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Abstract: Phase changes occur in oscillating heat pipes (OHPs) inside a tube
partially filled with liquid that loops through the hot and cold zones of the
device. Evaporation occurs in the hot zone, condensation in the cold zone.
Their net effect would intuitively lead to accumulation of liquid slugs in
the cold zone and flow stagnation. In recent work, however, self-oscillations
observed in a single-branch heat pipe are explained as self-excited mechanical
resonator motion. We extend their analysis to typical OHP geometry. Based
on a model that combines slug dynamics with a phenomenological model
of evaporation, linear stability of the equilibrium corresponding to liquid
slugs filling up the cold zone of the heat exchanger is analysed. Our results
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reveal relations among the system parameters that determine stability and
oscillatory behaviour via Hopf bifurcations. Thus, an explanation is proposed
for successful start-up – one of the grand challenges for OHP design.

Keywords: oscillating heat pipe; mathematical model; linearisation; Hopf
bifurcation; start-up; model validation.
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1 Introduction

Oscillating heat pipes (OHPs), which were invented by Akachi (1993) and are also
called pulsating heat pipes, are a special type of heat pipe consisting of a tube partially
filled with liquid and configured as a heat exchanger with multiple serpentine turns
through its hot and cold zones (see Figure 1). Efficient heat transfer is achieved through
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the combined effects of phase changes – evaporation to vapour, condensation to liquid
– and the forces they produce that cause oscillation of two-phase fluid between the hot
and cold zones with no moving mechanical parts. The mechanism driving phase change
is apparent, but satisfactory explanation of the mechanism responsible for flow pulsation
has been elusive. Also, a clear explanation of successful start-up, which is the onset of
desired, sustained oscillations not damped by flow resistance due to fluid viscosity, has
not been given.

Several excellent reviews on OHPs have been published (see for example
Faghri, 2014; Ma, 2015; Zhang and Faghri, 2008; Mameli et al., 2022). The recent
comprehensive review by Nikolayev (2021) focuses on one space-dimension modelling
of OHPs, which is the context of the research presented here. Subsection 3.2 of
the Nikolayev (2021) review on film evaporation-condensation (FEC) models is most
relevant. In particular, the one-branch model discussed there has been shown to have a
surface in the parameter space bounding regions corresponding to stability and instability
of equilibria in accordance with published simulations for multi-bend models (see Das
et al., 2016; Rao et al., 2015; Zhang and Faghri, 2008; Rao et al., 2013; Nikolayev,
2011). We present a different model for multi-bend heat pipes and prove a similar result.

In a recent work by Tessier-Poirier et al. (2019b), a mechanism for self-oscillations
was proposed for a single-branch pulsating heat pipe, which in their experiment is a
straight pipe mounted horizontally with an open end and a closed end connected to
a pressure sensor. At the closed end, a vapour bubble is created via external heating.
Under experimentally controlled conditions that create an appropriate temperature
gradient from the closed to the open end, a stable system equilibrium consisting
of a vapour bubble bounded by a liquid slug was achieved. For sufficiently larger
temperature gradients, the equilibrium state lost stability and bifurcated into an
oscillatory regime as measured by the position of the liquid meniscus bounding the
vapour bubble. They developed a mathematical model of their system and showed
by linear stability analysis that the corresponding model has an equilibrium that loses
stability with a sufficiently large increase in the temperature gradient. The subsequent
motion included self sustained oscillations.

Our motivation is to generalise the results in Tessier-Poirier et al. (2019b) with
the goal of providing a clear understanding of the onset of self sustained oscillations
for OHP geometries found in commercial designs. Despite widespread applications in
various technologies (Faghri, 2014; Ma, 2015; Zhang and Faghri, 2002; Daimura et al.,
2016; Drolen et al., 2021; Nikolayev, 2021) and numerous studies both experimental
and theoretical on both single and multi-turn OHPs (Mameli et al., 2019; Karthikeyan,
2014; Wang et al., 2015; Pouryoussefi and Zhang, 2016, 2017; Daimura et al., 2014;
Sakulchangsatjatai et al., 2004; Mameli et al., 2021; Tessier-Poirier et al., 2019a), the
lack of fundamental understanding of the basic self-oscillation mechanism as expressed,
for example, in Nikolayev (2021): “Because of the lack of PHP understanding, it is not
even clear which dimensionless groups are the most important, and which groups can be
omitted from the analysis.” has led us to address these issues for the ‘start-up problem’
recognised in the literature with the observation that OHPs tend “to not start-up or
take a long time to start” (Daimura et al., 2016). This ‘start-up problem’ refers to flow
stagnation during the temperature rise in the hot zone of the device, which prevents
high rates of heat transfer being achieved with the desired operational regime, i.e., fluid
oscillation between the hot and cold zones.
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We introduced in Chicone et al. (2022) a model suitable for study of the
start-up problem for realistic OHP designs and were able to completely analyse (with
mathematical proof) the start-up problem for the case of two slugs that completely fill
the cold zone of the OHP. Building on this foundation, we have extended our results to
the case of many slugs.

Our model for start-up dynamics of OHPs is discussed in Section 2. It is a
system of ordinary differential equations constructed to avoid the detailed and complex
multi-physics of full OHP operation. Simplifying assumptions are specified that we
believe are appropriate for viable modelling of the start-up problem. In particular, focus
is concentrated on what is believed to be the dominant OHP operational mechanism of
‘vapour-liquid separation’, which is discussed by many other investigators (Ma et al.,
2005; Zhang and Faghri, 2008; Das et al., 2016; Rao et al., 2013).

As expected, flow stagnation with all slugs residing in the cold zone corresponds
to an equilibrium of our model. Linear stability analysis is used to prove the existence
of a critical relation among system parameters that separates a change of stability
corresponding to pairs of complex conjugate eigenvalues of the system matrix for the
linearised equations at the equilibrium crossing the imaginary axis in the complex plane.
A complete extension of the nonlinear analysis in Chicone et al. (2022) (for the case
of two turns of the OHP tube and two corresponding liquid slugs filling the cold zone,
which culminated in a proof of the existence of a non-degenerate Hopf bifurcation
producing a stable limit cycle) seems to be out of reach using currently available
mathematics. In fact, even for the case of two pairs of complex conjugate eigenvalues
simultaneously crossing the imaginary axis (the so called Hopf-Hopf or double Hopf
bifurcation), a complete description is not yet known. Thus, a full description of the
nonlinear dynamics predicted by the model when the equilibrium losses stability is
beyond the scope of this paper; instead, a complete analysis at the linear level is given
for an arbitrary number of slugs.

In Subsection 3.1 we specify the critical value of the temperature gradient at which
the stability of the equilibrium is neutral, we determine exactly the spectrum of the
linearisation at this critical value (which includes multiple pairs of pure imaginary
eigenvalues in the complex plane), and we prove that these pure imaginary eigenvalues
simultaneously move to eigenvalues with positive real parts as the temperature gradient
exceeds its critical value relative to the other system parameters. These results suggest
that linear instability corresponds to OHP start-up. This result is general in the sense
that it is independent of the geometric details of the OHP design.

Numerical simulations are discussed in Subsection 3.2. For all cases considered of
an OHP design whose tube has n turns at one end, n− 1 pairs of complex conjugate
eigenvalues cross the imaginary axis as the temperature gradient increases through the
bifurcation threshold. This suggests that the number of different quasi-frequencies of
the unstable oscillations increases with the number of turns. These simulations of the
nonlinear system suggest highly complex oscillatory behaviour when the equilibrium
becomes unstable.

Based on the simple criterion proved for the onset of oscillations, we propose
in Appendix A a (dimensionless) parameter that can be used to provide quantitative
prediction for the onset of oscillations by taking into account design features such as
the expected temperature gradient and the physical properties of the working fluid. Also
in Appendices, we discuss some issues related to model validation.
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2 A dynamic model for OHPs

Many models have been proposed for OHP operation in research articles (Zhang and
Faghri, 2002; Daimura et al., 2016; Tessier-Poirier et al., 2019b; Ma et al., 2005; Zhang
and Faghri, 2008; Das et al., 2016; Rao et al., 2013; Shafii et al., 2001; Thome et al.,
2004; Peng et al., 2014; Pai et al., 2013); these are further discussed in books and
reviews (Faghri, 2014; Ma, 2015; Zhang and Faghri, 2008; Nikolayev, 2021). Our
approach is based on the work in Tessier-Poirier et al. (2019b), which treats a single
liquid slug and a single vapour plug in a straight length of pipe with one closed and one
open end. The domain is a tube of constant cross section. Figure 1 shows an example
layout of the tube centre line with straight lengths separated by circular arcs, all of
radius r. The straight sections are of length L except for those at the left and right
ends to which have been added a length h to avoid intersecting the horizontal bottom
return. The domain is conveniently defined for an arbitrary number of turns by noting
the repeated ‘arches’ as shown in the figure. A single substance is the working fluid
within the OHP and is present as liquid slugs and vapour plugs, for brevity henceforth
referred to as slugs and plugs, separated by menisci (see Figure 2).

Figure 1 Schematic of an OHP with four turns on each side with dimensionless coordinates
x and y being the physical coordinates xL and yL divided by L (see online version
for colours)

Note: To maintain the device in one plane, a vertical distance h is added to L.

We assume there are n ≥ 1 slugs. The position of the ith slug in the OHP is represented
by arc length, si, measured clockwise from an origin on the simple closed curve (as
in Figure 1) to the meniscus on the left side of slug whose dimensionless length is
denoted γi, where the characteristic length is L as in Figure 1 and actual lengths are
depicted in Figure 2. Also, each slug is assumed to have constant density ρ; and, the
same characteristic length L is used to define dimensionless plug lengths βi = li/L.

The differences in pressures at the ends of each slug drive slug motion. For the ith

slug, these pressures in clockwise order are given by the (uniform) plug pressures Pi

and Pi+1 assumed to be given by the ideal gas law:
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Pi =
miRgTg

Ali
, (1)

where for each plug, li is its length, mi is its mass, Tg is the assumed constant
temperature, Rg is the specific ideal gas constant, and A is the cross sectional area of
the pipe. Due to the assumed circular axial geometry of the pipe, Pn+1 = P1. Moreover,
pressure is assumed to be tangentially directed along the pipe axis.

Wall drag

−8πµLv

is assumed to be due to quasi-static Poiseuille dissipation for circular cross section,
characteristic length L, viscosity, µ, and velocity v.

Figure 2 Schematic diagram of liquid slugs and vapour plugs in an OHP tube with length
notations (see online version for colours)

For i = 1, 2, 3, ..., n, the equations of slug motion become

ρLγiAs̈i = A(Pi − Pi+1)− 8πµLγiṡi. (2)

A characteristic pressure P0 (possibly the initial vapour pressure) is used to define
dimensionless quantities

pi :=
Pi

P0
, θi :=

si
L
,

ν :=
8πLµ

A
√
ρP0

, ϕi :=
RgTg

ALP0
mi. (3)

Note that the definition of ν must be adjusted if the tube cross section is not circular.
Furthermore, a characteristic time

tc :=

√
ρL2

P0

is introduced. With overdots again denoting differentiation with respect to the new
dimensionless time τ := t/tc, the equations of motion in dimensionless form are

γiθ̈i = pi − pi+1 − νγiθ̇i, i = 1, 2, 3, ..., n, (4)

where pn+1 = p1.
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Dimensionless pressure p is a function of dimensionless position and plug
temperature. Using Ltotal to denote total pipe length and βi the length of the ith plug,

β1 = θ1 +
Ltotal

L
− (θn + γn),

βi = θi − (θi−1 + γi−1), i = 2, 3, 4, ..., n. (5)

We use equations (1) and (3) to represent the dimensionless pressure in the form

pi =
ϕi

βi
, (6)

where ϕi can be a function of temperature, Tg.
The mass of each plug mi can change due to evaporation and condensation, and

these are assumed, as in Tessier-Poirier et al. (2019b), to occur at the menisci. The rate
of evaporation is further taken to be proportional to the difference between the wall
temperature Tw and the local saturation temperature Tg,sat, both functions of position,
evaluated at the slug menisci. The evaporation rate is therefore

dmi

dt
=

Tw(θ)− Tg,sat

HvRth
, (7)

where Hv is the latent heat of vapourisation (J/kg) and Rth is the thermal resistance
(K/W). Equation (7) is made dimensionless with ϕ from equation (3). Retaining the
same convention for dimensionless time as earlier,

ϕ̇i =
tcRgTg

ALP0HvRth
(Tw − Tg,sat). (8)

Tessier-Poirier et al. (2019b) treats a single pipe with one open end where the pressure
remains unchanged. For the OHP geometry considered here (for example as in Figure 1),
the pressure at both menisci of each plug must be considered. Furthermore, evaporation
and condensation need to be taken into account either by detailed modelling or
by developing a phenomenological approach to replace the entire right-hand side of
equation (8).

The latter approach by Chicone et al. (2022) is implemented by a judicious choice of
what we call an evaporation function ev that appropriately approximates the right-hand
side of equation (8) when evaluated at the positions of the menisci. More precisely, our
dimensionless evaporation function is defined by

ev(θ) = ev(y), (9)

where the graph of a typical ev (a scalar function on the real line) is depicted in Figure 3
and y is the dimensionless vertical coordinate corresponding to the second coordinate
of the physical position (xL, yL) of the meniscus at θ on the OHP.

The dimensionless rate of change of vapour mass then takes the form

ϕ̇i = ev(θi−1 + γi−1) + ev(θi) (10)



Start-up of oscillating heat pipes via Hopf bifurcation 39

where i = 1, 2, 3, ..., n, θ0 = θn, and γ0 = γn. Positive rates correspond to evaporation;
negative rates correspond to condensation.

Figure 3 The evaporation function versus position in the OHP (see online version for colours)

We apply equation (10) by dividing the OHP, schematically depicted in Figure 1, into
three zones: a hot zone at the bottom, a cold zone at the top, and a transition region
between them that is a horizontal strip of width less than L/2 symmetrically situated
about the horizontal coordinate axis. The evaporation rate is taken to be constant and
of opposite sign in the hot and cold zones, and; in the transition zone, it decreases
linearly (as a function of the vertical coordinate y) making a continuous connection
between the hot and cold rates. To determine ev, the OHP wall temperature function
and the (assumed constant) temperature in the vapour plugs at the menisci are taken into
account. The wall temperature is assumed to be constant at Th and Tc in the hot and
cold zones, respectively. In the transition zone of width 2ϵL, the constant temperature
gradient (Th − Tc)/(2ϵL) is maintained. For a meniscus at equilibrium, there is no
evaporation or condensation, i.e., (Th + Tc)/2− Tg,sat = 0. Thus we introduce

R =
tcRgTg(Th − Tc)

2ALP0HvRth
(11)

and the dimensionless parameter ϵ > 0, which measures (reciprocal) steepness of the
evaporation rate in the transition zone, to define the scalar function ev on the real line
by

ev(y) =

R for y < −ϵ,
−R(yϵ ) for |y| ≤ ϵ,
−R for y > ϵ.

(12)

Here, the hot zone is in the half-plane y < 0 where the evaporation is positive and the
cold zone corresponds to y > 0 where condensation occurs.
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The evaporation function ev is similar in structure to the one used in Tessier-Poirier
et al. (2019b) and is consistent with the near constancy of temperature in hot and cold
zones and a temperature gradient in the intermediate adiabatic region as in Daimura
et al. (2016).

In summary, let γi be the scaled length of the ith slug, ν the damping parameter,
pi the pressure at the ith meniscus, and ϕi the function defined in equation (3). Our
dimensionless dynamical model for the motion of the position of the ith meniscus θi is

γiθ̈i = pi − pi+1 − νγiθ̇i,

ϕ̇i = ev(θi−1 + γi−1) + ev(θi) (13)

with initial data given by scaled left-hand (with clockwise orientation in the plane)
slug menisci initial positions and velocities. Here pi := ϕi/βi and ev is the evaporation
function defined in equation (9).

3 Model analysis

3.1 Linearisation and onset of oscillatory motion

Near equilibrium dynamics for the case of multiple slugs and plugs in a multi-turn OHP
is considered as a bifurcation phenomenon for model (13). Equilibrium occurs when
all liquid slugs reside in the cold zone with all menisci at the position y = 0 of zero
evaporation. But in the usual language of dynamical systems theory (especially when
geometric objects are mentioned), equilibria are considered for a first-order system
of ordinary differential equations equivalent to the model equations. Using the usual
formulation by introducing velocities vi so that θ̇i = vi, a 3n-dimensional first-order
system is obtained that is equivalent to the model equations. In equilibrium, vi = 0 for
i = 1, 2, 3, ..., n, which accounts for n independent equations. All v̇i must also vanish.
But this set of n equations is not independent. Due to the circular geometry, only
n− 1 of them are independent. Likewise the vanishing of all ϕ̇i accounts for n− 1
independent equations. Thus, there is in fact a two-dimensional (invariant) manifold
consisting entirely of equilibria in the 3n-dimensional state space. Our basic result
provides a criterion for the loss of stability of all these equilibria simultaneously and
a linear-level description of the unstable motion: fix all system parameters except the
evaporation rate σ := R/ϵ [with R and ϵ as in equation (12)] and consider the stability
of the equilibria with respect to changes in this parameter relative to the damping
parameter ν.

Main result 3.1: As σ increases from the critical value σ = ν, the system passes to an
oscillatory regime via bifurcation due to loss of stability.

Strictly speaking, the equilibria form an attracting normally hyperbolic invariant
manifold that loses stability and becomes an unstable (repelling) invariant manifold as
σ increases from its critical value. This is the central result of this paper. In the unstable
regime, an ignorable (measure zero) set of equilibria exists. But for a full measure set
of initial data, the system evolves into unstable oscillation commensurate with start-up.



Start-up of oscillating heat pipes via Hopf bifurcation 41

In our previous Chicone et al. (2022) paper, the case of two slugs was analysed
in detail. In particular, a nondegenerate super-critical Hopf bifurcation was proved to
occur; that is, a stable periodic solution exists for σ > ν (at least for σ − ν positive but
sufficiently small). The proof required reduction to a centre manifold at the equilibrium
of the nonlinear system in the presence of a double zero eigenvalue of the system matrix
of its linearisation at the equilibrium to compute the stability index, which depends on
expansion to third order of the reduced system on the centre manifold.

Application of bifurcation theory in the case of more than two slugs is much more
complicated. For example, for the case of three slugs, there is a double zero eigenvalue
as before but two pairs of complex conjugate eigenvalues cross the imaginary axis
simultaneously as σ is increased from its critical value ν. This signals the so called
Hopf-Hopf (or double Hopf) bifurcation. Numerous results in the literature prove the
birth (under various circumstances) of periodic solutions, invariant tori, and chaotic
dynamics, all of which meet our definition of oscillatory phenomena. As important
remarks we mention two facts:

1 The full Hopf-Hopf bifurcation is co-dimension two (that is, it requires two
bifurcation parameters to unfold all its phenomena)

2 Complete understanding of such bifurcations has not been achieved.

In this context, a complete picture of the bifurcation phenomena of our model is also
not known even for the case of three slugs. Our main technical theorem, in support of
Result 3.1, describes the structure of the spectrum of the system matrix of the linearised
model equations:

Theorem 3.1: At σ = ν, the spectrum of the 3n-dimensional system matrix of the
linearised model equations at equilibrium is decomposed as follows: −ν is an
eigenvalue with multiplicity n, there is a double zero eigenvalue, and the remaining
2n− 2 eigenvalues are all pure imaginary. Moreover, the pure imaginary eigenvalues
simultaneously cross the imaginary axis, with nonzero speed, in the direction such that
their real parts are positive when σ increases from ν.

This result implies that the manifold of equilibria loses stability and oscillatory motion,
which we correlate with OHP start-up, occurs as σ increases from its critical value ν.

Proof: Using the obvious generalisation of the coordinates introduced in Chicone et al.
(2022), the linearised system of equations at each rest point (menisci at y = 0 and slugs
in the cold zone) takes a simple form.

To construct the linearisation of the model (13), let βi0 denote the dimensionless
length of the ith plug at equilibrium [compare, equation (5)]. Using notation defined as
in Figure 1 where the yi are dimensionless lengths,

βi = βi0 + yi − yi−1. (14)

With reference to Figure 1, but for a configuration with perhaps more or fewer turns,
the first plug has equilibrium dimensionless length



42 C. Chicone et al.

β10 =
L+ 2h+ πr + 4(n− 1)r

L
. (15)

According to our definition, the dimensionless vapour mass ϕ at equilibrium is the
dimensionless plug length. Let new dimensionless variables ui be defined by

ϕi = βi0(1 + ui) (16)

so that equilibrium corresponds to ui = 0 and at this value ϕi = βi0 is the dimensionless
equilibrium mass. Using the definition of pressure in equation (6),

pi = (1 + ui)

[
1− yi − yi−1

βi0
+

(
yi − yi−1

βi0

)2

+O

((
yi − yi−1

βi0

)3
)]

. (17)

To linear order in the variables ui and yi, and using for notational convenience ki :=
1/βi0,

γiÿi = ui − ui+1 + kiyi−1 − (ki + ki+1)yi + ki+1yi+1 − γiνẏi, (18)

where kn+1 = k1 and y0 = yn. Also, note that each ki is a positive real number.
The linearised evaporation equation, simplified using the two menisci bounding each

vapour plug and the notation defined above, takes the form

u̇i = ki(−σyi + σyi−1), (19)

where as above,

σ :=
R
ϵ
. (20)

The structure of system (18)–(19) allows elimination of the auxiliary variables ui

by simply taking one further (dimensionless) time derivative to obtain a system
of third-order ODEs for the positions yi. In fact, by starting with equation (18),
differentiating with respect to the temporal variable, substituting for the u̇i, and using
the vector variable

Y = [y1, y2, y3, ..., yn]
T ,

the system is (with simple algebraic manipulation) written in the matrix form
...

Y + νŸ +WẎ + σWY = 0,

where W := M−1K, M := diag γi, and

K :=


k1 + k2 −k2 0 0 ... 0 −k1
−k2 k2 + k3 −k3 0 ... 0 0
0 −k3 k3 + k4 −k4 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... kn−1 + kn −kn

−k1 0 0 0 ... −kn kn + k1

 . (21)
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We will show that the spectrum of the corresponding linearised 3n-dimensional
first-order system is decomposed as in the statement of the theorem.

As is usual, to compute the spectrum of the linearised system we substitute Y =
eλtV for unknown eigenvalue λ and corresponding eigenvector V to determine the
vector characteristic equation

(λ3I + νλ2I + λW + σW )V = 0, (22)

where I denotes the n× n identity matrix.
At bifurcation σ = ν. For this special case, λ = −ν and an arbitrary n dimensional

real vector V satisfies the characteristic equation. Thus, the eigenvalue −ν has
(geometric) multiplicity n. Also, the existence of this root suggests that λI + νI is a
factor of the equation. In fact,

λ3I + νλ2I + λW + νW = (λI + νI)(λ2I +W ). (23)

The two square roots (possibly complex) of each eigenvalue of W are eigenvalues of
the system because of the factor λ2I +W . Since W is n-dimensional, this accounts
for 2n system eigenvalues. Thus there is a total of 3n system eigenvalues as would be
expected by writing the linearised equations as a first-order system of the form ż = Az
with z the 3n-vector whose components are the yi, ẏi, and ui.

To complete the general spectral picture of the system at σ = ν, consider the
spectrum of W . By inspection each of its rows sums to zero. Thus, it has at least
one zero eigenvalue. For example, the vector U , all of whose components are unity,
is in the kernel. Because (in addition) all diagonal elements are positive real numbers,
Gershgorin’s circle theorem implies that each eigenvalue of W is zero or has positive
real part. It remains to show that except for the zero eigenvalue, the remaining n− 1
are in fact positive real numbers.

Note that e1, e2, e3, ..., en−1, U , where ei is the usual Cartesian basis element, is a
basis of the n-dimensional space. The matrix W in this basis is W with the components
of its last column replaced by zeros. Thus its eigenvalues, which are the same as those
of W , are zero and those of the upper left (n− 1)× (n− 1)-block W̃ . An induction
argument on dimension can be constructed to prove that the determinant of W̃ is

(−1)n+1 2β10 + β20 + · · ·+ β(n−1)0

β2
10β20 · · ·βn0γ1γ2 · · · γn

,

which is not zero. Thus, W̃ has no zero eigenvalue. The matrix W̃ is tridiagonal with
the special property that the product of symmetric upper-diagonal and lower-diagonal
elements is always positive. As is well known, such a matrix is similar to a real
symmetric matrix by a similarity transformation given by a diagonal matrix. Moreover
the proof is elementary. Since a symmetric matrix has real eigenvalues, the n− 1
nonzero eigenvalues of W are positive real numbers as promised.

Turning to the nature of the spectrum as σ increases through the critical value
−ν, consider first its zero eigenvalues. They do not change with σ. The matrix W ,
as we have seen, has a zero eigenvalue. Choose a nonzero vector U in the kernel of
W and replace V by U in equation (22). The equation reduces to λ2(λ+ ν)U = 0
and thus implies the existence of a double zero eigenvalue and the real eigenvalue
−ν for the system independent of the value of σ. Of course, the existence of the
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two-dimensional manifold of rest points to which each equilibrium belongs also implies
that each linearisation has a double zero eigenvalue.

Suppose p (for positive) is an eigenvalue of W , again use the fundamental
equation (22), and note that λ is a system eigenvalue exactly when it is a root of

λ3 + νλ2 + (λ+ σ)p = 0. (24)

At bifurcation, where σ = ν there is a corresponding pair of pure imaginary eigenvalues
λ = ±ib. By simply substituting into the latter equation with σ = ν, an immediate
consequence is the relation between p and b: b2 = p. Next, consider the function F from
the Cartesian product of the complex numbers and the real numbers to the complex
numbers given by

F (λ, σ) = λ3 + νλ2 + (λ+ σ)b2.

As mentioned, F (ib, ν) = 0. Also the function F is as smooth as desired; it is a
polynomial. To apply the implicit function theorem, consider the partial derivative with
respect to the first variable at the given zero; it is (using subscript notation for partial
derivatives)

Fλ(ib, ν) = −2b2 + 2νbi,

a clearly nonzero value. The implicit function theorem implies that for σ in some open
neighbourhood of ν, λ is a function of σ such that λ(ν) = ib and F (λ(σ), σ) ≡ 0 as
long as λ is in this neighbourhood. By differentiating both sides of the latter equivalence
with respect to σ and solving for λ′(ν), its value is found to be

λ′(ν) =
b2

2(b2 + ν2)
+

bν

2(b2 + ν2)
i.

Using Taylor’s theorem

λ(σ) = ib+

(
b2

2(b2 + ν2)
+

bν

2(b2 + ν2)
i

)
(σ − ν) +O((σ − ν)2). (25)

Because the real part of the first-order term has positive real part, the real part of the
desired eigenvalue λ(σ) increases from zero as σ increases from σ = ν, exactly as
desired. All pure imaginary eigenvalues cross the imaginary axis into the positive half
of the complex plane as σ crosses its critical value ν. �

Remark: As σ increases from σ = ν, the positive real part in equation (25) is a
meaningful quantitative measure for the growth rate of instability. For σ > ν, its
reciprocal,

τc =
2(b2 + ν2)

b2(σ − ν)
, (26)

provides a useful dimensionless time constant for OHP start-up. Because τc is derived
for perturbations from an equilibrium that corresponds to the OHP ‘dry out’ state (i.e.,
all liquid slugs in the cold zone), it is the time constant corresponding to the worst case
start-up scenario.
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Remark: There is a redundancy in model (13) as might be expected from the existence
of the double zero eigenvalue and underlying circular geometry. To prove this, simply
add the equations and let

S :=
n∑

i=1

γiθi.

Using the sum of the model equations and an easy computation,

S = c1 + c2e
−νt,

where the integration constants c1 and c2 can be determined from the initial data.
Solving this latter equation (for instance) for θn and substituting the result in the model
equation eliminates this state variable. But doing so breaks the symmetric structure of
the model, makes it nonautonomous and functional (due to dependence on initial data),
and therefore leads to a less natural development of the theory.

3.2 Numerical simulation

Numerical simulations using the full nonlinear model equations of course confirm the
stability criteria discussed in Subsection 3.1. They also revealed more information, some
of which is discussed in this section. All simulations are based on the dimensionless
parameters. The characteristic length is thus set to 1. Also, the OHP size is specified by
r = 0.1 L and h = 0.03 L.

Figure 4 Growth of plug pressure oscillations versus time for σ ≈ 0.617 and ν = 0.500 for
two slugs (see online version for colours)

Notes: The oscillations appear to have a single frequency, which is characteristic
of a standard Hopf bifurcation.
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Simulation results for two, three, and five slugs completely filling the cold zone of
an OHP with the corresponding number of turns on one side are reported. The two
slug case with σ > ν shows that the near-equilibrium initial condition becomes unstable
through the onset of oscillations. This can perhaps be best seen in Figure 4 where
simulated plug pressure versus time is plotted for one choice of such initial data. The
oscillation amplitude grows exponentially (at least over the depicted dimensionless time
interval), and a single frequency characterises these oscillations.

Figure 5 Left-hand menisci positions versus time for three slugs for ν = 0.5, (a) panel for
σ ≈ 0.617 (b) panel for σ = 1.000 (see online version for colours)

(a) (b)

Figure 6 Left-hand menisci positions versus time for five slugs with ν = 0.50, (a) panel for
σ = 0.65 (b) panel for σ ≈ 0.834 (see online version for colours)

(a) (b)

Numerically approximated graphs of the left-hand menisci positions of three slugs are
depicted in Figure 5, where two frequencies are apparent, which is in concert with
the theoretical results proved in Subsection 3.1. For σ near but exceeding the critical
value σ = ν, the unstable trajectory seems (due to the two-frequency quasi-periodic
oscillation) to be attracted to a stable invariant torus. As the temperature gradient is
increased, the oscillations increase in amplitude and the attractor seems to become more
chaotic. With a sufficient increase in the temperature gradient, the oscillation amplitude
increases (not shown here) until slugs merge before the observed trajectory goes to an
attractor.
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Numerical simulations with five slugs are depicted in Figure 6. The results are
consistent with the existence of four frequencies associated with four pairs of pure
imaginary eigenvalues that cross the imaginary axis as the critical value of the
temperature gradient is exceeded. For small deviations of σ above its critical value, the
results of our simulations suggest attraction to a stable limit cycle. But as σ increases,
much more chaotic motion is observed in our simulations.

As mentioned previously, we have proved the existence of unstable oscillations in
the super critical parameter regime, i.e., for σ > ν. This is sufficient to conclude that
our model predicts OHP start-up in this regime. Perhaps only of mathematical interest,
an open problem is to determine more precisely the dynamics of our model for σ above
but sufficiently close to ν so that slug mergers do not occur. Attraction to limit cycles,
invariant tori or chaotic attractors is expected, but not proved.
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Appendix A

Critical parameter for OHP start-up and sustained operation

We have introduced and discussed a parameter σ/ν related to the onset of oscillations.
Based on the evidence provided by our theoretical analysis and numerical simulations, a
natural postulate is the criterion σ > ν (or σ/ν > 1) for successful OHP operation. The
ratio of parameters R/(ϵν) = σ/ν is independent of the detailed geometry of an OHP
in our model and therefore should hold in physical OHPs. From the definitions of these
parameters,

R
ϵν

=
ρRgTg

8πµP0HvRth

(Th − Tc)

2ϵL
. (27)

A perhaps surprising feature of this result is that the onset of self-oscillations is
controlled by a lumped parameter that depends on the pipe geometry only through the
term (Th − Tc)/(2ϵL), namely the temperature gradient in the OHP. Other geometric
features of the OHP design do not affect the stability criterion. In fact, the remaining
parameters reflect the physical properties of the working fluid and the thermal resistance.

Appendix B

Model validation

Many experimental results are reported in the literature on OHPs; but, due to a lack of
standardisation and omitted details, comparisons are difficult if not impossible to make
with confidence. Nonetheless, we have attempted to validate the criterion σ > ν using
published data.

To apply equation (27) for successful OHP design (one hot zone and one cold zone
separated by a transition region) reported in Daimura et al. (2016) with R-134a working
fluid, our analysis necessarily involves some estimations, most significant of which is
the representation of Rth. Different viewpoints are encompassed via three approaches
to describe Rth:

1 by using published thermal resistance data (reciprocal of the thermal conductance)

2 by expressing Rth = 1/(Aexth), where h is the heat transfer coefficient with the
external area calculated from the tube diameter and total tube length in the hot
zone

3 by expressing Rth = 1/(Aexth), where the external area is determined from the
heater footprint into the OHP.

Figure 7 shows how R/(ϵν) varies versus Rth for selected values of (Th − Tc)/2,
along with the critical value σ/ν = 1 for our criterion. Regions of Figure 7 above
σ/ν = 1 correspond to successful OHP start-up, those below to unsuccessful start-up.
The region of successful OHP operation reported from thermal resistance data from
Daimura et al. (2016) is depicted by black squares. They all lie above σ/ν = 1 and
are therefore consistent with our result. Regions of operation corresponding to the two
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representations of Rth = 1/(Aexth) are shown by the enclosed red and blue areas for
h ranging from 500–3,000 W/(m2K); these areas also lie above σ/ν = 1. Also, note
that the time constant of instability, τc from equation (26), corresponding to σ/ν >
1, implies that lying well above the σ/ν = 1 line is favourable for successful OHP
operation in finite time.

Figure 7 R/(ϵν) versus the thermal resistance, Rth, for different values of the temperature
difference, (Th − Tc)/2 (see online version for colours)

Notes: The bifurcation criterion σ/ν = 1 is shown by the thick black line.
The estimated region of operation from Daimura et al. (2016) with
working fluid R-134a is shown by the black squares (calculated from
conductance data), by the dashed blue box (calculated from
Rth = 1/(Aexth) using the heat input into Aext = hot zone pipe
periphery area) and the solid red box (calculated from Rth = 1/(Aexth)
using the power input into Aext = heater footprint); for the latter two
methods, h was allowed to range from 500–3,000 W/(m2K).

Table 1 Comparison of one set of model parameters used in this work with three sets of data
for different power inputs (and thus temperature differences) from Daimura et al.
(2016)

Quantity This work Daimura et al. (2016)

tc(s) - 0.014
ϵ 0.3 0.0996
ν 0.5 0.107
R 0.155 0.063, 0.122, 0.209
σ 0.51 0.63, 1.22, 2.10
σ/ν 1.03 5.85, 11.37, 10.50



Start-up of oscillating heat pipes via Hopf bifurcation 51

As another comparison, data from the extensive ASETS-II experiments in Drolen et al.
(2021) are shown in Figure 8 for 22 sets of operating conditions for both ground and
in-flight tests corresponding to two OHP configurations (referred to as OHP1-large
heater and OHP1-small heater, both with butane working fluid) for heat inputs ranging
from 10–40 W. Once again, all of the symbols – as determined from the reported
thermal conductance data – lie above the σ/ν = 1 line.

Figure 8 R/(ϵν) versus the thermal resistance, Rth, for different values of the temperature
difference, (Th − Tc)/2 (see online version for colours)

Notes: The bifurcation criterion σ/ν = 1 is shown by the red dashed line.
The estimated region of operation from Drolen et al. (2021) with
butane working fluid is shown by the red x’s and purple +’s for two
OHP configurations.

Table 1 compares the set of parameter values used in a simulation in this work to
those gleaned from the OHP data reported above in Daimura et al. (2016) for the
three sets of operating conditions. The values of ϵ, ν, R, and σ are within a factor of
approximately five between the two sources. Most importantly, the desired oscillatory
operational regime in this paper is σ/ν > 1, which is again consistent with our result.

Drolen and Smoot (2017) develop design performance limits for OHPs such as the
Bond limit, the vapour inertia limit, sonic limit, heat flux limit, etc. to ensure proper
operation of an OHP. The results presented in this work suggest that R/(ϵν) = σ/ν > 1
is an additional performance limit that should be taken into account to obtain properly
functioning OHPs.

For further comparison to published data, for the results in Figures 4–6, we estimate
frequencies of 1–20 Hz using values of the characteristic time tc computed from the
data in Tessier-Poirier et al. (2019b) and Daimura et al. (2016); this frequency range lies
within the observed frequencies of 0.1–20 Hz reported in Tessier-Poirier et al. (2019b),
Daimura et al. (2016) and Nikolayev (2021).
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An alternative view of the stability criterion is obtained by rewriting equation (27)
in the form

R
ϵν

=
Θ

RfP0Rth
, (28)

where the temperature gradient is

Θ =
Th − Tc

2ϵL
(29)

and

Rf =
8πµHv

ρRgTg
(30)

is a new lumped parameter containing properties of the working fluid. Minimisation
of Rf is desirable to minimise the required critical start-up temperature gradient. Note
that the thermal resistance Rth (which should be minimised) depends only on OHP
physical characteristics such as tube diameter, wall thickness, and thermal conductivity
(or equivalently tube diameter and heat transfer coefficient). The quantity P0, which
also should be minimised, reflects mainly the vapour pressure of the working fluid
and possibly any residual inert gas pressure present in the OHP. Although not used in
that sense in the model herein, P0 may also account for superheating of the vapour.
Operating at high input heat fluxes – which implies higher operating temperatures and
thus vapour pressures – could also possibly dampen or eliminate oscillatory behaviour.
This latter conjecture provides an alternative interpretation of the dryout phenomenon,
i.e., attenuation of oscillations and poor heat transfer (Drolen and Smoot, 2017; Schwarz
et al., 2020).


