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Abstract: Recently, achieving accurate remote sensing images (RSl) classification has been a
primary goal in deep learning, given its extensive applications, including urban planning and
disaster management. The performance of existing convolutional neural networks (CNN)-based
strategies is primarily influenced by their parameter settings, necessitating automated
hyperparameter tuning through metaheuristic methods. The proposed BWODLF-RS! technique
integrates black widow optimisation with a deep learning feature fusion model for enhanced RSI
analysis. The preliminary processing step is to enhance RSI quality using noise reduction through
a Gaussian filter (GF), enhancing contrast with the help of contrast limited adaptive histogram
equalisation (CLAHE), and data augmentation to prevent overfitting. It is followed by employing
Inception v3 and DenseNet201 to extract and fuse potent features. A critical aspect of this
strategy is using black widow optimisation to fine-tune the kernel extreme learning machine
(KELM) model, attaining a notable RSI classification accuracy of 94.05%. When tested on UCM
and AID datasets, the BWODLF-RSI approach demonstrated superior feature selection and RSI
analysis performance.
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In recent times, the field of remote sensing has evolved
significantly, offering more detailed and sophisticated
monitoring of the Earth through land-cover and land-use

I ntroduction

classifications. Advances in spatial resolution have not only
improved the data quality and area covered by remote
sensing images (RSIs) but has also introduced challengesin
managing the enhanced volume of data. Emery and Camps

Copyright © 2025 Inderscience Enterprises Ltd.



Black widow optimisation with deep |learning-based feature fusion model for remote sensing image analysis 57

(2017) report that observing the Earth from geostationary
satellites and low Earth orbit has continuously improved.
This increase needs a considerable change in how RSIs are
managed and used. Zhou et al. (2018) declared that
enhanced spatial resolution makes it feasible to develop
better methods and provides novel opportunities to advance
RSI understanding and analysis, thereby permitting users to
investigate the ground surface. However, data enhancement
accessibility gave rise to significant problems regarding
appropriately handling RSI imagery.

Cheng et a. (2017) determined scene classifiers to
classify RSIs into separate sets of useful land-use and
land-cover categories. Scene classifier is a primary
remote-sensing task and essentiad for rea-time
remote-sensing applications, namely land management
(Zhou et a., 2013), urban planning, and to describe
wildfires, amongst other applications. This extensive usage
of RSl classification directed several authors to examine
processes for accelerating image retrieval and classifying
remote-sensing information. Traditional scene classification
technique uses lower-level visual features to characterise the
image of interest. This lower-level feature is both global and
local. The globa feature is extracted in the whole RSI,
namely the shape feature (Chen et a., 2016), colour
(spectral) feature, and texture feature (Daldegan et a., 2019;
Sebai et a., 2015). Recent developments in DL agorithms,
especialy deep convolutional neural networks (DCNN)
architecture, have enhanced advanced speech recognition,
visual object detection, and recognition, etc. (Sun et a.,
2022; Yao et a., 2020).

This article introduces a new deep learning-based
feature fusion method for RSI classification, named
BWODLF-RSI system. The projected BWODLF-RSI
technique involves pre-processing for improving the RSI
quality in three diverse ways such as Gaussian filter
(GF)-based de-noising, contrast limited adaptive histogram
equalisation (CLAHE) for improving contrast and
augmenting the data. Moreover, a set of two DL-based
approaches Inceptionv3 and densely connected networks
(DenseNet201) are employed. Furthermore, two feature
vectors are fused together to boost the general performance
of the proposed technique. At last, black widow
optimisation (BWO) with kernel extreme learning machine
(KELM) approach is applied for RSl classification. To
scrutinise the enhanced result of the BWODLF-RS
approach, a detailed smulation examination was
implemented on benchmark databases. It is useful in the
analysis and interpretation of the RSIs. Deep learning (DL)
plays a significant role in RSI classification. The various
land use applications like agriculture, urban planning, traffic
surveillance, etc. are associated with RSl scene
classifications. The monitoring and management strategies
can be efficiently built in consideration with present risk
factors and this holds one of the major roles of apt RSI
classification. Applying this system facilitates more
accurate and efficient image analysis, a tool integral to
various industries including urban planning, agriculture, and
disaster management. Through detailed RSl analysis,

stakeholders can undertake more informed planning and
management, whether in developing sustainable cities,
optimising agricultural yield or effectively responding to
natural disasters. This progressive approach to RSl
classification stands to play a pivotal role in utilising remote
sensing for contemporary needs, underpinned by deep
learning technologies.

2 Related work

Boualleg et al. (2019) presented an HR-RSSC technique for
deep forest (DF) and feature extraction (FE) for classifiers.
The extraction of deep features is carried out in the last
convolution layer so that FC layer usage can be avoided,
which requires various parameters to tune. Furthermore, the
authors trained a DF method, i.e., depending on ensemble
learning, which could obtain good efficiency when
compared to a single classifier and easier to train some
parameters. Zhang et al. (2019) developed a powerful RSI
scene classifier method called CNN-Caps Net to take
advantage of the advantages of these two methods: Caps
Net and CNN. However, this concerns scalability and
applicability as the evaluation is done on specific
and limited datasets. Han et a. (2018) designed a
semi-supervised generative framework (SSGF) that joins
the discriminative evaluation approach, DL feature, and
self-label approach for concluding scene classification tasks
and annotating datasets. According to this, an extended
approach (SSGA-E) is developed and estimated by
exclusive experiment. Yang et a. (2018) proposed a
classification technique DCNN_M SFF based on multi-scale
features fusion (MSFF) and DCNN. Next, it can be inputted
to the DCNN for extraction features, and distinct scale
features of fully connected and convolutional layers are
averagely pooled or encoded. At last, the processed feature
is combined, and the multi-kernel SVM (MKSVM) is
utilised for classifying the scene.

Li et a. (2020) proposed a key region or place capture
methodology named key filter bank (KFB); also, KFB could
retain global data simultaneously. This approach could
integrate with distinct CNN approaches for better efficiency
of the high-resolution image scene classifier. Furthermore,
to facilitate the real-time task, an end-to-end method named
KFBNet, in which KFB is integrated with DenseNet-121, is
presented to compare the efficiency with current
methodologies. Yang et al. (2022) propose a deep semantic
feature extraction method for improving the segmentation
accuracy using the feature fusion method to map better
features. Feng et a. (2023) combine SVM and ensemble
learning. Several modelsfor classification are chosen for the
first layer, and in the final layer, the SVM is then applied.
Thus, a good ensemble learning model and the
generalisation capability were attained. Niu et a. (2020)
suggest an ideal urban land classification technique for
remote sensing images. A genetic algorithm with K-means
mutation operator for RSI improves the classification
accuracy.
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Venkatesan and Prabu (2022) present a technique for
DL -based feature extraction of hyperspectral data. Noise is
reduced at the pre-processing stage utilising median filtering
and an anisotropic diffusion method. To decrease the vast
amount of data, a dimensionality reduction technique is
frequently employed. The hyperspectra cube picture
dimension is reduced using a discriminative local metric
learning method, keeping important parts for future
processing. A recurrent neural network algorithm is the last
step. Choudhary and Sharma (2023) present a CNN-based
categorisation created to learn historical context and
categorise the landscape. The study aso aimed to improve
camouflage efficacy by developing the texture to match a
particular terrain’s main features. The work proposes a
technique for classifying battlefields and creating
camouflage textures using a CNN-based model. Guo et a.
(2021) introduce MSANet, a new attention-based network
for proficient image data segmentation, aiming to preserve
contextual and spatial details often lost in current deep
learning models. Yang et a. (2021) introduce the diffusion
convolutional network (DCNet), a hybrid approach merging
CNN and GCNN to enhance semantic image segmentation,
a pivotal aspect of scene understanding. Using diffusion
convolution as a graph convolutiona layer, the DCNet
retains spatia attributes while assimilating structural and
contextual details.

3 Theproposed model

Existing methods struggled to effectively manage the
complexities and unique characteristics of RSIs, including
irregular patterns and varying spatia resolutions. This has
resulted in an inability to efficiently capture the intricate
detailsin RSIs and led to underwhelming performance. This
article introduces the BWODLF-RSI technique, a novel
approach for RSI classification that involves a systematic
process of pre-processing, feature extraction, and feature
fusion. The pre-processing step employs noise reduction,
contrast enhancement, and data augmentation to mitigate
challenges posed by noise and artefacts in RSIs. Leveraging
the strengths of both Inceptionv3 and DenseNet201 models,
the feature extraction process aims to extract relevant
features from RSIs more effectively and efficiently,
enhancing the analysis and interpretation of these images in
various applications. Integrating the black widow
optimisation (BWO) algorithm with the kernel extreme
learning machine (KELM) model further elevates
classification performance, as evidenced through
comparative analyses showcased in the study. This
innovative approach, outlined in Figure 1, promises to
significantly improve the RSI analysis process, paving the
way for advanced utilisation in several applications.

3.1 Image pre-processing

In this study, RSI pre-processing is carried out through three
techniques to enhance image quality: GF-based noise
elimination, CLAHE-based contrast enhancement, and data

augmentation. The first employs the cv.GaussianBlur()
function with a Gaussian kernel instead of box filters to
efficiently remove Gaussian noise, using specified standard
deviations to control the blurring process. The second
technique involves adaptive histogram equalisation, where
theimage is divided into ‘tiles’ or small blocks. The process
adjusts the histogram in each tile to improve the image's
contrast, confining it to a specific range to mitigate noise
amplification. It leverages contrast limiting to prevent noise
amplification, with excess pixels distributed uniformly
before equalisation. Post equalisation, artefacts at tile
borders are reduced using bilinear interpolation. This
approach ensures a well-balanced image with pixels
representing al regions efficiently, enhancing the image's
overal quality.

Figurel Workflow of proposed model (see online version
for colours)

CLAHE is an adaptive histogram equalisation with contrast
limitation by utilising the clip limits and no. of tiles
parameter (Kuran and Kuran, 2021). The CLAHE divides
the image into M x N loca tiles. In order to al tiles,
histogram was calculated separately. To compute the
histogram, it can be the primary regquirement for calculating
average amount of pixel per area utilising equation (1).

Na =(Nx xNy)/Ng (1

In equation (1), Na refers to the average no. of pixels, Nx
signifies the no. of pixels from X dimensional and Ny stands
for the amount of pixel from the Y dimensional and Ng
denotes the amount of grey levels. Afterward, it describes
clipper limits as in equation (2) for equalising histograms by
clipping:
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NcL = NaX Npew 2

In equation (2), Nco signifies the clipper limits and Nncv
indicates the normalising clipper limits amongst 0 and 1.
Then, to al the tiles, the clip limits are executed to the
histogram utilised in equation (3).

o No if N, >Ny
"IN el

=12,..1-1 ©)

In equation (3), H; demonstrated the histogram i height
tiles, Ni defines the i tile histogram and L implies the
amount of grey levels. The entire clipped pixd is calculated
utilising equation (4).

L-1
Nc:(NXXNY)_ZHi 4
i=0
In equation (4), Nc stands for the clipped pixels. Afterward
the computing N, it is also redistributing the pixel which is
clipped both evenly/unevenly. For computing the amount of
pixel that redistribute, it is utilised in equation (5).

Nr =Nc/L ©)

In equation (5), Nr implies the amount of pixel that
redistribute. Then, normalisation of clipped histogram was
carried out utilising equation (6).
N if NN.+Ng>=N

Ho=) oo TRTNR=Ra 495 121 ()
N + N else
In equations (4) and (5), undistributed pixels were counted.
Until each pixel is redistributed in equation (6) was
repeated. Eventualy, the cumulative histogram of
contextual region iswritten in equation (7).

1 i
G = ) 2 @

j=0

Afterward, each caculation is done, the histogram of
contextual area was equivalent with uniform, Rayleigh, or
exponential probability distribution that offers a prefix
brightness and quality of visual mentioning that it contains
pixel P(x, y) with values of s and four centre points affect
the neighbour tile that is named as Ti, Tz, T3 and Ta. The
weight sum has been calculated on these 4 contextua areas.
To the resultant image, tiles were combined and artefact
deletion amongst the independent tile is complete utilising
the bilinear interruption, a new s value that is referred to as
s, was attained utilised in equation (8).

= (1~ y) (1~ X)xTu(s) + xxT,(s))

+Y((A—X)XT3(s) + XxT4(3)) ®)
After these pre-processing steps like Gaussian filtering and
CLAHE technique, de-noised and better contrast image was
achieved which was further used as training dataset. The
augmentation methods like rotation and flipping to expand
sample size for better model training. This reduces the

over-fitting error and makes the model learn different
situations that may occur during the real-world applications.

3.2 Fusion-based feature extraction

Following image processing, the Inceptionv3d and
DenseNet201 models are employed to obtain a valuable set
of feature vectors. The Inceptionv3 model is favoured for its
efficient use of computing resources, providing high
performance  without  substantialy increasing the
computational load, compared to its predecessors, |nception
V1 and V2. It is aso cost-effective and uses auxiliary
classifiers for regularisation. Meanwhile, DenseNet201 is
known for mitigating gradient loss problem, encouraging
robust features, and reducing parameters significantly,
which facilitates a more effective image representation. It
combines these advantages to enhance the depiction of
images while maintaining computational efficiency.

3.2.1 Inception v3 model

Training a CNN from scratch is generally challenging due
to the risk of overfitting. Utilising pre-trained CNNs
through transfer learning helps to mitigate this issue,
allowing for fine-tuning on specific datasets. In this study,
several well-known CNN frameworks including DenseNet
and ResNet were tested to identify the most efficient
models. The Inceptionv3 architecture (Wang et a., 2019)
emerged as optimal, benefiting from initiaisation by
ImageNet weight and fine-tuning on the training set for
effective feature map extraction. This version of inception
CNN introduces improvements such as factorised
convolutional to decrease the number of parameters without
compromising network effectiveness, and employs label
smoothing  for  regularisation, enhancing overal
performance.

3.2.2 DenseNet model

A CNN utilises classification and feature extraction, often
leveraging pretrained networks like DenseNet available in
the Keras API. Unlike traditional CNN models where each
convolution layer is connected only to the preceding one,
DenseNet layers take the feature maps of al preceding
layers as inputs, enhancing feed-forward functioning. In this
study, the DenseNet201 architecture is employed for its
advantages such as preventing gradient vanishing issues,
reducing parameter quantities, and facilitating better feature
propagation. This architecture utilises various layers
including convolutional, transition, and classification layers,
with the dense block comprising different sets of
convolution layers, promoting feature reuse and offering a
more parametrically efficient and trainable network. A
convolution layer is a basic component of a NN. The fixed
size was utilised for extracting the complicated features of
the provided information (Wang and Zhang, 2020). Other
than that, there is one convolutional layer, three transition
layers, and one classification layer. The dense block
consists of 6, 12, 32, and 32 convolution layers. Because of
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the capacity to feature reused by consecutive layers, the
DenseNet201 employs a condensed network, enabling
parametrically efficient and easy-to-train methods.

3.2.3 Feature fusion process

At this stage, the fusion of two feature vectors (namely
Inceptionv3d and DenseNet201) can be employed for RS
classification. Fusing the features plays a vita role to
classify images that intend to combine many feature vectors.
In this study, the fusion of features takes place using the
entropy function and it is defined as follows:

fllxm:{llxlullxb-n,llxn} (9)
fDlxp :{Dlxla D]XZ, D1X3, ceey Dlxn} (10)

Moreover, extracted features are fused in a single vector.

2
Fused ( features vector )yq = Z{ fliem, fDicp } (11)

i=1

where f is afused vector.

3.3 Image classification using KELM model

At this stage, the fused feature vectors are then given to the
KELM model to classify the RSIs. KELM is a revised
version of ELM, and ELM is an FFNN that comprises
hidden, input, and output layers (Chen et ., 2021).

Where yk = [Xa, Xe,..., Xm]' € R™ stands for input
vector, ¢ = [Ca, Ck, ..., Cn]' € R™ shows the expected
output vector, Yk = [Yki, Vke, ..., Yi]T € R is the actua
resultant vector. The connection weighted are represented as
o=, o, ..., a)" and B = [B, B, ..., BT in which
o = [on, G2, ..., an]" and B = [B1, B2 ..., Br]". The
threshold value was signified as [by, by, ..., bg]™. The kernel
function parameter X and regularisation coefficient C are
enriched by SSA. Certain steps are given in the following:

Step1 Population initialisation. The size of population N
and the maximal iterations iterm are intended. In
all the iterations, the Py sparrow with better
activation function for the hidden layer neuron can

be represented as g:
Hp=C (12)

, e,

H=[h" ()07 (5),..ooh ()]

where C=[cy, Cy, ...

glax+b) glax+h) 9(agx +by) (13)
_ g(alx+b) alax+h) g(agx2+bq)
gaixy +b) g(ax+b) -~ glagx +by)
H*B=C (14)
B =PfC (15)

-1
whereas H* =HT (HHT +ij shows the inverse matrix
c

of H, and C indicates the regularised coefficient. KELM can
be attained by presenting the kernel function asto ELM, and
the kernel matrix was formulated by

Qem =HHT =h(x)h(x;)=K(x, X;) (16)

Thus, the outcome y of KELM can be formulated by
equation (17):

K(x%)
-1
y = Kelm(x) = K()?’Xz) (QELM +'Ej C (17)
K (% %)

As a kernd function, Gaussian kernel is utilised, viz.
“Ix=x?
(%,Xj)=e 28* , where Sdenotes the kernel parameter.

3.4 Parameter tuning using BWO algorithm

In this study, the BWO technique was exploited to optimise
parameter adjustment of the KELM model. Hayyolalam and
Kazem (2020) proposed the BWO approach based on
mathematical modelling as the existence of black widow.
The model simulates both microscopic and macroscopic
principles inherent in spider population dynamics to find
optimised solutions to specific problems. The BWO
technique operates through four stages: initialisation,
procreation, cannibalism, and mutation, with crucia
parameters adjusted to optimise performance. This approach
offers faster solutions and superior convergence rates for
RSI analysis compared to other algorithms.

The pseudocode of BWO has been demonstrated below:

Algorithm 1 The BWO agorithm

Input: count of population (N), procreating rate (Pp), maximal
iteration (T), mutation rate (Pm), cannibalism rate (CR)

Output: best solution of the objective function

Begin

Initialisation of the spider population randomly based on
equation (18);

While (t<T)
By using Pp, evaluate the count of reproduction ‘nr’;
Choose the nr parents from the population;
For i =1tonr do

Randomly choose two solution solutions as parent from
nr parent;

Produce children based on equation (19);

Destroy fathers;

By using CR, some children are destroyed;
End for

Retain the remaining children and mother in the novel
matrix as novel generation;

Evaluate the count of mutations of children nm based Pm;
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Fori=1tonm
Choose the solution for the continued children;

Randomly mutate one component of solutions and
produce a novel solution;

End for

Return the better solution;
End while
Outcome the better solution;
End

4 Resultsand discussion

The BWODLF-RS| approach’s test results on a UCM
database RS| are detailed in Figure 4, highlighting the
substantial enhancement in image quality facilitated by
pre-processing. Figure 4(a) exhibits the origina test RSI,
serving as a benchmark for illustrating the initia image
congtraints. Meanwhile, Figure 4(b) displays the image
post-pre-processing, showcasing the notable enhancements
attained through thisinitial step.

4.1 Dataset used

The performance vadidation of the BWODLF-RSI
approach occurs utilisng the UCM and AID dataset
(https://captain-whu.github.io/A1D/). The proposed
BWODLF-RSI technique is smulated using Python 3.8.5
tool with additional packages (tensorflow-gpu==2.6.0,
pandas, scikit-learn, seaborn, matplotlib, OpenCV-python,
OpenCV-contrib-python,  pillow, prettytable, tqdm,
landscapes, pyqts, cmapy, and numpy). The BWODLF-RSI
technique’s performance was validated using the UCM and
AID datasets. The UCM dataset comprises 21 class labels,

Figure2 UCM sampleimages (see online version for colours)

each with 100 instances of 256 x 256 pixel images, while
the AID dataset image size is 600 x 600 pixels, it has
30 class labels with a total of 10,000 images, showcasing
various aerial imagery scenes, including both urban and
rural settings. Utilising both datasets, which offer a rich
diversity of image sizes and categories, not only fosters
enhanced performance and generalisation ability for the
BWODLF-RSI model but also aids in preventing
overfitting. Moreover, the combined datasets ensure a
robust and precise evaluation of the model by facilitating a
detailed analysis of spatial and spectral information present
in the remote sensing datasets.

4.2 Qualitative result analysis

The sample visudisation result anaysis of the
BWODLF-RS| approach on the test RSl from UCM and
AID database is shown in Figure 4. The results
demonstrated that the qualitative analysis of images is
considerably enhanced by the pre-processing step.
Figure 4(a) presents the original test RSI, showcasing the
initial state of the image before any processing or
enhancement  techniques are applied. This raw
representation serves as a basdline for comparison and
highlights the potential imperfections or limitations in the
original RSl. To address these limitations and improve the
image quality, a pre-processing step is implemented. The
outcome of this pre-processing procedure is displayed in
Figure 4(b). The sub-figure reveals the transformed or
enhanced version of the test RSI, illustrating the
considerable  improvement  achieved through the
pre-processing step of BWODLF-RSI.
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Figure3 AID sample images (see online version for colours)

Figure4 Sample visualisation results on UCM and AID dataset, (&) original image (b) pre-processed image (see online version
for colours)

@ (b)

Figure5 Sample fused features (a) UCM and (b) AID dataset (see online version for colours)

@ (b)
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Figure6 Sample visualisation results, (a) origina image (b) pre-processed image (c) fused features (d) parameters with and without BWO

(see online version for colours)

@

Metrics values

(0
Metrics values with BWO

Figure7 Comparison of feature maps, (a) original image (b) AlexNet (c) proposed model (see online version for colours)

@

Figure 5 showcases the fused feature maps produced by the
BWODLF-RSI method on the test images from the UCM
and AID datasets, as seen in Figures 5(@ and 5(b),
respectively. This visualisation proves the method's
effectiveness in synthesising and integrating pertinent
features, offering a holistic, less redundant representation of
the scene, thereby enhancing the precison of analysis
efforts. It underlines the technique's ability to enhance
discriminative features in the RSIs, illustrating its potential
in facilitating more accurate analyses by reducing noise and
redundancy.

Figure 5 displays various outputs from the
BWODLF-RSI methodology applied to the UCM and AID
datasets. Figures 6(a) and 6(b) showcase the origina and
pre-processed test RS, respectively, while Figure 6(c)
presents the successfully fused feature maps achieved post
pre-processing. Figure 6(d) outlines various performance
metrics, including accuracy and F1 score, underlining the
improved results garnered using the BWODLF-RSI
technique both with and without BWO optimisation.

(©

Figure 7 displays a comparative analysis between the
proposed BWODLF-RSI model and the traditional AlexNet
model. The input image is shown in Figure 7(a). The feature
map from AlexNet is in Figure 7(b), while the fused
features from BWODLF-RS| are in Figure 7(c). A visud
comparison suggests that BWODLF-RSI outperforms
AlexNet in RSI analysis, presenting a more comprehensive
and discriminative representation of relevant information.

4.3 Result analysis of proposed model on UCM
dataset

This section examines BWODLF-RSI model on UCM
dataset in three aspects of training/testing (TR/TS) data:

1 entire UCM dataset
2 70:30 of UCM dataset
3 80:20 of UCM dataset.
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4.3.1 Result analysis of proposed model on entire
UCM dataset

Figure 8 showcases the results of the BWO-KELM and
KELM classifier models applied on the entire UCM
database using the BWODLF-RSI method. The
BWO-KELM model surpassed the KELM in classification
performance, exhibiting exceptional precision-recall metrics
and achieving a peak ROC of 0.9994.

Table 1 summarises classification results for the KELM
model and BWODLF-RSI on the entire UCM database.
BWODLF-RSI outperformed KELM with higher accuracy
(94.38%), precision (94.40%), recall (94.38%), specificity
(99.72%), PR_AUC score (95.61%), ROC (99.48%),
F1 score (94.35%), and MCC (94.09%).

Tablel Result analysis of KELM and BWODLF-RSI
approaches under entire UCM dataset

Metrics KELM BWODLF-RS
Accuracy 88.21 94.38
Precision 88.30 94.40
Recall 88.21 94.38
Specificity 99.41 99.72
PR AUC score 89.92 95.61
ROC score 98.71 99.48
F1-score 88.10 94.35
MCC 87.60 94.09

Figure8 Resultsanaysison entire UCM dataset for KELM for BWODLF-RSI method, () confusion matrix (b) PR-Curve (c) ROC,
and for BWO-KELM (d) confusion matrix (€) PR-curve (f) ROC (see online version for colours)

@

(d)

(b)

()

(©

(f)
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Figure9  Resultsanalysison 70:30 of UCM dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC
and for BWO-KELM (d) confusion matrix (€) PR-curve (f) ROC (see online version for colours)
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Figure10 Resultsanalysison 80:20 of UCM dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (¢) ROC
and for BWO-KELM (d) confusion matrix (€) PR-curve (f) ROC (see online version for colours)
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4.3.2 Result analysis of proposed model on 70: 30 of
UCM dataset

In Figure 9, BWO-KELM and KELM classifier models
were tested on a 70:30 UCM database split. BWO-KELM
outperformed KELM with a peak ROC of 0.9999,
showcasing high precision and recall rates and fewer false
positives. This data supports the improved performance of
the BWODLF-RSI approach.

4.3.3 Result analysis of proposed model on 80:20 of
UCM dataset

Figure 10 showcases the results of the BWO-KELM and
KELM classifiers applied to the entire UCM database under
the BWODLF-RSI method. The BWO-KELM method
outperformed the KELM approach, achieving the highest
ROC of 0.9998 and illustrating effective positive instance
classification with reduced errors as evident from the
precision-recall curve.

Table 2 reports a brief classification outcome of the
BWODLF-RSI method on the 80:20 and 70:30 of UCM
databases. The outcomes stated that the BWODLF-RS|
method has obtained better performance under all aspects. It
is noticed that the BWODLF-RSI method has demonstrated
maximum performance under all TR and TS data.

Table2 Result analysis of BWODLF-RSI approaches under
70:30 and 80:20 of UCM dataset
UCM dataset

Measures  TR(70%) TS(30%) TR(80%) TS (20%)
Accuracy 94.84 94.91 94.81 94.96
Precision 94.81 94.92 94.79 95.02
Sensitivity 94.84 94.91 94.81 94.96
Specificity 99.74 99.75 99.74 99.76
F-score 94.79 94.86 94.77 94.93
NPV 99.74 99.75 99.74 99.76

4.3.4 Comparative result analysis on UCM dataset

Table 3 and Figure 11 present a comparative analysis of the
BWODLF-RSI model against other DL models using the
UCM dataset for image classification. The data reveals that
while other models exhibited a performance with accuracy
ranging from 89% to 93.28%, the BWODLF-RSI model
surpassed them with a peak accuracy of 94.38%. This
superior performance indicates the model’s substantial
potential in applications necessitating precise RSl

classification and accurate identification of postive
instances.

Table3 Accuracy analysis of BWODLF-RSI system with
other techniques under UCM database
Methods Accuracy (%)
BWODLF-RS| 94.38
TEX-Net-LF 89.00
CaffeNet 89.23
CTFCNN 89.11
SCCov 93.28
MG-CAP 90.59
Inception-v3-CapsNet 92.46

Figure1l Accuracy analysis of BWODLF-RSI approach under
UCM dataset (see online version for colours)

4.4 Result analysis of proposed model on AID
dataset

This section examines BWODLF-RSI model on AID
dataset in three aspects of training/testing (TR/TS) data:

1 entire UCM dataset
2 70:30 of UCM dataset
3 80:20 of UCM dataset.

4.4.1 Result analysis of proposed model on entire
AID dataset

Figure 12 showcases the superior classification outcomes of
the BWO-KELM method over the KELM when applied to
the entire AID database within the BWODLF-RSI
framework, achieving a notable ROC of 0.9994 as
evidenced by the PR and ROC curves.
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Figure12 Resultsanalysison entire AlD dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC,
and for BWO-KELM (d) confusion matrix (€) PR-curve (f) ROC (see online version for colours)
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Figure13 Resultsanalysison 70:30 of AID dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC
and for BWO-KELM (d) confusion matrix (€) PR-curve (f) ROC (see online version for colours)
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Figure14 Resultsanalysison 80:20 of AID dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC,
and for BWO-KELM (d) confusion matrix (€) PR-curve (f) ROC (see online version for colours)
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Table 4 presents the classification outcomes of the
BWODLF-RSI system and the KELM method on the entire
AID database, highlighting the superior performance of the
BWODLF-RS| dgorithm. The agorithm showcases
improved metrics, including a 94.05% accuracy and a
99.52% ROC score, among others.

Table4 Result analysis of KELM and BWODLF-RSI
approaches under entire AID dataset

Metrics KELM BWODLF-RS
Accuracy 90.83 94.05
Precision 91.01 94.09
Recall 90.83 94.05
Specificity 99.68 99.79
PR AUC score 91.28 94.77
ROC score 99.12 99.52
F1-score 90.80 94.03
MCC 90.55 93.84

4.4.2 Result analysis of proposed model on 70:30 of
AID dataset

Figure 13 highlights the superior performance of
BWO-KELM over KELM in classifying a 70:30 AID
database split under the BWODLF-RSI framework,

©

®

showcasing improved precision-recall and ROC curves with
apeak ROC score of 0.9999.

4.4.3 Result analysis of proposed model on 80:20 of
AID dataset

Figure 14 illustrates the superior performance of
BWO-KELM over KELM on the 80:20 AID database for
classification utilisng the BWODLF-RSI method,
demonstrating improved precision-recall and ROC curves
with atop ROC score of 0.9999.

Table 5 presents the results of the BWODLF-RSI on
80:20 and 70:30 splits of the AID databases. The method
outperformed others in all evaluated aspects, showcasing
improved performance across all TR and TS data.

Table5 Result analysis of BWODLF-RSI approaches under
70:30 and 80:20 of AID dataset
AID dataset

Measures  TR(70%) TS(30%) TR(80%) TS(20%)
Accuracy 94.80 94.56 94.96 93.62
Precision 94.86 94.63 94.99 93.99
Sensitivity 94.80 94.56 94.96 93.62
Specificity 99.82 99.81 99.83 99.79
F-Score 94.79 94.48 94.94 93.63
NPV 99.82 90.81 99.83 99.79
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4.3.4 Comparative result analysis on AlD dataset

Table 6 and Figure 15 highlight the BWODLF-RSI
algorithm’s superior performance over other deep learning
approaches on the AID dataset, showcasing its potential for
precise RSl classification. The TEX-Net-LF and CaffeNet
systems recorded lower accuracies of 90.93% and 87.37%,
respectively.

Table6 Accuracy analysis of BWODLF-RSI approach with
other techniques under AID dataset
Methods Accuracy (%)
BWODLF-RS| 94.05
TEX-Net-LF 90.93
CaffeNet 87.37
CTFCNN 92.71
SCCov 93.22
MG-CAP 93.43
Inception-v3-CapsNet 93.92

Figure15 Accuracy analysis of BWODLF-RSI approach under
AID dataset (see online version for colours)

The BWODLF-RSI agorithm outperformed other
approaches, achieving the highest classification accuracy
of 94.05%. Other methods like CTFCNN and
Inception-v3-CapsNet also had reasonable accuracies,
ranging from 92.71% to 93.92%. The results underline the
proposed model’s potential to enhance RSI applications,
including image recognition and object detection, through
fusion techniques and advanced methodologies.

5 Conclusions

A new BWODLF-RSI system has been introduced to better
identify various categories within RSIs. Firstly, there's a
three-part pre-processing stage; it includes GF-based noise
reduction to enhance the foca area, CLAHE-enabled
contrast boosting to enhance the features and data
augmentation to avoid overfitting during RSl analysis.
Following this, a combination of Inceptionv3d and
DenseNet201 models was utilised for a strong feature

extraction process, laying a firm groundwork for the
classification stage. The fina step is BWO
technique working in tandem with the KELM model,
significantly improving efficiency and predictive precision.
Through extensive testing on benchmark datasets, this
BWODLF-RSI system demonstrated encouraging results,
outperforming existing methods with a classification
accuracy of 94.05%, compared to 90.93% and 87.37%
achieved by TEX-Net-LF and CaffeNet, respectively.
Looking ahead, we see opportunities to further refine deep
learning architectures for even more accurate RS
classification. Exploring transfer learning for tailored RSI
analysis is a promising avenue for enhancing classification
outcomes. Our main goal with the BWODLF-RSI system is
to facilitate improved analysis and interpretation of RSIs, a
tool that finds critical applications for urban planning,
disaster management, and weather analysis, among others.
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