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Abstract: Recently, achieving accurate remote sensing images (RSI) classification has been a 
primary goal in deep learning, given its extensive applications, including urban planning and 
disaster management. The performance of existing convolutional neural networks (CNN)-based 
strategies is primarily influenced by their parameter settings, necessitating automated 
hyperparameter tuning through metaheuristic methods. The proposed BWODLF-RSI technique 
integrates black widow optimisation with a deep learning feature fusion model for enhanced RSI 
analysis. The preliminary processing step is to enhance RSI quality using noise reduction through 
a Gaussian filter (GF), enhancing contrast with the help of contrast limited adaptive histogram 
equalisation (CLAHE), and data augmentation to prevent overfitting. It is followed by employing 
Inception v3 and DenseNet201 to extract and fuse potent features. A critical aspect of this 
strategy is using black widow optimisation to fine-tune the kernel extreme learning machine 
(KELM) model, attaining a notable RSI classification accuracy of 94.05%. When tested on UCM 
and AID datasets, the BWODLF-RSI approach demonstrated superior feature selection and RSI 
analysis performance. 
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1 Introduction 
In recent times, the field of remote sensing has evolved 
significantly, offering more detailed and sophisticated 
monitoring of the Earth through land-cover and land-use 

classifications. Advances in spatial resolution have not only 
improved the data quality and area covered by remote 
sensing images (RSIs) but has also introduced challenges in 
managing the enhanced volume of data. Emery and Camps 
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(2017) report that observing the Earth from geostationary 
satellites and low Earth orbit has continuously improved. 
This increase needs a considerable change in how RSIs are 
managed and used. Zhou et al. (2018) declared that 
enhanced spatial resolution makes it feasible to develop 
better methods and provides novel opportunities to advance 
RSI understanding and analysis, thereby permitting users to 
investigate the ground surface. However, data enhancement 
accessibility gave rise to significant problems regarding 
appropriately handling RSI imagery. 

Cheng et al. (2017) determined scene classifiers to 
classify RSIs into separate sets of useful land-use and  
land-cover categories. Scene classifier is a primary  
remote-sensing task and essential for real-time  
remote-sensing applications, namely land management 
(Zhou et al., 2013), urban planning, and to describe 
wildfires, amongst other applications. This extensive usage 
of RSI classification directed several authors to examine 
processes for accelerating image retrieval and classifying 
remote-sensing information. Traditional scene classification 
technique uses lower-level visual features to characterise the 
image of interest. This lower-level feature is both global and 
local. The global feature is extracted in the whole RSI, 
namely the shape feature (Chen et al., 2016), colour 
(spectral) feature, and texture feature (Daldegan et al., 2019; 
Sebai et al., 2015). Recent developments in DL algorithms, 
especially deep convolutional neural networks (DCNN) 
architecture, have enhanced advanced speech recognition, 
visual object detection, and recognition, etc. (Sun et al., 
2022; Yao et al., 2020). 

This article introduces a new deep learning-based 
feature fusion method for RSI classification, named 
BWODLF-RSI system. The projected BWODLF-RSI 
technique involves pre-processing for improving the RSI 
quality in three diverse ways such as Gaussian filter  
(GF)-based de-noising, contrast limited adaptive histogram 
equalisation (CLAHE) for improving contrast and 
augmenting the data. Moreover, a set of two DL-based 
approaches Inceptionv3 and densely connected networks 
(DenseNet201) are employed. Furthermore, two feature 
vectors are fused together to boost the general performance 
of the proposed technique. At last, black widow 
optimisation (BWO) with kernel extreme learning machine 
(KELM) approach is applied for RSI classification. To 
scrutinise the enhanced result of the BWODLF-RSI 
approach, a detailed simulation examination was 
implemented on benchmark databases. It is useful in the 
analysis and interpretation of the RSIs. Deep learning (DL) 
plays a significant role in RSI classification. The various 
land use applications like agriculture, urban planning, traffic 
surveillance, etc. are associated with RSI scene 
classifications. The monitoring and management strategies 
can be efficiently built in consideration with present risk 
factors and this holds one of the major roles of apt RSI 
classification. Applying this system facilitates more 
accurate and efficient image analysis, a tool integral to 
various industries including urban planning, agriculture, and 
disaster management. Through detailed RSI analysis, 

stakeholders can undertake more informed planning and 
management, whether in developing sustainable cities, 
optimising agricultural yield or effectively responding to 
natural disasters. This progressive approach to RSI 
classification stands to play a pivotal role in utilising remote 
sensing for contemporary needs, underpinned by deep 
learning technologies. 

2 Related work 
Boualleg et al. (2019) presented an HR-RSSC technique for 
deep forest (DF) and feature extraction (FE) for classifiers. 
The extraction of deep features is carried out in the last 
convolution layer so that FC layer usage can be avoided, 
which requires various parameters to tune. Furthermore, the 
authors trained a DF method, i.e., depending on ensemble 
learning, which could obtain good efficiency when 
compared to a single classifier and easier to train some 
parameters. Zhang et al. (2019) developed a powerful RSI 
scene classifier method called CNN-Caps Net to take 
advantage of the advantages of these two methods: Caps 
Net and CNN. However, this concerns scalability and 
applicability as the evaluation is done on specific  
and limited datasets. Han et al. (2018) designed a  
semi-supervised generative framework (SSGF) that joins 
the discriminative evaluation approach, DL feature, and 
self-label approach for concluding scene classification tasks 
and annotating datasets. According to this, an extended 
approach (SSGA-E) is developed and estimated by 
exclusive experiment. Yang et al. (2018) proposed a 
classification technique DCNN_MSFF based on multi-scale 
features fusion (MSFF) and DCNN. Next, it can be inputted 
to the DCNN for extraction features, and distinct scale 
features of fully connected and convolutional layers are 
averagely pooled or encoded. At last, the processed feature 
is combined, and the multi-kernel SVM (MKSVM) is 
utilised for classifying the scene. 

Li et al. (2020) proposed a key region or place capture 
methodology named key filter bank (KFB); also, KFB could 
retain global data simultaneously. This approach could 
integrate with distinct CNN approaches for better efficiency 
of the high-resolution image scene classifier. Furthermore, 
to facilitate the real-time task, an end-to-end method named 
KFBNet, in which KFB is integrated with DenseNet-121, is 
presented to compare the efficiency with current 
methodologies. Yang et al. (2022) propose a deep semantic 
feature extraction method for improving the segmentation 
accuracy using the feature fusion method to map better 
features. Feng et al. (2023) combine SVM and ensemble 
learning. Several models for classification are chosen for the 
first layer, and in the final layer, the SVM is then applied. 
Thus, a good ensemble learning model and the 
generalisation capability were attained. Niu et al. (2020) 
suggest an ideal urban land classification technique for 
remote sensing images. A genetic algorithm with K-means 
mutation operator for RSI improves the classification 
accuracy. 
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Venkatesan and Prabu (2022) present a technique for 
DL-based feature extraction of hyperspectral data. Noise is 
reduced at the pre-processing stage utilising median filtering 
and an anisotropic diffusion method. To decrease the vast 
amount of data, a dimensionality reduction technique is 
frequently employed. The hyperspectral cube picture 
dimension is reduced using a discriminative local metric 
learning method, keeping important parts for future 
processing. A recurrent neural network algorithm is the last 
step. Choudhary and Sharma (2023) present a CNN-based 
categorisation created to learn historical context and 
categorise the landscape. The study also aimed to improve 
camouflage efficacy by developing the texture to match a 
particular terrain’s main features. The work proposes a 
technique for classifying battlefields and creating 
camouflage textures using a CNN-based model. Guo et al. 
(2021) introduce MSANet, a new attention-based network 
for proficient image data segmentation, aiming to preserve 
contextual and spatial details often lost in current deep 
learning models. Yang et al. (2021) introduce the diffusion 
convolutional network (DCNet), a hybrid approach merging 
CNN and GCNN to enhance semantic image segmentation, 
a pivotal aspect of scene understanding. Using diffusion 
convolution as a graph convolutional layer, the DCNet 
retains spatial attributes while assimilating structural and 
contextual details. 

3 The proposed model 
Existing methods struggled to effectively manage the 
complexities and unique characteristics of RSIs, including 
irregular patterns and varying spatial resolutions. This has 
resulted in an inability to efficiently capture the intricate 
details in RSIs and led to underwhelming performance. This 
article introduces the BWODLF-RSI technique, a novel 
approach for RSI classification that involves a systematic 
process of pre-processing, feature extraction, and feature 
fusion. The pre-processing step employs noise reduction, 
contrast enhancement, and data augmentation to mitigate 
challenges posed by noise and artefacts in RSIs. Leveraging 
the strengths of both Inceptionv3 and DenseNet201 models, 
the feature extraction process aims to extract relevant 
features from RSIs more effectively and efficiently, 
enhancing the analysis and interpretation of these images in 
various applications. Integrating the black widow 
optimisation (BWO) algorithm with the kernel extreme 
learning machine (KELM) model further elevates 
classification performance, as evidenced through 
comparative analyses showcased in the study. This 
innovative approach, outlined in Figure 1, promises to 
significantly improve the RSI analysis process, paving the 
way for advanced utilisation in several applications. 

3.1 Image pre-processing 
In this study, RSI pre-processing is carried out through three 
techniques to enhance image quality: GF-based noise 
elimination, CLAHE-based contrast enhancement, and data 

augmentation. The first employs the cv.GaussianBlur() 
function with a Gaussian kernel instead of box filters to 
efficiently remove Gaussian noise, using specified standard 
deviations to control the blurring process. The second 
technique involves adaptive histogram equalisation, where 
the image is divided into ‘tiles’ or small blocks. The process 
adjusts the histogram in each tile to improve the image’s 
contrast, confining it to a specific range to mitigate noise 
amplification. It leverages contrast limiting to prevent noise 
amplification, with excess pixels distributed uniformly 
before equalisation. Post equalisation, artefacts at tile 
borders are reduced using bilinear interpolation. This 
approach ensures a well-balanced image with pixels 
representing all regions efficiently, enhancing the image’s 
overall quality. 

Figure 1 Workflow of proposed model (see online version  
for colours) 

 

CLAHE is an adaptive histogram equalisation with contrast 
limitation by utilising the clip limits and no. of tiles 
parameter (Kuran and Kuran, 2021). The CLAHE divides 
the image into M × N local tiles. In order to all tiles, 
histogram was calculated separately. To compute the 
histogram, it can be the primary requirement for calculating 
average amount of pixel per area utilising equation (1). 

( )A X Y GN N N N= ×  (1) 

In equation (1), NA refers to the average no. of pixels, NX 
signifies the no. of pixels from X dimensional and NY stands 
for the amount of pixel from the Y dimensional and NG 
denotes the amount of grey levels. Afterward, it describes 
clipper limits as in equation (2) for equalising histograms by 
clipping: 
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CL A NCLN N N= ×  (2) 

In equation (2), NCL signifies the clipper limits and NNCL 
indicates the normalising clipper limits amongst 0 and 1. 
Then, to all the tiles, the clip limits are executed to the 
histogram utilised in equation (3). 

1, 2, ,1 1CL i CL
i

i

N if N N
H i

N else
≥

= = −


  (3) 

In equation (3), Hi demonstrated the histogram ith height 
tiles, Ni defines the ith tile histogram and L implies the 
amount of grey levels. The entire clipped pixel is calculated 
utilising equation (4). 

( )
1

0

L

c X Y i
i

N N N H
−

=

= × −  (4) 

In equation (4), NC stands for the clipped pixels. Afterward 
the computing NC, it is also redistributing the pixel which is 
clipped both evenly/unevenly. For computing the amount of 
pixel that redistribute, it is utilised in equation (5). 

R CN N L=  (5) 

In equation (5), NR implies the amount of pixel that 
redistribute. Then, normalisation of clipped histogram was 
carried out utilising equation (6). 

1,2, , 1CL i R CL
i

i R

N if N N N
H i l

N N else
+ ≥

= = − +
  (6) 

In equations (4) and (5), undistributed pixels were counted. 
Until each pixel is redistributed in equation (6) was 
repeated. Eventually, the cumulative histogram of 
contextual region is written in equation (7). 

( ) 0

1 i

i j
X Y j

C H
N N =

=
×   (7) 

Afterward, each calculation is done, the histogram of 
contextual area was equivalent with uniform, Rayleigh, or 
exponential probability distribution that offers a prefix 
brightness and quality of visual mentioning that it contains 
pixel P(x, y) with values of s and four centre points affect 
the neighbour tile that is named as T1, T2, T3 and T4. The 
weight sum has been calculated on these 4 contextual areas. 
To the resultant image, tiles were combined and artefact 
deletion amongst the independent tile is complete utilising 
the bilinear interruption, a new s value that is referred to as 
s, was attained utilised in equation (8). 

( )
( )

1 2

3 4

(1 ) (1 ) ( ) ( )
(1 ) ( ) ( )

s y x T s x T s
y x T s x T s

′ = − − × + ×

+ − × + ×
 (8) 

After these pre-processing steps like Gaussian filtering and 
CLAHE technique, de-noised and better contrast image was 
achieved which was further used as training dataset. The 
augmentation methods like rotation and flipping to expand 
sample size for better model training. This reduces the  

over-fitting error and makes the model learn different 
situations that may occur during the real-world applications. 

3.2 Fusion-based feature extraction 
Following image processing, the Inceptionv3 and 
DenseNet201 models are employed to obtain a valuable set 
of feature vectors. The Inceptionv3 model is favoured for its 
efficient use of computing resources, providing high 
performance without substantially increasing the 
computational load, compared to its predecessors, Inception 
V1 and V2. It is also cost-effective and uses auxiliary 
classifiers for regularisation. Meanwhile, DenseNet201 is 
known for mitigating gradient loss problem, encouraging 
robust features, and reducing parameters significantly, 
which facilitates a more effective image representation. It 
combines these advantages to enhance the depiction of 
images while maintaining computational efficiency. 

3.2.1 Inception v3 model 
Training a CNN from scratch is generally challenging due 
to the risk of overfitting. Utilising pre-trained CNNs 
through transfer learning helps to mitigate this issue, 
allowing for fine-tuning on specific datasets. In this study, 
several well-known CNN frameworks including DenseNet 
and ResNet were tested to identify the most efficient 
models. The Inceptionv3 architecture (Wang et al., 2019) 
emerged as optimal, benefiting from initialisation by 
ImageNet weight and fine-tuning on the training set for 
effective feature map extraction. This version of inception 
CNN introduces improvements such as factorised 
convolutional to decrease the number of parameters without 
compromising network effectiveness, and employs label 
smoothing for regularisation, enhancing overall 
performance. 

3.2.2 DenseNet model 
A CNN utilises classification and feature extraction, often 
leveraging pretrained networks like DenseNet available in 
the Keras API. Unlike traditional CNN models where each 
convolution layer is connected only to the preceding one, 
DenseNet layers take the feature maps of all preceding 
layers as inputs, enhancing feed-forward functioning. In this 
study, the DenseNet201 architecture is employed for its 
advantages such as preventing gradient vanishing issues, 
reducing parameter quantities, and facilitating better feature 
propagation. This architecture utilises various layers 
including convolutional, transition, and classification layers, 
with the dense block comprising different sets of 
convolution layers, promoting feature reuse and offering a 
more parametrically efficient and trainable network. A 
convolution layer is a basic component of a NN. The fixed 
size was utilised for extracting the complicated features of 
the provided information (Wang and Zhang, 2020). Other 
than that, there is one convolutional layer, three transition 
layers, and one classification layer. The dense block 
consists of 6, 12, 32, and 32 convolution layers. Because of 
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the capacity to feature reused by consecutive layers, the 
DenseNet201 employs a condensed network, enabling 
parametrically efficient and easy-to-train methods. 

3.2.3 Feature fusion process 
At this stage, the fusion of two feature vectors (namely 
Inceptionv3 and DenseNet201) can be employed for RSI 
classification. Fusing the features plays a vital role to 
classify images that intend to combine many feature vectors. 
In this study, the fusion of features takes place using the 
entropy function and it is defined as follows: 

{ }1 1 1 1 2 1, , ,mI nf I I I× × × ×=   (9) 

{ }1 1 1 1 2 1 3 1, , , ,pD nf D D D D× × × × ×=   (10) 

Moreover, extracted features are fused in a single vector. 

{ }
2

1 1 1
1

( ) ,q m p
i

Fused features vector fI fD× × ×
=

=  (11) 

where f is a fused vector. 

3.3 Image classification using KELM model 
At this stage, the fused feature vectors are then given to the 
KELM model to classify the RSIs. KELM is a revised 
version of ELM, and ELM is an FFNN that comprises 
hidden, input, and output layers (Chen et al., 2021). 

Where χk = [xk1, xk2¸…, xkm]T ∈ Rm stands for input 
vector, ck = [ck1, ck2, …, ckn]T ∈ Rm shows the expected 
output vector, yk = [yk1, yk2, …, ykn]T ∈ Rn is the actual 
resultant vector. The connection weighted are represented as 
α = [α1, α2, …, αq]T and β = [β1, β2, …, βq]T in which  
αi = [αi1, αi2, …, αin]T and βi = [βi1, βi2, …, βin]T. The 
threshold value was signified as [b1, b2, …, bq]T. The kernel 
function parameter X and regularisation coefficient C are 
enriched by SSA. Certain steps are given in the following: 

Step 1 Population initialisation. The size of population N 
and the maximal iterations itermax are intended. In 
all the iterations, the PN sparrow with better 
activation function for the hidden layer neuron can 
be represented as g: 

H C=β  (12) 

where C = [c1, c2, …, cN]T, 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2

1 1 1 2 1 1 1

1 2 1 2 2 1 2

1 1 2 1

, , ,
TT T T

N

T T T
q q

T T T
q q

T T T
N N q N q

H h x h x h x

g a x b g a x b g a x b

g a x b g a x b g a x b

g a x b g a x b g a x b

 =  
 + + +
 
 + + +
 =
 
 
 + + + 







   



(13) 

H C+ =β  (14) 

tPf C+=β  (15) 

whereas 
1/T TH H HH

c

−
+  = + 

 
 shows the inverse matrix 

of H, and C indicates the regularised coefficient. KELM can 
be attained by presenting the kernel function as to ELM, and 
the kernel matrix was formulated by 

( ) ( ) ( )Ω ,T
ELM i j i jHH h x h x K x x= = =  (16) 

Thus, the outcome y of KELM can be formulated by 
equation (17): 

( )
( )

( )

1
1

2

,
,

( ) Ω

,

ELM

N

K x x
K x x Iy Kelm x C

C
K x x

−
 
 

  = = +    
 
  


 (17) 

As a kernel function, Gaussian kernel is utilised, viz. 
2

22( , ) ,
x x
Si jx x e

− −

=  where S denotes the kernel parameter. 

3.4 Parameter tuning using BWO algorithm 
In this study, the BWO technique was exploited to optimise 
parameter adjustment of the KELM model. Hayyolalam and 
Kazem (2020) proposed the BWO approach based on 
mathematical modelling as the existence of black widow. 
The model simulates both microscopic and macroscopic 
principles inherent in spider population dynamics to find 
optimised solutions to specific problems. The BWO 
technique operates through four stages: initialisation, 
procreation, cannibalism, and mutation, with crucial 
parameters adjusted to optimise performance. This approach 
offers faster solutions and superior convergence rates for 
RSI analysis compared to other algorithms. 

The pseudocode of BWO has been demonstrated below:  

Algorithm 1 The BWO algorithm 
Input: count of population (N), procreating rate (Pp), maximal 
iteration (T), mutation rate (Pm), cannibalism rate (CR) 
Output: best solution of the objective function 
Begin 
Initialisation of the spider population randomly based on 
equation (18); 
While (t < T) 

By using Pp, evaluate the count of reproduction ‘nr’; 
Choose the nr parents from the population; 
For i =1 to nr do 

Randomly choose two solution solutions as parent from 
nr parent; 
Produce children based on equation (19); 
Destroy fathers; 
By using CR, some children are destroyed; 

End for 
Retain the remaining children and mother in the novel 
matrix as novel generation; 
Evaluate the count of mutations of children nm based Pm; 
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For i = 1 to nm 
Choose the solution for the continued children; 
Randomly mutate one component of solutions and 
produce a novel solution; 

End for 
Return the better solution; 

End while 
Outcome the better solution; 
End 

4 Results and discussion 
The BWODLF-RSI approach’s test results on a UCM 
database RSI are detailed in Figure 4, highlighting the 
substantial enhancement in image quality facilitated by  
pre-processing. Figure 4(a) exhibits the original test RSI, 
serving as a benchmark for illustrating the initial image 
constraints. Meanwhile, Figure 4(b) displays the image 
post-pre-processing, showcasing the notable enhancements 
attained through this initial step. 

4.1 Dataset used 
The performance validation of the BWODLF-RSI  
approach occurs utilising the UCM and AID dataset 
(https://captain-whu.github.io/AID/). The proposed 
BWODLF-RSI technique is simulated using Python 3.8.5 
tool with additional packages (tensorflow-gpu==2.6.0, 
pandas, scikit-learn, seaborn, matplotlib, OpenCV-python, 
OpenCV-contrib-python, pillow, prettytable, tqdm, 
landscapes, pyqt5, cmapy, and numpy). The BWODLF-RSI 
technique’s performance was validated using the UCM and 
AID datasets. The UCM dataset comprises 21 class labels, 

each with 100 instances of 256 × 256 pixel images, while 
the AID dataset image size is 600 × 600 pixels, it has  
30 class labels with a total of 10,000 images, showcasing 
various aerial imagery scenes, including both urban and 
rural settings. Utilising both datasets, which offer a rich 
diversity of image sizes and categories, not only fosters 
enhanced performance and generalisation ability for the 
BWODLF-RSI model but also aids in preventing 
overfitting. Moreover, the combined datasets ensure a 
robust and precise evaluation of the model by facilitating a 
detailed analysis of spatial and spectral information present 
in the remote sensing datasets. 

4.2 Qualitative result analysis 
The sample visualisation result analysis of the  
BWODLF-RSI approach on the test RSI from UCM and 
AID database is shown in Figure 4. The results 
demonstrated that the qualitative analysis of images is 
considerably enhanced by the pre-processing step.  
Figure 4(a) presents the original test RSI, showcasing the 
initial state of the image before any processing or 
enhancement techniques are applied. This raw 
representation serves as a baseline for comparison and 
highlights the potential imperfections or limitations in the 
original RSI. To address these limitations and improve the 
image quality, a pre-processing step is implemented. The 
outcome of this pre-processing procedure is displayed in 
Figure 4(b). The sub-figure reveals the transformed or 
enhanced version of the test RSI, illustrating the 
considerable improvement achieved through the  
pre-processing step of BWODLF-RSI. 

Figure 2 UCM sample images (see online version for colours) 
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Figure 3 AID sample images (see online version for colours) 

 

Figure 4 Sample visualisation results on UCM and AID dataset, (a) original image (b) pre-processed image (see online version  
for colours) 

    
(a)       (b) 

Figure 5 Sample fused features (a) UCM and (b) AID dataset (see online version for colours) 

  
 (a) (b) 
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Figure 6 Sample visualisation results, (a) original image (b) pre-processed image (c) fused features (d) parameters with and without BWO 
(see online version for colours) 

      
 (a) (b) (c) 

 Metrics values Metrics values with BWO 

  
(d) 

Figure 7 Comparison of feature maps, (a) original image (b) AlexNet (c) proposed model (see online version for colours) 

   
 (a) (b) (c) 

 
Figure 5 showcases the fused feature maps produced by the 
BWODLF-RSI method on the test images from the UCM 
and AID datasets, as seen in Figures 5(a) and 5(b), 
respectively. This visualisation proves the method’s 
effectiveness in synthesising and integrating pertinent 
features, offering a holistic, less redundant representation of 
the scene, thereby enhancing the precision of analysis 
efforts. It underlines the technique’s ability to enhance 
discriminative features in the RSIs, illustrating its potential 
in facilitating more accurate analyses by reducing noise and 
redundancy. 

Figure 5 displays various outputs from the  
BWODLF-RSI methodology applied to the UCM and AID 
datasets. Figures 6(a) and 6(b) showcase the original and  
pre-processed test RSI, respectively, while Figure 6(c) 
presents the successfully fused feature maps achieved post 
pre-processing. Figure 6(d) outlines various performance 
metrics, including accuracy and F1 score, underlining the 
improved results garnered using the BWODLF-RSI 
technique both with and without BWO optimisation. 

Figure 7 displays a comparative analysis between the 
proposed BWODLF-RSI model and the traditional AlexNet 
model. The input image is shown in Figure 7(a). The feature 
map from AlexNet is in Figure 7(b), while the fused 
features from BWODLF-RSI are in Figure 7(c). A visual 
comparison suggests that BWODLF-RSI outperforms 
AlexNet in RSI analysis, presenting a more comprehensive 
and discriminative representation of relevant information. 

4.3 Result analysis of proposed model on UCM 
dataset 

This section examines BWODLF-RSI model on UCM 
dataset in three aspects of training/testing (TR/TS) data: 

1 entire UCM dataset 

2 70:30 of UCM dataset 

3 80:20 of UCM dataset. 
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4.3.1 Result analysis of proposed model on entire 
UCM dataset 

Figure 8 showcases the results of the BWO-KELM and 
KELM classifier models applied on the entire UCM 
database using the BWODLF-RSI method. The  
BWO-KELM model surpassed the KELM in classification 
performance, exhibiting exceptional precision-recall metrics 
and achieving a peak ROC of 0.9994. 

Table 1 summarises classification results for the KELM 
model and BWODLF-RSI on the entire UCM database. 
BWODLF-RSI outperformed KELM with higher accuracy 
(94.38%), precision (94.40%), recall (94.38%), specificity 
(99.72%), PR_AUC score (95.61%), ROC (99.48%), 
F1_score (94.35%), and MCC (94.09%). 

Table 1 Result analysis of KELM and BWODLF-RSI 
approaches under entire UCM dataset 

Metrics KELM BWODLF-RSI 

Accuracy 88.21 94.38 
Precision 88.30 94.40 
Recall 88.21 94.38 
Specificity 99.41 99.72 
PR AUC score 89.92 95.61 
ROC score 98.71 99.48 
F1-score 88.10 94.35 
MCC 87.60 94.09 

 

Figure 8 Results analysis on entire UCM dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-Curve (c) ROC,  
and for BWO-KELM (d) confusion matrix (e) PR-curve (f) ROC (see online version for colours) 

   
 (a) (b) (c) 

   
 (d) (e) (f) 
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Figure 9 Results analysis on 70:30 of UCM dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC 
and for BWO-KELM (d) confusion matrix (e) PR-curve (f) ROC (see online version for colours) 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10 Results analysis on 80:20 of UCM dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC 
and for BWO-KELM (d) confusion matrix (e) PR-curve (f) ROC (see online version for colours) 

   
(a) (b) (c) 

   
(d) (e) (f) 
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4.3.2 Result analysis of proposed model on 70:30 of 
UCM dataset 

In Figure 9, BWO-KELM and KELM classifier models 
were tested on a 70:30 UCM database split. BWO-KELM 
outperformed KELM with a peak ROC of 0.9999, 
showcasing high precision and recall rates and fewer false 
positives. This data supports the improved performance of 
the BWODLF-RSI approach. 

4.3.3 Result analysis of proposed model on 80:20 of 
UCM dataset 

Figure 10 showcases the results of the BWO-KELM and 
KELM classifiers applied to the entire UCM database under 
the BWODLF-RSI method. The BWO-KELM method 
outperformed the KELM approach, achieving the highest 
ROC of 0.9998 and illustrating effective positive instance 
classification with reduced errors as evident from the 
precision-recall curve. 

Table 2 reports a brief classification outcome of the 
BWODLF-RSI method on the 80:20 and 70:30 of UCM 
databases. The outcomes stated that the BWODLF-RSI 
method has obtained better performance under all aspects. It 
is noticed that the BWODLF-RSI method has demonstrated 
maximum performance under all TR and TS data. 

Table 2 Result analysis of BWODLF-RSI approaches under 
70:30 and 80:20 of UCM dataset 

UCM dataset 

Measures TR (70%) TS (30%) TR (80%) TS (20%) 

Accuracy 94.84 94.91 94.81 94.96 
Precision 94.81 94.92 94.79 95.02 
Sensitivity 94.84 94.91 94.81 94.96 
Specificity 99.74 99.75 99.74 99.76 
F-score 94.79 94.86 94.77 94.93 
NPV 99.74 99.75 99.74 99.76 

4.3.4 Comparative result analysis on UCM dataset 
Table 3 and Figure 11 present a comparative analysis of the 
BWODLF-RSI model against other DL models using the 
UCM dataset for image classification. The data reveals that 
while other models exhibited a performance with accuracy 
ranging from 89% to 93.28%, the BWODLF-RSI model 
surpassed them with a peak accuracy of 94.38%. This 
superior performance indicates the model’s substantial 
potential in applications necessitating precise RSI 

classification and accurate identification of positive 
instances. 

Table 3 Accuracy analysis of BWODLF-RSI system with 
other techniques under UCM database 

Methods Accuracy (%) 

BWODLF-RSI 94.38 
TEX-Net-LF 89.00 
CaffeNet 89.23 
CTFCNN 89.11 
SCCov 93.28 
MG-CAP 90.59 
Inception-v3-CapsNet 92.46 

Figure 11 Accuracy analysis of BWODLF-RSI approach under 
UCM dataset (see online version for colours) 

 

4.4 Result analysis of proposed model on AID 
dataset 

This section examines BWODLF-RSI model on AID 
dataset in three aspects of training/testing (TR/TS) data: 

1 entire UCM dataset 

2 70:30 of UCM dataset 

3 80:20 of UCM dataset. 

4.4.1 Result analysis of proposed model on entire 
AID dataset 

Figure 12 showcases the superior classification outcomes of 
the BWO-KELM method over the KELM when applied to 
the entire AID database within the BWODLF-RSI 
framework, achieving a notable ROC of 0.9994 as 
evidenced by the PR and ROC curves. 
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Figure 12 Results analysis on entire AID dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC,  
and for BWO-KELM (d) confusion matrix (e) PR-curve (f) ROC (see online version for colours) 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 13 Results analysis on 70:30 of AID dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC 
and for BWO-KELM (d) confusion matrix (e) PR-curve (f) ROC (see online version for colours) 

   
(a) (b) (c) 

   
(d) (e) (f) 
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Figure 14 Results analysis on 80:20 of AID dataset for KELM for BWODLF-RSI method, (a) confusion matrix (b) PR-curve (c) ROC, 
and for BWO-KELM (d) confusion matrix (e) PR-curve (f) ROC (see online version for colours) 

   
(a) (b) (c) 

   
(d) (e) (f) 

 
Table 4 presents the classification outcomes of the 
BWODLF-RSI system and the KELM method on the entire 
AID database, highlighting the superior performance of the 
BWODLF-RSI algorithm. The algorithm showcases 
improved metrics, including a 94.05% accuracy and a 
99.52% ROC score, among others. 

Table 4 Result analysis of KELM and BWODLF-RSI 
approaches under entire AID dataset 

Metrics KELM BWODLF-RSI 

Accuracy 90.83 94.05 
Precision 91.01 94.09 
Recall 90.83 94.05 
Specificity 99.68 99.79 
PR AUC score 91.28 94.77 
ROC score 99.12 99.52 
F1-score 90.80 94.03 
MCC 90.55 93.84 

4.4.2 Result analysis of proposed model on 70:30 of 
AID dataset 

Figure 13 highlights the superior performance of  
BWO-KELM over KELM in classifying a 70:30 AID 
database split under the BWODLF-RSI framework, 

showcasing improved precision-recall and ROC curves with 
a peak ROC score of 0.9999. 

4.4.3 Result analysis of proposed model on 80:20 of 
AID dataset 

Figure 14 illustrates the superior performance of  
BWO-KELM over KELM on the 80:20 AID database for 
classification utilising the BWODLF-RSI method, 
demonstrating improved precision-recall and ROC curves 
with a top ROC score of 0.9999. 

Table 5 presents the results of the BWODLF-RSI on 
80:20 and 70:30 splits of the AID databases. The method 
outperformed others in all evaluated aspects, showcasing 
improved performance across all TR and TS data. 

Table 5 Result analysis of BWODLF-RSI approaches under 
70:30 and 80:20 of AID dataset 

AID dataset 

Measures TR (70%) TS (30%) TR (80%) TS (20%) 

Accuracy 94.80 94.56 94.96 93.62 
Precision 94.86 94.63 94.99 93.99 
Sensitivity 94.80 94.56 94.96 93.62 
Specificity 99.82 99.81 99.83 99.79 
F-Score 94.79 94.48 94.94 93.63 
NPV 99.82 99.81 99.83 99.79 
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4.3.4 Comparative result analysis on AID dataset 
Table 6 and Figure 15 highlight the BWODLF-RSI 
algorithm’s superior performance over other deep learning 
approaches on the AID dataset, showcasing its potential for 
precise RSI classification. The TEX-Net-LF and CaffeNet 
systems recorded lower accuracies of 90.93% and 87.37%, 
respectively. 

Table 6 Accuracy analysis of BWODLF-RSI approach with 
other techniques under AID dataset 

Methods Accuracy (%) 

BWODLF-RSI 94.05 
TEX-Net-LF 90.93 
CaffeNet 87.37 
CTFCNN 92.71 
SCCov 93.22 
MG-CAP 93.43 
Inception-v3-CapsNet 93.92 

Figure 15 Accuracy analysis of BWODLF-RSI approach under 
AID dataset (see online version for colours) 

 

The BWODLF-RSI algorithm outperformed other 
approaches, achieving the highest classification accuracy  
of 94.05%. Other methods like CTFCNN and  
Inception-v3-CapsNet also had reasonable accuracies, 
ranging from 92.71% to 93.92%. The results underline the 
proposed model’s potential to enhance RSI applications, 
including image recognition and object detection, through 
fusion techniques and advanced methodologies. 

5 Conclusions 
A new BWODLF-RSI system has been introduced to better 
identify various categories within RSIs. Firstly, there’s a 
three-part pre-processing stage; it includes GF-based noise 
reduction to enhance the focal area, CLAHE-enabled 
contrast boosting to enhance the features and data 
augmentation to avoid overfitting during RSI analysis. 
Following this, a combination of Inceptionv3 and 
DenseNet201 models was utilised for a strong feature 

extraction process, laying a firm groundwork for the 
classification stage. The final step is BWO  
technique working in tandem with the KELM model, 
significantly improving efficiency and predictive precision.  
Through extensive testing on benchmark datasets, this 
BWODLF-RSI system demonstrated encouraging results, 
outperforming existing methods with a classification 
accuracy of 94.05%, compared to 90.93% and 87.37% 
achieved by TEX-Net-LF and CaffeNet, respectively. 
Looking ahead, we see opportunities to further refine deep 
learning architectures for even more accurate RSI 
classification. Exploring transfer learning for tailored RSI 
analysis is a promising avenue for enhancing classification 
outcomes. Our main goal with the BWODLF-RSI system is 
to facilitate improved analysis and interpretation of RSIs, a 
tool that finds critical applications for urban planning, 
disaster management, and weather analysis, among others. 
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