhou, S., Li, K., Xiao, L., Cai, J. et al. (2023) ‘A systematic review
of consensus mechanisms in blockchain’, Mathematics, Vol. 11,
No. 10, p.2248, DOI: 10.3390/math11102248.


