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Abstract: Relational triple extraction (RTE) extracts entities and relations from unstructured
text, serving as a crucial task for various NLP applications. Traditional pipeline approaches
often face error propagation issues. The cascade binary tagging (CBT) method was introduced
to mitigate this by linking entity recognition and relation extraction through shared parameters.
However, CBT struggles with long-distance dependencies between subject and object entities,
weakening performance. To address this, the COnRel model is proposed, integrating shallow
and deep hierarchical information into the CBT framework. An unsupervised hierarchy parser
generates multi-level tree structures, and a weight-transform method assigns higher weights
to words closer in hierarchy to subject entities. This improves semantic representation of the
subjects. In experiments, COnRel with shallow hierarchy outperforms the baseline model CasRel
on the WebNLG dataset, and the full model, including deep hierarchy, excels on both WebNLG
and NYT datasets, particularly for sentences 20-50 words in length.

Keywords: relational triple extraction; RTE; tree hierarchy; ordered neurons LSTM; BIO-like
tagging scheme; cascade binary tagging scheme.
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1 Introduction

relationships. E.g., two relational triples, (William Anders,
born in, British Hong Kong) and (William Anders, selected

Extracting entities and their semantic relations from
unstructured texts is a fundamental task in text mining and
knowledge graph construction (Xu et al., 2021; Cheng et al.,
2024). It could be transformed to relational triple extraction
(RTE) task. Given a sentence, RTE is to detect all possible
relational triples (subject, relation, object), which include
head entities (subjects), tail entities (objects) and their

Copyright © 2025 Inderscience Enterprises Ltd.

by, NASA4), would be extracted from the sentence shown in
Figure 1.

There are two typical approaches for the RTE task:
one is the pipeline approach consisting of two models
for the two sub-tasks, named entity recognition (NER)
and relation extraction (RE), respectively. Another is the
joint approach that models the two sub-tasks jointly
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(Yan et al., 2022). Traditional pipeline approaches ignore
the bidirectional influences between the sub-tasks, which
results in error propagation. Empirical study shows
that properly designed joint approaches outperform the
pipeline approaches (Ye et al, 2021). According to
the text representation, feature-based approaches (Miwa
and Sasaki, 2014) depend on the lexical, syntactic,
and semantic manual features. However, obtaining such
features was always domain-related and expensive. The
neural network-based (NN-based) approaches, automatically
extracting features, show better performances than the
state-of-the-art feature-based approaches, but they still
suffered from the overlapping problem (Fei, 2020; Liu
et al., 2020). The models would miss some relation triples
when different relations shared the same subjects or objects.

A series of cascade binary tagging schemes (Hu et al.,
2020; Wei et al., 2020) were proposed to solve the above
problem. They learn relation-specific taggers by modelling
relations as functions that map subjects to objects (Wei
et al., 2020). These methods allow different relations to
share the same subjects and objects, but identifying the
triples precisely is hard when the subjects are far from
the objects in some long sentences. It is difficult for
neural network models to learn long-range dependencies,
because the forward and backward signals must traverse the
long-range dependency path (Huang et al., 2021).

In computational linguistics, linguistic structures could
be used to understand the rules regarding language use
that native speakers know (Islam and Hossain, 2022). The
constituency parse trees, a kind of linguistic structures,
present the hierarchies of the sentences as trees. As
is shown in Figure 2, subject ‘William Anders’ and
object ‘NASA’ obtain a shorter distance in the tree
view, corresponding to the longer distance in the origin
view. Experiments had proved that the addition of
linguistic structures could improve the classifiers’ ability of
processing long sentences (Mintz et al., 2009). It inspires
us to construct hierarchy representation in a tree view to
shorter the distance between subjects and objects.

Most common parsers, producing hierarchy information
based on human annotated treebanks, are expensive
and domain-dependent. The ordered neurons LSTM
(ON-LSTM) (Shen et al., 2019), an unsupervised parser,
utilises the life cycle of information to model the sentence
hierarchies as trees shown in Figure 2. We introduce the
hierarchy information from ON-LSTM into the tagging
scheme to enhance the semantic understanding of the
model.

The trees produced by ON-LSTM provide the
hierarchical level information, but it cannot be directly used
to compute the distances between subjects and objects. A
weight-transform method is needed to map the trees into
proper weights (stand for the possibilities of becoming an
object) to search the most potential object. Furthermore, the
binary tagger is a kind of linear structures, while hierarchy
information is a kind of tree structures. For breaking the
barrier of diverse structures, a new feature fusion method
is considered to combine hierarchy feature with linear
semantic features together.

The contributions of this paper are as follows:

e To improve the performance of RTE task in long
sentences, a novel semantic-enhanced model COnRel
is prompted. It provides a universal machinism to
introduce the constituency parse trees provided by
ON-LSTM into the CBT scheme.

e To make the hierarchy information to be computable,
a weight-transform method is proposed. We think that
the words with similar hierarchies in a constituency
parse tree have more possibility to contain relations
between them, so the tree hierarchy information is
mapped to weight.

e To solve the problem from different representation of
hierarchy feature and linear semantic feature, a
feature fusion method is designed. Experiments, on
two public datasets NYT and WebNLG, show the
performance improvement of model even if the
sentences elongate.

The rest of this paper is organised as follows. Section 2
reviews related research in RTE by making use of parse
trees. Section 3 illustrated the methodology of the proposed
model. Section 4 presents the experimental settings, main
results and effectiveness analysis. Section 5 discusses the
influences of embedding positions towards the COnRel
model. Section 6 concludes the work.

2 Related work

Traditional pipeline approaches suffer from overlapping
problem because of the separation of NER and RE. Tagging
scheme, as a way to connect NER (Zhang et al., 2022)
and RE (Miwa and Bansal, 2016), was proposed and
transformed the RTE task to the sequence labelling task.
According to the types of tags used in tagging scheme, it
could be classified into two kinds: BIO-like tagging scheme
and cascade binary tagging scheme.

BIO-like tagging schemes take use of ‘begin, inside,
outside’ and other tags (‘end, single’, etc.) to mark the
positions of subjects and objects in the sentence. Relations
are designed as subclass of BIO tags such as ‘beginning
of company founder’, ‘inside of company founder’ and
‘outside’. Zheng et al. (2017) first proposed a novel tagging
scheme based on begin, inside, end, single (BIES) tags
that unified tagging scheme of entities and relations. It was
lack of the ability of processing sentences with overlapping
relational triples because one tag could only appear one
time in a sentence. Several researchers attempted to solve
it. Dai et al. (2019) utilised position-attentive sequence
labelling and BIES tagging to address the overlapping
problem, which labelled multiple times for each word in
sentences. Takanobu et al. (2019) proposed a hierarchical
reinforcement learning framework with BIO tags to address
the problem, which tagged entities in a low-level agent and
relations in a high-level agent. Jia and Xiang (2020) used
ON-LSTM to analyse the shallow hierarchy information for
open-domain relation extraction task with BIOES tags.
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Figure 1 The example of sentence and existing triples (see online version for colours)

Text William Anderswho was born in British Hong K ong was selected by NASA

(William Anders, bornin, British Hong Kong)

Triples

(William Anders, selected by, NASA)

Figure 2 The distance of subject and object in the origin view and the tree view (see online version for colours)

William Anders who was born in British Hong Kong was selected by NASA

Constituency parse

NNP /SBAR\ VTD VP
—A —  William Anders WP VP was  WBN PP
i who VBD WP selected IN NNP
Ly AN
was VBN PP by NASA

Distance after parse

born IN  NNP

in British Hong Kong

Note: In the constituency parse tree, the leaf nodes are words in sentences, and the non-leaf nodes which are in italics stand
for the constituency of the words. ‘S’, ‘NP’ and ‘VP’ are the abbreviation of ‘sentence’, ‘noun phrase’ and ‘verb

phrase’, respectively.

Cascade binary tagging schemes label words’ spans by a
pair of binary taggers, and usually first label subjects and
then label relation and object together. These schemes do
not need specific BIOES tags and perform better in speed.
Wei et al. (2020) presented CasRel which shows great
performance in dealing with overlapping relational triples.
Ren et al. (2021) proposed confidence threshold-based cross
entropy loss to alleviate the influence of imbalance data in
the binary tagging scheme. Ren et al. (2022) proposed the
unidirectional problem of such cascade architectures, which
meant that the objects and relations extraction must be
based on extraction of subjects firstly. They also proposed a
bidirectional framework with subject-to-object binary tagger
and object-to-subject binary tagger to address this problem.

The two types of tagging schemes both transform the
RTE task to classification of tags. These tagging schemes
face a same problem. When the distance of subject and
object elongates, the performances of models would decline

rapidly. Syntactic structures, such as dependency parse trees
and constituency parse trees, are most used to guide the
tagging process and relief this problem (Tuo et al., 2023;
Zhu et al., 2024). Such approaches with dependency parse
trees suffer from two drawbacks. One is dependency parse
trees cannot reflect the word hierarchies, which comes from
the property of dependency linguistic structures. They only
display the dependency relationships between each two
words rather than word hierarchies on the whole. The other
is the lack of generalisation beyond the parse trees. For
example, in the cross-domain RTE task, the domains of the
training data and test data are different which often leads
to a mismatch between the parse trees of the training data
and the test data (Veyseh et al., 2020). The parse trees
are generated by supervised learning which need provide
labelled treebanks.
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Figure 3 The overview of COnRel (see online version for colours)

obj; 0bj2_ _ ObJ‘s_ ________ F———— e —
- \ - | / \ I ) :
) I m1: weight-transform method |
I o ;
| m2: feature fuson method |
b
Fusion L ayer mz
’ Trep = (Vinp + N ) © weights ‘
T 52 T splits
'U.}ML 'Ufu,b_ hon v

COODO0000 Ooooooooon

0 I T T e I e N e I R encoded tokens
|

BERT Encoder

000000000 hens

Note: The BERT encoder encodes input sentence to tokens. Subject tagger tags out the spans of subjects as vsyp. Hierarchy
parser works with encoded tokens and generates shallow hierarchy information h,, and deep hierarchy information
splits, note that splits could be visualised as a constituency parse tree. A weight-transform method converts splits
to multiple weights. A feature fusion method fuses all features and yields x,.p to tag objects.

It is feasible to produce word hierarchies by unsupervised the combined embeddings are processed through multiple
constituency parse trees (Shen et al., 2019). Then the transformer encoder layers.

linguistic information from text will be utilised to enhance Each transformer encoder layer includes a self-attention
the semantic representation. mechanism and feed-forward neural networks. The

self-attention mechanism computes attention scores for
each token based on its relationships with all other tokens

3 Methodology in the sequence, allowing the model to capture complex
dependencies and contextual information.

We propose a semantic-enhanced model with binary tagging The output of the BERT encoder is a sequence of hidden
scheme named COnRel, the architecture of COnRel is states hp, where each hidden state corresponds to a token
shown in Figure 3. It consists of five components: a in the input sentence with enriched contextual information.
bidirectional encoder representations from transformers These hidden states serve as the input for downstream tasks,
(BERT) encoder, a subject tagger, a hierarchy parser, a leveraging the bidirectional nature of BERT to capture the
fusion layer and an object tagger. nuances of natural language effectively.

The BERT embedding process ensures that words are
represented by various semantic vectors based on their
context, enhancing the model’s ability to perform accurately
on various natural language processing tasks.

3.1 Encoder

Firstly, the input sentences are segmented into tokens
and transformed into word vectors (denoted as hy)
by a BERT-base model (Devlin et al., 2019). BERT 3.2 Subject tagger
is a pre-trained transformer-based model that utilises a

bidirectional approach to understand the context of words in A pair of binary taggers are used to tag the start positions
a sentence by considering both the preceding and following and end positions of subjects respectively. For obtaining the
words. locations of subjects, the two kinds of positions by nearest

The embedding process in BERT involves tokenisation, start-end position pair are summed up. There are two groups
where sentences are divided into subword tokens using of subject taggers. Each tagger is represented by 1 or 0
WordPiece tokenisation. Each token is then mapped to an when it is or not the start (end) position. Denote subjects as
embedding vector. Positional encodings are added to these s, sstart indicates where s start and send indicates where

token embeddings for retaining the order of tokens, and
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s end. The probability of the i subject tagger is calculated
as equations (1)—(2):

péstart =0 (Wsstarthzj.\/ + bsstart) ) (1)
pzend =0 (Wsendhl}\[ + bsend) , ()

where hi is the ™ token from encoded sentence hy . W( )
stands for trainable weight, b stands for bias and o is
sigmoid activation function. When p’,,.;, p’.,.4 is greater
than a threshold (here is 0.5), the tag in i"™ would be “1°.

To identify the span of subjects LOC,;, the likelihood
function as equation (3) should be maximised. Eq. (4)
shows the process of generating subject feature from
encoded tokens.

pG(Locsub | hN)

S N (R

te{sstart,send} t=1

. i 3
pDI{yt 0}’ (3)

ub = h ", J € [s, €], )
where LOC,,; indicates the range of all subjects in the
input sentence, v, is the subject feature, s and e are
the start position and end position shown in LOCq,;, the
number of subjects is [LOCsyp].

3.3 Hierarchy parser

For finding the potential objects by the constituency
structures of the sentences, ON-LSTM is applied to parse
the sentences and get the hierarchy information. The
hierarchy information includes two kinds, one is the vectors
(denoted as h,,,) which contain the long-range information
according to a special updating mechanism of ordered
neurons (Shen et al., 2019), and the other is the hierarchical
structures (denoted as splits) which could be visualised as
binary constituency parse trees. Both of them are generated
by the hierarchy parser ON-LSTM.

hon are the hidden states of ON-LSTM, which are
semantic representations of embedded word vector hy.
Operations of producing h,,, are as follows:

hgn =Cp = 07 (5)

= ONCell(hly,h5  eiq),t € [1,N]. 6)
ON-LSTM has isometric cells with transformer blocks.
Denote transformer block as Trans(z) and ON-LSTM cell
as ONCell(x,hi—1,ci—1). Equations (5)—(6) present the
update rule of ON-LSTM cell:

1 Firstly fill two matrices with O as initial states.

2 Then feed each cell with a part of hy (the result of
word embedding of BERT) and ON-LSTM hidden
state and ON-LSTM cell state from previous time
step.

3 At last, gather all cells. As a result, h,,, is produced.
Note that the recurrent structures are helpful to
represent sentence features in a syntactic avenue.

Here we briefly introduce splits. splits are comprised of
d,{ which are float numbers standing for hierarchies of
words, i.e., a greater cftf means the word is in higher level.
And splits are vectors gathered all a?{ by cell order as
equation (7):

splits = [df € ONCell;),i € [1,N], (7

d‘tf are split points of sentence. Smooth estimate a?{

are computed to take place of d{ . d,{ is produced as
equation (8):

ps = softmaz (Wyhly + Ughs—1 + by) .

d} = argmaz (pf), ®
where py is the probability distribution of split points
indicated by ON-LSTM master forget gate f. p ¢ indicates
the hierarchies of history information and ON-LSTM use
it to distinguish how much input information to forget in
a timestep. Wy and Uy are the trainable weights and by
is the trainable bias in master forget gate. hl; are the
th vectors of encoded tokens and hy_; are the hidden
states in ¢ — 1 timestep. Through a top-down greedy parsing
algorithm proposed by Shen et al. (2018), splits could be
visualised as a binary parse tree. For a more comprehensive
description of ON-LSTM and th , we refer readers to Shen
et al. (2019).

3.4 Fusion layer

To obtain the ability of perceive sentence hierarchies, the
introduction of constituency parse tree splits is in need.
Nevertheless, splits that stand for hierarchy structures
of sentences could be applied into neither hy nor vgyp
directly. The reason is a word with a higher level than
other words does not mean it is more possible to be
an object. As the hypothesis we proposed before, the
words whose levels are closer contain higher likelihood that
relations exist between them. According to this hypothesis,
a weight-transform method is presented for granting higher
weights to words adjacent to the subjects in Section 3.4.1.
Furthermore, subject features wvy,p, semantic features hyy,
and level features weights would be fused by a feature
fusion method. The fused features are denoted as x;.,, and
the method is described in Section 3.4.2.

3.4.1 Weight-transform method

A weight-transform method transforms constituency parse
tree splits to weights by paying more attention to words
whose hierarchies are nearer to subjects. To assign higher
weight to words that are more adjacent to subjects, we
calculate the absolute distance dist of every word towards
the first subject in a sentence. A kind of normalisation
approach is applied to keep dist € [1,2]. Further of all, a
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scaling factor 6 is introduced to adapt the scaling degree
of weights, which makes wetghts appropriate. Above
processes are shown as equation (9):

di - dsu
d’iSti = — ‘ = b|
(dma$ - dmin)/Q

0 =oc(Waw + b,)
weights = [fw;],i € [1, N],

where (fl presents the level of ith word, Jsub is the level
of the first subject whose indices are same with vy
in splits, cfmaw,azmm are the maximum and minimum
number in splits. w stand for temporary vectors which
contain the weight without scaling. And weights are
the final weight vectors which indicate how near each
word is far from the first subject in the sentence. After
the transform operation, the hierarchy structures splits
would be converted to weights that could be multiplied
to sentence vectors directly. Formally, the method is as
follows:

Algorithm 1  Weight-transform method

Input: splits = [do,dy,...,dn—1]: d; stands for the hierarchies
of the ¢ token in a sentence; in_sub: index of the first
subject in a sentence

Output: weights = [wo, w1, ..., wn—1]: the weights stand for
the degree of how much the token is near from the subject

token

1: dist = ||

2: w =]

3: dmar = MaX(do7 di, ..., dn71)
4: dmzn = I\/ﬁl’l(do7 dl, ceey dn_1)
5: din_sub = splits[in_sub]

6: for it =0ton—1 do

7: dist[i] = 2 * |splits[i] — din_sub|/(dmaz — dmin)
8: wli] = —dist[i] + 2

9: end for
10: 6 = FullConnectLayer(w)

11: weights = ||

12: for i=0ton—1 do
13: weights[i] = Owli]
14: end for

15: return weights

3.4.2 Feature fusion method

The object tagging process is based on three kinds of
features, includes: subject feature, shallow hierarchy feature
horn and transformed deep hierarchy feature weights. The
hierarchy feature can be used to target the potential
objects especially in long and difficult sentences. A
feature fusion method is proposed to fuse the above
features to get the fused feature representation x,.p.
The process of generating .., could be described as
following: subject taggers tag out the spans of subjects, and
obtain the subjects feature vectors vs,p. In the meanwhile,
hierarchy parser yields shallow hierarchy feature h,, and

deep hierarchy feature splits to improve the model’s
understanding of sentence hierarchies. To introduce splits
into word vectors, splits would be transformed to weights
according to weight-transform method. .., is calculated as
equation (10):

Trep = (ho'n, + vskub) ® weights, (10)
where v% , is the k™ subject feature extracted by subject
tagger. Element-wise multiplication is applied to merged
features and weights. The feature fusion algorithm is as
follows:

Algorithm 2  Feature fusion method

Input: hy: BERT encoded word vector; vsyp: the segments of
vectors corresponded to subjects; s: mask vectors of
subjects, s[i] would be ‘1° if ™ word is a subject

Output: z,.,: semantic-enhanced feature vector

L hon = ||

2 c=]]

3: hon[0] =¢[0] =0

4: for t =1 to n do

5: hon[t] = ONCELL(hn[t], hon[t — 1], c[t — 1])
6: end for

7: isub =0

8: fori=0ton—1do

9: if s[i] == 1 then

10: isub =1

11: break

12: end if

13: end for

14: weights = WeightTransformMethod(splits, isub)
15: Zpep = |]

16: for i=0ton—1 do

17: Zrep[t] = (hon[i] + vsus|t]) * weights]i]

18: end for

19: return x,¢p

3.5 Object tagger

Object tagger also contains a pair of taggers.
The probability of the " tagger is calculated as
equations (11)—(12).

pf}start =0 (WOStanx:—'ep + bostart) s (1D
pécnd =0 (Woendxigp + boend) , (12)
where i, is the i™ token of fused feature @,p. W,

stands for trainable weight, b stands for bias and o is
sigmoid activation function. p{ ..+, Pb.nq 1S the probability
value of i" token, which indicates object’s start and end
position.

Likewise, objects are tagged through maximising
likelihood function equation (13), and each pair of object
taggers are only for a specific relation.

Pe, (LOCopj | Trep)

L _ ,
— I1 I1 (pi)f{yizl} (1 _pi)f{ylzo} ’ (13)
te{ostart,oend} i=1

where LOC,;; indicates the range of all subjects in the
input sentence, and |LOC;| is the number of objects.
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4 Experiments

4.1 Experiment setting

4.1.1 Datasets

Two datasets, NYT (Riedel et al., 2010) and WebNLG
(Gardent et al., 2017), are chosen to test COnRel. The
overview of datasets is as Table 1. NYT was produced by
the distant supervision method. There are 56,195 sentences
of 2005-2006 for training, 5,000 sentences of 2007 for
testing, and 24 predefined relation types in total. WebNLG
was proposed for an natural language generation (NLG)
task of DBpedia. There are 5,000 sentences for training and
703 sentences for testing in 246 relation types. To explore
the performance of RTE in sentences with various lengths,
the original datasets are split into several sub-datasets by
word length.

Table 1 Sentence number and relation number of datasets

Dataset Train Valid Test Relation
NYT 56,195 5,000 5,000 24
WebNLG 5,019 500 703 171*

Note: *The relation number of WebNLG is not
correct because the work of Zeng et al. (2018)
and Wei et al. (2020) is based on subset rather
origin WebNLG. The relation number has been
fixed.

4.1.2 Baselines

We compare our model with five models: NovelTagging
(Zheng et al., 2017), an end-to-end method using novel
tagging scheme; CopyR (Zeng et al., 2018), a Seq2Seq
model that utilises copy mechanism to address overlapping
problem; GraphRel (Fu et al., 2019), jointly extract entities
and relations with GCN; CopyRy; (Zeng et al., 2019),
using reinforcement learning to learn triples order; CasRel
(Wei et al., 2020), using binary taggers to tag entities and
relations.

Our COnRel model is implemented by TensorFlow 1.13
and Adam. It utilises BERT-base English version (available
at  https://huggingface.co/bert-base-cased) with 110M
parameters and tokenises with cased. The max length is set
to 100 and the learning rate is set to 1e-5. The batch size is
set as 6/32 in NYT/WebNLG. It is trained by Tesla V100
on each dataset at most 100 epochs with an early stopping
strategy.

4.1.3 Evaluation metrics

For fair competition, the evaluation metrics are same as
those used in NovelTagging, CopyRE and CasRel. Standard
precision (Prec.), recall (Rec.) and Fl-score are in used to
evaluate the results.

Table 2 Main results of different method on NYT and

WebNLG
Method NYT WebNLG
Prec. Rec. FlI Prec. Rec. FlI
NovelTagging 624 31.7 420 52,5 193 283

CopYR o pocoder 394 531 560 322 289 305
CopYR yuiviDecoder. 610 566 587 377 364 371

GraphRel,, 629 573 60.0 423 392 40.7
GraphRel,,, 639 60.0 619 447 41.1 429
CopyRy . 779 672 721 633 599 61.6
CasRelr s 842 830 836 869 80.6 83.7
CasRel 89.7 89.5 89.6 934 90.1 9138
COnRelshaiiow 86.6 91.1 88.8 93.1 92.8 93.0

COnRelshaiiowtdeep 90.0 91.6  90.8 92.1 92.1 92.1

Note: COnRel offers shallow version and shallow+deep
version. COnRelspaii00 means only Ao, is been
employed and the COnRelspaiiow+deep take use of
hon and splits together.

4.2 Experimental results

4.2.1 Main result

For testifying the influence of introducing shallow and deep
hierarchy information, we compare COnRelgpqii0 and
COnRelspaiiow+decp With the baselines. The experimental
results are presented as Table 2. Among all the baselines,
CasRel performs best on both datasets. Therefore we
only compare our results with CasRel. In NYT dataset,
COnRelgpgii0w 1S 1.6% higher than CasRel on recall, but
lower on precision and F-1 score. However, it performs
better on recall and F-1 score, and has close precision
in WebNLG dataset. Observed from the performances
of COnRelspaiiow+deep ON both datasets, they apparently
exceed CasRel on most of the evaluation metrics. It
indicates COnRel outperforms most of the baselines. The
addition of hierarchy information exactly improves the
performance by increasing more semantic features to the
model.

We split the original datasets to several sub-datasets
according to different lengths of the sentences. The length
gap is set to 10. Because the max length of sentences
in NYT and WebNLG dataset is respectively 100 and 80
words, there are 10 sub-datasets in NYT and 8 sub-datasets
in WebNLG. Figures 4 and 5 illustrate that COnRel shows
better performance in sentences of varying length segments.
With the elongating of sentences, the Fl-score shows a
slower decline, which indicates that COnRel has a stronger
ability of processing long sentences. And it is noticed that
we employ COnRelgpq1100 Splits version, because it works
better in NYT dataset. One reason why COnRelspqiiow
is greater than COnRelspaliow+deep, presumably, is that
WebNLG is too narrow to adapt deep model. The number
of data in WebNLG is much fewer than NYT (more
than 11 times). Deeper architectures need more data.
Another reason is that the sentences in NYT are obviously
difficult and longer than in WebNLG. In such a situation,
COnRelgpq11000 model may work better in WebNLG.
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Figure 4 The experimental result of CasRel and COnRel
(shallow + deep) on NYT dataset in different length
sentence (see online version for colours)
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Figure 5 The experimental result of CasRel and COnRel
(shallow) on WebNLG dataset in different length
sentence (see online version for colours)
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4.2.2 Ablation study

There are two main components in the proposed model:

1 hop, the shallow hierarchy information

2 weights, the weights that are transformed from the
deep hierarchy information yielded from ON-LSTM.

To analysis the contributions and effects of the two
components, we perform ablation study on the NYT and
WebNLG datasets.

Table 3 reports the performance of the different
components. It shows that in NYT dataset, model with h,,,
and weights (COnRel) gets the best recall and F1-score, and
the precision is almost the best. Apart from that, when h,,,
or weights are removed from the model, the precision, recall
and Fl-score significantly degrade. In WebNLG, model
with h,, and weights indicates a more balanced precision
and recall than the other groups. The Fl-score is also close

to the best one. In brief, the ablation study proves the
effects of the two components.

Table 3 Ablation study on NYT and WebNLG datasets

NYT WebNLG
System
Prec.  Rec. Fl Prec.  Rec. Fl
COnRel 90.0 91.6 90.8 92.1 9211 921
hon 90.1 894 898 92.0 924 922
weights 89.6 90.3 90.0 928 920 924

hon — weights 893 89.6 894 91.1 924 917

Note: The components listed on each row are removed
from origin model.

4.2.3 The effectiveness analysis of the generated weights

To explore if the weights take positive effects to the
tagging process, the following experiment is designed.
Given a sentence, we recognise the first subject’s index, and
then predict the index of the object indexpreqonj. We get
the bias of distance as distancep;,s from the subtraction
between indexpredop; and indeT,eqion;. That is, for a
sentence of length n,

distancepios = [INdeTpred ob; — INAETreqi_oby|

The distancep;,s could be regarded as a distance from
a ‘potential object’ to a real object, thus a smaller bias
means that the ‘potential object’ is closer to the real object,
therefore a higher weights should be assign. As is said
before, splits have been transformed to weights. The word
with a higher weight has a closer level with the subject.
Theoretically, if the word with a higher weights obtains a
lower distancep;qs, the weights may take a positive effect.

There are 131,137 sample words in NYT, 4,606 sample
words in WebNLG in this experiment. Figure 6 shows
the result of experiments. The horizontal axis of the
figure indicates the transformed distancep;,s, and the
vertical axis indicates the weights. Two datasets show
analogical distribution of distancep;qs and weights: dots
are assembled in the left top corner, there are few dots
in the left bottom corner and right top corner, hardly
dots in the right bottom, which illustrated weights does
not have a positive correlation with distance. Figure 7
illustrates WebNLG has a similar distribution of NYT in
this experiment. The result of this experiment could be
concluded as: if a word has a higher likelihood to be an
object, it is more possible to take a higher weight. The
reason why data distribute unevenly in most sentences in
the dataset is not balanced, so the covering to the right side
is sparser. And a word closer to each side of the sentence
has a lower probability to be an object.

5 Discussion
There are two ways to embed the hierarchy parser

into the model: before-embedding and behind-embedding.
COnRel before-embedding encodes the parser before
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subject tagger, i.e., subject tagger is going to take use of
hon rather hp, while COnRel behind-embedding encodes
the parser after subject tagger. The foresaid experiments
are with behind-embedding way. We also explored the
before-embedding way. COnRel before-embedding has the
same hyper parameters with COnRel behind-embedding
except embedding position. An interesting phenomenon
appears: the embedding position of hierarchy parser has a
crucial effect on RTE tasks. In the beginning, we believe
that before-embedding would bring more syntactic features
to both subject and object tagger, thus it would perform
better. But as a result shown in Figures 8 and 9, COnRel
before-embedding has almost no positive influence on
tagging compared with COnRel behind-embedding.

Figure 6 Correlation of hidden state distance from real object
and weight in NYT (see online version for colours)
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Figure 7 Correlation of hidden state distance from real object
and weight in WebNLG (see online version
for colours)
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The subject tagging task is more simple than object tagging,
which focus on both relations and objects. Therefore it is
enough to tag subjects only with BERT and binary taggers,
while it is not enough for tagging objects at the same time.
That is why embedding hierarchy parser behind the subject
tagger works.

6 Conclusions

In this paper, to improve the performance of RTE task
especially in long sentences, we proposed a tagging-based
RTE model with the tree hierarchy information. A
weight-transform method and a feature fusion method
are presented to overcome the hardship of introducing
the information. The hierarchy information is extracted
by ON-LSTM by an unsupervised way, which is more
domain-independent than traditional methods. Experimental
results on two open datasets indicate the model outperforms
most baseline models.

Our future work aims to improve the way of utilising
the tree hierarchies. In the proposed model, we apply all
of the hierarchies to find out the potential objects, whose
levels may be overmuch and misleading. We will try to pick
several rough hierarchies rather all of them to improve the
performance of the model.

Figure 8 Before-embedding and behind-embedding in NYT
dataset with different length sentence
(see online version for colours)
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Figure 9 Before-embedding and behind-embedding in
WebNLG dataset with different length sentence
(see online version for colours)
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