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Abstract: This study focuses on optimising concrete mix design using a hybrid 
bio-inspired optimisation algorithm that combines differential evolution (DE) 
and cuckoo search (CS). The study also evaluates the performance of two 
strength prediction models, artificial neural networks (ANNs) and support 
vector machine regression (SVR), in determining optimal mix proportions. The 
hybrid algorithm is tested using 11 benchmark test functions and the best 
approach is chosen to solve a mix design optimisation problem with the 
objectives of maximising compressive strength, minimising carbon emissions, 
and minimising cost. Results show that ANN outperforms SVR in terms of 
compressive strength, with a 30% increase observed. Both prediction models 
produce optimal mix proportions with minimal variation for cost and embodied 
carbon minimisation scenarios. The study demonstrates the efficacy of the 
hybrid optimisation algorithm in conjunction with a prediction model in 
determining optimal concrete mix proportions. 

Keywords: bio-inspired optimisation; swarm intelligence algorithms; machine 
learning; compressive strength prediction model; concrete mix design 
optimisation; cuckoo search; differential evolution; differential cuckoo search; 
DCS; artificial neural networks; ANNs; support vector machine regression; 
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1 Introduction 

The process of determining the optimal proportions of concrete constituents to achieve 
the desired strength is known as concrete mix design. There are various empirical 
methods and standard ratios for determining mix proportions for normal concrete 
according to different codes. With advancements in the construction industry, there is an 
increased demand for properties such as high strength, high workability, and 
sustainability, leading to the development of new types of concrete, such as  
self compacting concrete (SCC), high-performance concrete (HPC), and ultra  
high-performance concrete (UHPC). These concretes incorporate mineral and chemical 
admixtures that not only reduce cost and improve eco-friendliness, but also enhance 
certain mechanical properties. 

One of the challenges in mix design for SCC is the presence of multiple ingredients, 
each of which can significantly impact the concrete’s compressive strength. There are 
currently no Indian standards for preparing SCC, so this study proposes a machine 
learning-based optimisation approach to determine the optimal mix design for three 
different scenarios. The first scenario focuses on maximising compressive strength, the 
second on minimising cost while maintaining compressive strength and durability, and 
the third on obtaining an eco-friendly mix design while maintaining compressive 
strength. 
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Accurate prediction of compressive strength is critical to the success of this approach. 
In the past, researchers have used various machine learning algorithms to predict the 
compressive strengths of concrete, including support vector machines (SVMs) (Gupta, 
2007), multiple nonlinear regression models (Zain and Abd, 2009), tree-based machine 
learning models (Deepa et al., 2010), neural networks (Huang et al., 2011), and 
comparison of different machine learning techniques (Dutta et al., 2018; Chopra et al., 
2018). Yeh (1999) optimised concrete mix proportions using a combination of neural 
networks and linear programming. Cheng et al. (2014) employed a genetic algorithm 
(GA)-based evolutionary SVM for HPC mixture optimisation. Lee and Yoon (2009) used 
a modified harmony search algorithm and neural networks for mix proportion design, 
while Reddy et al. (1993) proposed an expert system for optimum concrete design. Pham 
et al. (2016) predicted compressive strength using metaheuristic-optimised least squares 
support vector regression (SVR), and Chou et al. (2011) compared data-mining 
techniques to optimise compressive strength prediction accuracy. Naseri et al. (2020) 
developed a method to generate sustainable mix proportions for concrete strengths of  
20–70 MPa. Azimi-Pour et al. (2020) created linear and nonlinear SVM models to predict 
the properties of high-volume fly ash concrete. Neural networks and SVMs have been 
successfully used in the recent past as a surrogate compressive strength prediction models 
(Amin et al., 2022; Ghafor, 2022). The current study aims to utilise neural networks and 
SVMs as a surrogate compressive strength prediction model to generate a  
knowledge-based compressive strength prediction model. The proposed model will be 
combined with a hybrid meta-heuristic optimisation algorithm to attain optimal mix 
proportions. 

A hybrid optimisation algorithm is a method that integrates two or more optimisation 
algorithms to mitigate the limitations of a single optimisation algorithm. Differential 
evolution (DE), introduced by Storn and Price in 1997, is a population-based optimisation 
algorithm that is both simple and effective in addressing a wide range of optimisation 
problems. The algorithm operates by maintaining a population of candidate solutions and 
continually updating the population through the generation of new candidate solutions, 
which are based on the differences between existing solutions. The algorithm is noted for 
its strong performance in local optima searches and robustness (Mallipeddi et al., 2011). 
This algorithm has been applied in the past to solve complicated problems in civil 
engineering (Vasan and Simonovic, 2010; Hargrave and Chen, 2013; Al-Saffar and  
Al-Mahdi, 2015b). Moreover, recent extensions of DE are found to be efficient with 
several optimisation test suites (Nadimi-Shahraki and Zamani, 2022; Wang et al., 2022). 

Cuckoo search (CS), introduced by Yang and Deb in 2009, is a metaheuristic 
optimisation algorithm inspired by the behaviour of cuckoos in nature. The optimisation 
process in CS simulates the behaviour of cuckoos searching for a suitable nest, with 
candidate solutions updated through the generation of new solutions based on the current 
best solution and random walks. CS has demonstrated strong ability in global search and 
has a small number of parameters (Yang et al., 2018). However, it may be prone to 
trapping into local optima and reducing population density, affecting its robustness (Yang 
et al., 2018). This algorithm has also been applied in the past as an optimisation tool to 
solve complex civil engineering problems (Fu and Wang, 2013; Al-Saffar and Al-Mahdi, 
2015a; Boindala and Arunachalam, 2020). Moreover, recent extensions of CS are found 
to be efficient with several optimisation test suites (Peng et al., 2021; Cheng and Xiong, 
2022). 
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The current study proposes a novel approach that employs a hybrid optimisation 
technique, combining CS and DE algorithms, in a comprehensive framework for 
designing optimal concrete mixes. The effectiveness of the new hybrid algorithms is 
evaluated against their parent algorithms (DE and CS) using a set of 11 mathematical test 
functions. The most robust hybrid optimisation algorithm is then selected to predict the 
optimal mix proportions through a knowledge-based machine learning model. The data 
for this research work to train the ML models is a compilation of past published research 
works and databases, and all the features (independent variables) are of the continuous 
(numeric) data type. The proposed work compares two different prediction models, 
namely SVM, artificial neural network (ANN). These models are combined with the 
hybrid optimisation algorithm to obtain the optimal mix proportions for different 
scenarios. These scenarios include finding the mix proportion that provides the highest 
compressive strength, the most economical mix proportion for a desired compressive 
strength, and the mix proportion with the lowest embodied carbon for a specified 
compressive strength. The proposed hybrid optimisation approach and the framework it is 
a part of represents a novel approach in the field of concrete mix design. The proposed 
framework can be explained into two modules where the first module is a machine 
learning module, and the other is an optimisation module which is schematically 
presented in Figure 1. 

Figure 1 The proposed framework for mix design optimisation 

 

1.1 Module-1: machine learning module 

In this study, two machine learning models, ANN and SVM, are trained and evaluated 
using existing mix proportions and corresponding compressive strength data collected 
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from prior research and databases. The obtained knowledge models are then utilised in 
the subsequent optimisation module. 

1.2 Module-2: optimisation module 

This module involves two phases: algorithm selection and ML optimisation. 

1.2.1 Stage-1: selecting the robust bio-inspired optimisation algorithm 
Two hybrid bio-inspired algorithms, differential cuckoo search (DCS) 1 and 2, are 
compared with CS, DE, and modified CS algorithms. The comparison is based on 11 
benchmark mathematical test functions, and the best algorithm is selected based on the 
performance metrics. The shapes and landscapes of the test functions and a description of 
each function are presented in Figure 3 and Table 6 respectively. The population size, 
number of function evaluations, and algorithm-specific parameters for each algorithm are 
kept constant to ensure a robust comparison. 

1.2.2 Stage-2: machine learning based optimisation to obtain optimal mix 
proportions 

In this stage, the robust algorithm obtained from Stage 1 will be used to find the optimal 
mix proportion for three different scenarios, with the help of the knowledge models from 
the machine learning module. 

Scenario 1 Maximising compressive strength 

The robust bio-inspired optimisation algorithm will be used to find the 
quantities of each component of the SCC mix within its specified 
boundaries, subject to the constraints of the EFNARC (2002) guidelines. In 
every iteration, the generated mix proportion will be fed into the knowledge 
model to obtain its predicted compressive strength; the process will 
continue until the algorithm converges to the maximum compressive 
strength. 

Scenario 2 Obtaining economical mix proportion with desired compressive strength 

The objective in this scenario is to find the mix proportion with the lowest 
cost and the desired compressive strength. The robust bio-inspired 
optimisation algorithm will search within its search space and satisfy the 
EFNARC constraints and the added constraint of compressive strength. The 
compressive strength in each iteration will be obtained from the knowledge 
models, as in Scenario 1. The search will terminate when the algorithm 
converges to a mix proportion with the lowest cost and compressive 
strength greater than the desired value. 

Scenario 3 Minimising embodied carbon 

The objective in this scenario is to find the eco-friendliest mix proportion 
with the least embodied carbon. The working mechanism is the same as in 
Scenario 2, but instead of targeting a mix proportion with the lowest cost, 
the algorithm will target a mix proportion with the least embodied carbon. 
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At the end of the process, an optimal mix proportion for any of the three 
scenarios can be obtained. 

2 Machine learning module 

2.1 Data set description 

The strength and accuracy of any machine learning model depend on the database’s 
comprehensiveness or learning data. The dataset for the current study consists of 708 
records which were collected from several reputed research works. The data set contains 
mix proportions and their 28-day compressive strength values. The materials involved are 
fly ash, GGBS, cement, coarse aggregate, fine aggregate, superplasticiser and water. The 
statics of these materials in the database is shown in Table 1. As there are 7 independent 
variables (mix proportions) and 1 dependent variable, a feature selection technique is 
used to identify the most effective variable (feature) from the seven independent 
variables; Entropy-based information gain technique is used to assign weights to each 
independent variable. The weights obtained are listed in Table 2. Based on this feature 
selection method, we can see that the contribution of superplasticiser and coarse 
aggregate is negligible compared to other mix constituents. The complete data set is split 
into training and testing in a ratio of 70:30, and the two models are trained and tested 
with this data. 
Table 1 Data statistics 

Material (kg/m3) Max Min Mean Variance 
Cement 540 102 261.693 11,238.970 
Blast furnace slag 359.4 0 92.679 7,303.041 
Fly ash 200.1 0 68.206 4,444.715 
Coarse aggregate 1145 801 944.486 6,701.340 
Water 247 121.75 182.790 374.588 
Superplasticiser 32.2 0 7.859 26.878 
Fine aggregate 992.6 594 763.278 5,398.075 
Concrete compressive strength (MPa) 81.751 8.535 37.239 226.223 

Table 2 Information gain (weights) of variables 

Variable name Weight 
Cement (C) 0.3396 
Blast furnace slag (G) 0.2358 
Fly ash (F) 0.1157 
Fine aggregate (FA) 0.1202 
Coarse aggregate (CA) 0.0479 
Water (W) 0.1757 
Super plasticiser (SP) 0.0580 
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2.2 Artificial neural network 

A neural network is an artificial system modelled after the human brain, which consists 
of an input layer, an output layer, and at least one hidden layer. The input layer receives 
signals from the environment, the hidden layer processes these signals through sequential 
nonlinear computations, and the output layer provides a response based on the processed 
information. 

In this article, neural networks are employed as a machine learning tool to predict the 
compressive strength of self-compacting concrete (SCC) mixture. The relationship 
between the mix proportions and compressive strength can be complex and unknown; 
thus, neural networks are utilised to establish this relationship. 

Many researchers in the past have used a similar approach to predict the compressive 
strength of various types of concrete (Yang, 2014). For the current problem, each 
component used in the mixture is taken as a separate neuron; therefore, the input layer 
comprises of 7 neurons and a single hidden layer is assumed and the number of hidden 
nodes is taken to be five after various trials. The network architecture is shown in  
Figure 2. 

Figure 2 Neural network architecture 

 

2.3 Support vector machine 

The support vector (SV) algorithm is a statistical learning algorithm that was developed 
in the 1960s for the purpose of generalising well from training data to testing data. It was 
later adapted to develop the SVM, which has become a widely used tool for solving 
classification problems. The SVM algorithm is based on the concept of finding a 
hyperplane that maximises the margin between the data points in the input space. This 
approach is especially useful for linearly separable data, where the hyperplane acts as a 
boundary between different classes. However, in practice, the data is often not linearly 
separable, which is why the SVM algorithm includes the ability to use kernel functions to 
map the input data into a higher-dimensional space, where a linear boundary can be 
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found. In the mid-1990s, the SV learning approach was applied to regression problems, 
giving rise to the SVR model. Unlike the SVM, which is used for classification problems, 
the SVR model is used for making predictions based on continuous target values. The 
SVR algorithm minimises the deviation between the actual and predicted target values, 
subject to a specified tolerance level (epsilon). This deviation is measured as the mean 
square error between the predicted and closest points on the hyperplane. In the SVR 
model, the choice of kernel function is crucial for the accuracy of the predictions. The 
most commonly used kernel functions are linear, polynomial, and radial basis functions. 
In this study, we use the radial basis function for computing the kernel matrix, as it is 
well-suited for nonlinear data. The epsilon value is set to its default value of 0.1, which is 
a commonly used value in SVR applications 

2.4 Model evaluation 

2.4.1 Pearson correlation coefficient (R) 
The Pearson correlation coefficient is a statistical measure used to calculate the strength 
between two sets of parameters. R ranges from –1 to 1. The efficiency of the model in 
predicting the output can be obtained through the analysis of R values. The Pearson 
correlation coefficient measures the extent of deviation of the observed value from the 
best-fit line. It is defined as: 

( ) ( ) ( )
( ) ( )
1 1 1

2 2
2 2

1 1 1 1

n n n
i i i ii i i

n n n n
i i i ii i i i

n O P O P
R

n O O n P P

= = =

= = = =

− − ⋅
=

   
− ⋅ −      

  

   
 (1) 

2.4.2 Coefficient of determination (R2) 
Coefficient of determination is the square of Pearson correlation coefficient. It gives the 
variance between the predicted and the observed values. It gives a measure of the ability 
of the regression line to predict the data. R2 is calculated as: 

( ) ( )
( ) ( )

2

12

1 1

n
i i i ii

n n
i i i ii i

O O P P
R

O O P P
=

= =

 − ⋅ −  =
− ⋅ −


 

 (2) 

2.4.3 Mean absolute error 
Mean absolute error (MAE) is the error calculated between two continues variables of the 
same parameter; in the present study, it refers to compressive strength. MAE is equal to 
the average distance between the y = x line (identity line) and the point in the scatter plot 
of (x, y), where x and y are observed and predicted values of compressive strength. The 
formula for MAE is: 

1

n

i i
i

O P
MAE

n
=

−
=


 (3) 
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2.4.4 Root mean square error 
Root mean square deviation or error is the measure of the standard deviation of prediction 
errors (residuals). It represents the degree of concentration of data points around the  
best-fit line. Root mean square error (RMSE) is evaluated using the following expression: 

( )2

1

n

i i
i

P O
RMSE

n
=

−
=


 (5) 

2.4.5 Mean absolute percentage error 
Mean absolute percentage error (MAPE) evaluates the accuracy of a predicted model in 
terms of percentage. MAPE is expressed as follows: 

1

100% n
i i

ii

O P
MAPE

n O=

−
=   (6) 

in which Oi, Pi represents the observed and predicted values, while n represents the 
number of test data. Using the above-mentioned formulae for the evaluation metric and 
the output from different ML techniques viz., observed and predicted values, the 
efficiency of the ML technique is analysed and the results are discussed in the following 
section. 

3 Optimisation module 

3.1 DCS algorithm 

DCS Algorithm combines two popular optimisation algorithms, CS and DE. This hybrid 
algorithm has been proposed to overcome the limitations of the individual parent 
algorithms, and has been observed to demonstrate improved convergence and robustness. 
To grasp a comprehensive understanding of DCS Algorithm, it is imperative to have a 
clear understanding of both CS and DE algorithms. CS is a nature-inspired optimisation 
algorithm based on cuckoos’ breeding behaviour. It uses the principle of survival of the 
fittest to evolve the solutions and find the optimal solution. On the other hand, DE is a 
heuristic optimisation algorithm that uses the differences between randomly selected 
solutions to guide the evolution of the solutions. By combining the strengths of both these 
algorithms, the DCS Algorithm seeks to provide an optimised and robust solution to 
various optimisation problems. 

3.1.1 Differential evolution 
DE is a bio-inspired algorithm developed by Storn and Price in 1997, which is based on 
the principles of evolution. It is a vector-based optimisation method that draws 
similarities to both GA and pattern search (PS). However, it provides several advantages 
over GA, making it a superior algorithm. One of the key features of DE is that it uses 
both updating equations and vector updates, which eliminates the need for encoding and 
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decoding as in GA, and reduces the computational costs associated with these processes. 
This makes DE easy to implement and allows for modifications to be made with ease. 

DE has proven to be a more robust and efficient optimisation algorithm compared to 
GA (Price et al., 2006), as it uses a simple trial vector generation method and a more 
sophisticated mechanism for controlling the mutation step. This leads to a better 
convergence of the optimisation process and helps to avoid the problem of premature 
convergence that is common in other optimisation algorithms. The ease of 
implementation and the ability to work on various modifications are additional 
advantages of DE. 

Consider an objective function containing variables; assume an initial population as n. 

( ),1 ,2 ,3 ,, , ,.....,cur cur cur cur cur
i i i i i t dx x x x x ==  (7) 

In equation (1), cur means a current solution, ‘i’ can take values from 1 to n 
corresponding to each population and d is the number of variables of objective function 
f(x). As this is an evolutionary-based algorithm, this is considered to be a chromosome. 
There are three main steps in DE 

1 mutation 

2 crossover 

3 selection. 

( )Mutation : * .updt cur cur cur
i i j kv x F x x= + −  (8) 

Here updt means updated chromosome, i, j, k ∈ [1, n] and j, k are randomly chosen  
F ∈ [0, 2] is a mutation parameter. 

,
,

,

Crossover .
updt
i t iupdt

i t cur
i t

v if r C
u

x

 ≤= 


 (9) 

Here C is the crossover parameter and ri is a random number generated for ith population 
and t ∈ [1, d] and this operation is done for every chromosome. 

( ) ( )
Selection

updt updt cur
i i inew

i cur
i

u if f u f x
x

x

 ≤= 


 (10) 

In this process, the new population is generated and is selected between the current and 
updated population based on their objective function value. The whole DE algorithm is 
based on two parameters F and C. By varying these, the exploration and exploitation of 
the search mechanism can be controlled. 

3.1.2 CS algorithm 
CS is a swarm intelligence (SI) based, bio-inspired optimisation algorithm. SI is a 
collective intelligence of self-adaptive systems. We can see most of this kind of 
behaviour in nature for survival by many species. CS is based on one such behaviour of 
cuckoo birds in their breeding methods (Gandomi et al., 2013). Compared to many other 
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SI algorithms, the CS uses levy flights instead of conventional random walk. This makes 
its search much better than many other SI based optimisation algorithms. 

Algorithm 
Assume an objective function containing ‘d’ variables (dimensions) and a number’ n’ 
nests. Here, instead of the population, we use nests as the algorithm is based on the 
breeding pattern of cuckoo birds. 

( ),1 ,2 ,3 ,, , ,.....cur cur cur cur cur
i i i i i t dx x x x x ==  (11) 

Here cur means current solution, i can take values from 1 to n corresponding to each 
population and d is the number of variables of objective function f(x). In CS, the 
searching happens in two mechanisms: 

1 global search 

2 local search (Yang and Deb, 2009). 

The shift is controlled by a switching parameter Pa. The global search happens using a 
special random walk called levy flight. Levy flight is a random number generator which 
uses levy distribution (Chechkin et al., 2008). One of the popular methods to generate 
random numbers using levy distribution is using Magenta algorithm. 

1

| |

ustep

v

=
β

 (12) 

Here, s is the step length and u and v are drawn from the normal distribution.  
u ~ N(0, σu2) and v ~ N(0, σv2). 

1/

1
2

Γ(1 )*sin *
2 , 1

1Γ * *2
2

π
σu σv−

 +   = = 
+  

    

β

β

ββ

β β
 (13) 

The new solution is updated using this same magenta algorithm. 

( )*new cur cur cur
i i j kx x x x= + −α  (14) 

The local search is done by conventional random walk 

( )*new cur cur cur
i i j kx x x x= + −α  (15) 

Here, i, j, k ∈ [1, n] and are chosen randomly. 
The main advantage of CS is its searching mechanism which almost mimics the 

natural phenomenon. This advantage is obtained due to levy-flight based search steps. 
Taking this levy-flight based random search steps and combining them with the search 
mechanism of DE, the rate of convergence and robustness of the algorithm is improved. 
Two versions of hybridisation, namely, DCS-type 1, and type 2 are compared in this 
manuscript. 
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3.1.3 Differential cuckoo search 
The DCS algorithm is a unique algorithm that combines the best features of both DE and 
CS. The main objective of this hybrid algorithm is to achieve a faster convergence rate 
while maintaining the robustness of the parent algorithms. The natural search mechanism 
of CS, which is inspired by its breeding patterns, has been incorporated into the DE 
algorithm to enhance the diverse search mechanism. This results in an algorithm that 
provides both diverse and effective search mechanisms, which results in improved 
optimisation performance. By combining the strengths of both algorithms, this hybrid 
algorithm provides an effective solution to various optimisation problems. Table 4 shows 
the modifications of all the hybrid algorithms considered for this study. 

3.2 Mix design optimisation 

3.2.1 Mix design optimisation 
Finding the optimal mix proportion that results in the maximum compressive strength of 
concrete is a task that many researchers are interested in. The traditional method of 
accomplishing this involves preparing multiple concrete samples with varying mix 
proportions, testing their compressive strength after 28 days, and determining the mix 
that yields the highest strength as the best mix. However, this approach assumes that the 
mix proportion with the highest compressive strength is among the ones being studied, 
which may not always be the case. To overcome this issue and reduce the time and effort 
required for casting, curing, and testing, the proposed method can be employed. 

We can develop compressive strength prediction models using the ML models from 
Section 3. These ML models can be used along with the best optimisation algorithm 
obtained from Section 2 to achieve the best mix proportions, which will maximise the 
compressive strength of concrete. The mathematical model for the same is as follows: 

• objective function: maximise compressive strength (output from developed 
knowledge models) 

• constraints: the mix pro portions should follow EFNARC guidelines. 

380 < Cement + Flyash + Ground Grannular Blastfurnace Slag < 600 
150 < Water < 210 

750 < Coarse Aggregate < 1000 
0.48 * Total Aggregate < Fine Aggregate < 0.55 * Total Aggregate 

Note: **All the constraints are defined by the mass of material for making 1 m3 of 
concrete 

( )
/ ( 50)*100.

Convergence percentage Number of populations converged
total number of population

=
=

 

Each optimisation algorithm is run for 60 times, each time for 100 iterations using 50 
population. The minimum, maximum and standard deviation for minimum function value 
is also reported similarly. Let us consider that we are trying to optimise an optimisation 
function where the global optima are zero. After 100 iterations with 50 population, we get 
the optimal solution (least value among all the 50 population) to be 10–6. For a robust 
optimisation algorithm, it should try to bring most of the population to the near-optimal 
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value (in this case, 10–6). So, taking 10-5 as a tolerance value, this work assumes that all 
the population which are close to a near-optimal value within 10–5 tolerance to be 
converged (i.e. absolute difference between the best population – other population  
< 10–5). 

3.2.2 Scenario 2 
A contractor generally aims to obtain an economical mix proportion for a desired 
compressive strength. It is always a tedious task to find least-cost mix proportions. So, 
the objective function is to minimise the cost and an additional constraint for desired 
compressive strength is added to the constraints mentioned above. The cost for each 
material is obtained from a local material supplier and is presented in Table 3. The cost of 
superplasticiser is not included in the study as it varies extensively and depends on the 
supplier. So, the obtained cost is not the final cost of the mix but is a representation of the 
cost. 

Objective function: 

8* 0.75* 3.5* 0.85
* 3.5*

Cost Cement FlyAsh GGBS
Coarse Aggregate Fine Aggregate

= + + +
+

 (16) 

Constraints: 

Predicted Compressive strenght from ML model desired compressive strength>  

The mix proportions should follow EFNARC and NRMC guidelines (Medgar et al., 
2007). 

380 < Cement + Flyash + Ground Grannular Blastfurnace Slag < 600 
150 < Water < 210 

750 < Coarse Aggregate < 1000 
0.48 * Total Aggregate < Fine Aggregate < 0.55 * Total Aggregate 

Note: All the constraints and objective function are defined by the mass of material for 
making 1 m3 of concrete. 

Table 3 Materials’ cost and embodied carbon 

Material (kg/m3) Rupees/kg Kg-e CO2/kg 
Cement 8 0.913 
Flash 0.75 0.004 
GGBS 3.5 0.067 
Coarse aggregate 0.85 0.005 
Fine aggregate 3.5 0.005 
Water - 0.001 
Superplasticiser - 0.01 
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Table 4 Comparison of the algorithms’ mechanism used 
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Table 4 Comparison of the algorithms’ mechanism used 

 N
C

S 
D

E 
N

BC
S 

D
C

S-
1 

D
C

S-
2 

2 
G

en
er

at
io

n 
of

 n
ew

 n
es

ts
 

2 
G

en
er

at
io

n 
of

 n
ew

 
po

pu
la

tio
n 

2 
G

en
er

at
io

n 
of

 n
ew

 n
es

ts
 

2 
G

en
er

at
io

n 
of

 n
ew

 n
es

ts
 

2 
G

en
er

at
io

n 
of

 n
ew

 n
es

ts
 

 
(

,:) (
,:)

ne
st

j
s

st
ep

ne
st

m



=

×
×



− 


α

 
 

Se
le

ct
io

n 
 

(,
:)

ne
st

i
s

st
ep

be
stn

es
t




=
×

×



− 


α

 
 

(
,:) (

,:)
ne

st
j

s
st

ep
ne

st
m




=
×

×



− 


α

 
 

(,
:)

ne
st

i
s

st
ep

be
stn

es
t




=
×

×



− 


α

 

 
,

[1,
2,

...
,

]
jm

n
∈

 
 

 
le

vy
ra

nd
n

s
=

×
 

 
le

vy
ra

nd
n

s
=

×
 

 
le

vy
ra

nd
n

s
=

×
 

 
le

vy
ra

nd
n

s
=

×
 

 

 

 
 

 
0.

9
{

(
,:)

(,
:)}

,
,

,
[1,

2,
3.

..
]

D
E

ne
st

k
ne

st
l

jm
k

l
n

=
×

−
∈

 
 

0.
9

{
(

,:)
(,

:)}
,

,
,

[1,
2,

3.
..

]
D

E
ne

st
k

ne
st

l
jm

k
l

n
=

×
−

∈
 

 
If 

ne
st1

 h
as

 a
 b

et
te

r f
itn

es
s t

ha
n 

th
e 

or
ig

in
al

 n
es

t, 
up

da
te

 th
e 

ne
st.

 
 

If 
np

op
 h

as
 b

et
te

r f
itn

es
s t

ha
n 

po
p 

up
da

te
 p

op
 w

ith
 n

po
p.

 
 

If 
ne

st1
 h

as
 a

 b
et

te
r f

itn
es

s t
ha

n 
th

e 
or

ig
in

al
 n

es
t, 

up
da

te
 th

e 
ne

st.
 

 
If 

ne
st1

 h
as

 a
 b

et
te

r f
itn

es
s t

ha
n 

th
e 

or
ig

in
al

 n
es

t, 
up

da
te

 th
e 

ne
st.

 
 

If 
ne

st1
 h

as
 a

 b
et

te
r f

itn
es

s t
ha

n 
th

e 
or

ig
in

al
 n

es
t, 

up
da

te
 th

e 
ne

st.
 

3 
El

im
in

at
io

n 
3 

R
ep

ea
t s

te
p 

2 
un

til
 

te
rm

in
at

io
n 

co
nd

iti
on

 
3 

El
im

in
at

io
n 

3 
El

im
in

at
io

n 
3 

El
im

in
at

io
n 

 
k 

= 
ra

nd
(s

ize
(n

es
t))

 ≤
 p

 
 

 
 

k 
= 

ra
nd

(s
iz

e(
ne

st
)) 
≤ 

p 
 

k 
= 

ra
nd

(s
iz

e(
ne

st
)) 
≤ 

p 
 

k 
= 

ra
nd

(s
iz

e(
ne

st
)) 
≤ 

p 
 

ste
p 

= 
ra

nd
 ×

 k
 ×

  
{n

es
t(j

, :
) –

 n
es

t(m
, :

)}
 

 
 

 
st

ep
 =

 ra
nd

 ×
 k

 ×
  

{n
es

t(j
, :

) –
 n

es
t(m

, :
)}

 
 

st
ep

 =
 ra

nd
 ×

 k
 ×

 {
ne

st
(j,

 
:) 

– 
ne

st
(m

, :
)}

 
 

ste
p 

= 
ra

nd
 

× 
k 

× 
 

{n
es

t(j
, :

) –
 n

es
t(m

, :
)}

 
 

fo
r i

 =
 1

:n
 

 
 

 
fo

r i
 =

 1
:n

 
 

fo
r i

 =
 1

:n
 

 
fo

r i
 =

 1
:n

 
 

ne
st1

 =
 n

es
t(i

, :
) +

 st
ep

 
 

 
 

ne
st

1 
= 

ne
st

(i,
 :)

 +
 st

ep
 

 
ne

st
1 

= 
ne

st
(i,

 :)
 +

 st
ep

 
 

ne
st

1 
= 

ne
st

(i,
 :)

 +
 st

ep
 

 
If 

ne
st1

 h
as

 a
 b

et
t, 

fit
ne

ss
 th

an
 th

e 
or

ig
in

al
 n

es
t, 

up
da

te
 th

e 
ne

st.
 

 
 

 
If 

ne
st1

 h
as

 a
 b

et
te

r 
fit

ne
ss

 t
ha

n 
th

e 
or

ig
in

al
 n

es
t, 

up
da

te
 th

e 
ne

st.
 

 
If 

ne
st1

 h
as

 a
 b

et
te

r f
itn

es
s t

ha
n 

th
e 

or
ig

in
al

 n
es

t, 
up

da
te

 th
e 

ne
st.

 
 

If 
ne

st1
 h

as
 a

 b
et

te
r f

itn
es

s t
ha

n 
th

e 
or

ig
in

al
 n

es
t, 

up
da

te
 th

e 
ne

st.
 

4 
R

ep
ea

t s
te

p 
2 

an
d 

3 
un

til
 

te
rm

in
at

io
n 

cr
ite

ri
a 

ar
e 

sa
tis

fie
d.

 
 

 
4 

R
ep

ea
t s

te
p 

2 
an

d 
3 

un
til

 
te

rm
in

at
io

n 
cr

ite
ri

a 
is 

sa
tis

fie
d.

 
4 

R
ep

ea
t s

te
p 

2 
an

d 
3 

un
til

 
te

rm
in

at
io

n 
cr

ite
ri

a 
is 

sa
tis

fie
d.

 
4 

R
ep

ea
t s

te
p 

2 
an

d 
3 

un
til

 
te

rm
in

at
io

n 
cr

ite
ri

a 
is 

sa
tis

fie
d.

 

N
ot

es
: *

*N
CS

 –
 N

or
m

al
 c

uc
ko

o 
se

ar
ch

, N
BC

S 
– 

N
or

m
al

 b
es

t c
uc

ko
o 

se
ar

ch
, D

E 
– 

D
iff

er
en

tia
l e

vo
lu

tio
n,

 D
CS

-1
 –

 D
iff

er
en

tia
l c

uc
ko

o 
se

ar
ch

 ty
pe

 1
,  

D
CS

-2
 –

 D
iff

er
en

tia
l C

uc
ko

o 
Se

ar
ch

 T
yp

e-
2.

 



   

 

   

   
 

   

   

 

   

   16 S.P. Boindala et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.2.3 Scenario 3 
With an increase on awareness of environmental degradation and the role of human 
beings in that, research has moved towards eco-friendly concrete. Every manufactured 
material is associated with a carbon index, i.e. the amount of carbon dioxide released in 
its manufacturing process. To obtain a good eco-friendly mix, the Carbon-Index of the 
concrete needs to be reduced. The carbon index associated with each material as shown 
in Table 3 is taken from United Kingdom Fact Sheet (MPA, 2008) and few research 
papers (Siddique et al., 2011; Turner and Collins, 2013; Purnell and Black, 2012) Similar 
to cost optimisation, a desired compressive strength will be a constraint along with 
EFNARC guidelines (EFNARC, 1999, 2002; Group, 2005). 

Objective function: 

2 0.913* 0.004* 0.067*
0.005* 0.005*

0.01* 0.001*

CO emmisions Cement FlyAsh GGBS
Coarse Aggregate Fine Aggregate

Superplaticiser Water

= + +
+ +

+
 (17) 

Constraints: 

Predicted Compressive strength from ANN desired compressive strength>  

The mix proportions should follow guidelines of EFNARC and Mineral Products 
Association (MPA, 2008; Group, 2005). 

380 < Cement + Flyash + Ground Grannular Blastfurnace Slag < 600 
150 < Water < 210 

750 < Coarse Aggregate < 1000 
0.48 * Total Aggregate < Fine Aggregate < 0.55 * Total Aggregate 

All the constraints and objective function are defined by the mass of material for making 
1 m3 of concrete. 

The single objective optimisation is done for all the three scenarios by using the 
robust optimisation technique obtained from the comparison done in stage 1. The 
constraints are included in the optimisation algorithm using exterior penalty approach. 
The results obtained are summarised in Section 4. 

4 Results and discussion 

4.1 Evaluation of robust optimisation algorithm 

CS, DE and the three proposed modifications are compared for their efficiency using 11 
optimisation test functions. For all the algorithms, the 50 search agents are used to 
maintain uniformity, and the algorithm specific parameters used are shown in Table 5. 
The comparative analysis is done by two criteria: 

1 function value 

2 percentage of convergence. 
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After running the algorithm for 100 runs for each objective function the best, the worst 
and the standard deviation of the function values are shown in the Table 7. The 
percentage conversion is also performed for every run and the results are depicted for the 
same. This is calculated by finding a number of nests having fitness value less than the 
desired number, for example, if the global optimum is 0 then all the nests having fitness 
values less than 10-5 are considered as converged nests. 

*100total nests having fitness less than a desired valueconvergence
total number of nests taken

=  (18) 

An optimisation algorithm is considered best if it can produce the least fitness value, can 
produce it more frequently or in other words, is independent of the initial nest values. As 
we can see from Table 7, when the CS is enhanced with DE (DCS), the functionality of 
the algorithm is better compared to individual/parent algorithms. The best optimisation 
algorithm ‘DCS – 1’ is selected to solve the mix design optimisation problem. 

The box plots (as seen in Figure 4) show the deviations between the various 
algorithms. Mean, median, standard deviation, outlier limits and various other central 
tendencies of the distribution can be observed. Moreover, to estimate the statistical 
significance of the differences more effectively, we have used paired t-test. In our 
application, all test-functions (f1 to f11) are minimisation functions. The t.test() function in 
R package is used for estimating the statistical significance of the results. The alternative 
option-string (alt) is set to ‘less’; R checks whether the difference in mean of the values 
contained in the vector 1 is less of the mean of the values contained in the vector 2. The 
baseline groups (vector 2), variable groups (vector 1), their corresponding computed  
t-statistic, and their probability values (p-values) are presented in Table 8. If the p-value 
is well above 0.05, it leads us to conclude that we can reject the null hypothesis H0 in 
favour of the alternative hypothesis H1. If p-value is greater than the confidence interval 
(0.05) then the 2nd sample (baseline group algorithm) is better than the 1st sample 
(variable group algorithm). From a geometric perspective on the landscapes of the test 
functions, it can be noticed that the proposed hybrid approaches perform well in smooth 
landscapes more than rough landscapes with many local minima. From the observations 
made for the baseline algorithms DCS-1 and DCS-2, the former is better for 29 
comparisons and the latter is better for 28 comparisons. Hence, the formulated 
mathematical model under different scenarios would be optimised using DCS-1. 
Table 5 Summary of key parameter values of all optimisation algorithms 

Parameter DE CS DCS 
Number of search agents (n) 50 agents 50 agents 50 agents 
Crossover coefficient (CR) 0.7 - 0.7 
Mutation coefficient (F) / Differential weight 0.4 - 0.4 
Levy step length 
(α – Alpha) 

- 0.01 0.01 

Levy distribution parameter 
(β – Beta) 

- 1.5 1.5 

Mantegna gamma function 
(Γ – Gamma) 

- (n-1)! (n-1)! 
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Figure 3 Shapes of benchmark test functions, (a) f1 Ackley function (b) f2 Beale function  
(c) f3 booth function (d) f4 Matyas function (e) f5 McCormick function (f) f6 egg holder 
function (g) f7 De Jong function (h) f8 drop-wave function (i) f9 Rosenbrock function  
(j) f10 Shubert function (k) f11 sphere function (see online version for colours) 
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Figure 3 Shapes of benchmark test functions, (a) f1 Ackley function (b) f2 Beale function  
(c) f3 booth function (d) f4 Matyas function (e) f5 McCormick function (f) f6 egg holder 
function (g) f7 De Jong function (h) f8 drop-wave function (i) f9 Rosenbrock function  
(j) f10 Shubert function (k) f11 sphere function (continued) (see online version  
for colours) 

  
(g)     (h) 
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Table 6 Description of the benchmark test functions 
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Table 6 Description of the benchmark test functions 
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Table 7 Comparison between all the algorithms using 11 different test functions 
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Table 7 Comparison between all the algorithms using 11 different test functions (continued) 
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Figure 4 Box plot of the performance of the algorithms, (a) f1 Ackley function (b) f2 Beale 
function (c) f3 Booth function (d) f4 Matyas function (e) f5 McCormick function  
(f) f6 Egg holder function (g) f7 De Jong function (h) f8 Drop-wave function  
(i) f9 Rosenbrock function (j) f10 Shubert function (k) f11 Sphere function 
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Table 8 Statistical tests for algorithms 

Baseline group  DCS1  DCS2 
  Variable groups  t-stat p-value  t-Stat p-value 
f1 Ackley 

function 
NCS  3.5362 0.9997  3.7078 0.9998 

 NBCS  13.936 1.0000  13.877 1.0000 
 DE  61.793 1.0000  62.086 1.0000 
 DCS (1/2)*  0.9903 0.8378  –0.9903 0.1622 
f2 Beale 

function 
NCS  –9.0147 7.7E-15  –8.4047 1.6E-13 

 NBCS  –6.1696 7.5E-09  –4.8241 2.5E-06 
 DE  –7.3987 2.2E-11  –5.3493 2.8E-07 
 DCS(1/2)  –2.5228 0.0066  2.5228 0.0491 
f3 Booth 

function 
NCS  4.8190 1.0000  4.8190 1.0000 

 NBCS  6.8559 1.0000  6.8559 1.0000 
 DE  3.9889 0.9999  3.9889 0.9999 
 DCS(1/2)  0.6376 0.7374  –0.6376 0.2626 
f4 Matyas 

function 
NCS  5.8003 1.0000  5.8003 1.0000 

 NBCS  6.1458 1.0000  6.1458 1.0000 
 DE  4.4845 1.0000  4.4845 1.0000 
 DCS(1/2)  0.9750 0.8340  –0.9750 0.1660 
f5 McCormick 

function 
NCS  1.8937 0.9694  1.8937 0.9694 

 NBCS  4.6675 1.0000  4.6675 1.0000 
 DE  4.8938 1.0000  4.8938 1.0000 
 DCS(1/2)  –1.0137 0.1566  1.0137 0.8434 
f6 Egg holder 

function 
NCS  1.0955 0.8620  1.0955 0.8620 

 NBCS  1.0000 0.8401  1.0000 0.8401 
 DE  2.2445 0.0065  2.2445 0.0065 
 DCS(1/2)  NaN NA  NaN NaN 
f7 De Jong 

function 
NCS  4.1883 1.0000  4.1883 1.0000 

 NBCS  0.2569 0.6011  0.83076 0.7959 
 DE  2.9341 0.9979  2.9341 0.9979 
 DCS(1/2)  –0.5637 0.2871  0.56375 0.7129 
f8 Drop-wave 

function 
NCS  1.6592 0.9499  1.6592 0.9499 

 NBCS  2.6130 0.9948  2.6130 0.9948 
 DE  1.4214 0.0208  1.4214 0.0208 
 DCS(1/2)  NaN NA  NaN NaN 
f9 Rosenbrock 

function 
NCS  –1.5053 0.0677  –1.9718 0.0257 

 NBCS  3.0451 0.9985  3.0451 0.9985 
 DE  61.911 1.0000  61.911 1.0000 
 DCS(1/2)  –1.2343 0.1100  1.2343 0.8900 

Note: *DCS (1/2): If Baseline group is DCS1, then variable group is DCS 2. 
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Table 8 Statistical tests for algorithms (continued) 

Baseline group  DCS1  DCS2 
  Variable groups  t-stat p-value  t-Stat p-value 
f10 Shubert 

function 
NCS  8.5560 1.0000  8.5560 1.0000 

 NBCS  –7.3299 3.1E-11  –5.3142 3.3E-07 
 DE  –7.3987 2.2E-11  –5.3493 2.8E-07 
 DCS(1/2)  1.3932 0.9167  –1.3932 0.0833 
f11 Sphere 

function 
NCS  14.036 1.0000  14.036 1.0000 

 NBCS  3.5522 0.9997  3.5535 0.9997 
 DE  –5.8285 3.5E-08  3.9459 3.5E-08 
 DCS(1/2)  –5.8285 3.5E-08  5.8285 1.0000 

Note: *DCS (1/2): If Baseline group is DCS1, then variable group is DCS 2. 

4.2 Performance metrics of machine learning models 

The five statistical parameters (also known as performance metrics) to evaluate the 
efficiency of ML techniques used in the present study are R, R2, RMSE, MAE and 
MAPE; they are summarised in Table 9. Only a limited variation in these metrics is 
observed on performing multiple iterations. 
Table 9 Performance evaluation of ML models 

ML model R R2 RMSE MAE MAPE 
ANN 0.919 0.845 5.697 4.191 12.866 
SVR 0.923 0.852 5.608 3.904 11.137 

It is observed from Table 9 that SVR performs better than ANN in terms of correlation 
(R&R2) and error (RMSE). However, the variations in the performance metrics for SVR 
and ANN are not very significant. Both these ML techniques may be used to test the 
available data to obtain the knowledge model. The developed knowledge models from 
both the ML approaches are used for obtaining the optimal mix proportion using DCS-1 
under three different scenarios. Table 10, 11 and 12 shows the results of optimal mix 
proportion obtained using DCS-1 for Scenario 1, 2 and 3 respectively. 
Table 10 Scenario 1: optimal mix proportion for obtaining maximum compressive strength 

Material (kg/m3) SVR ANN 
C 490.00 490.30 
GGBS 110.00 0.14 
FLYA 0.00 109.49 
CA 900.00 870.29 
FA 830.77 1022.67 
W 158.54 155.25 
Compressive strength (MPa) 69.14 98.75 
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It is observed from Table 10 that ANN achieved a 30% increased compressive strength in 
comparison with SVR based framework. The compressive strength obtained are  
98.75 MPa using ANN and 69.14 MPa using SVR. The weight of GGBS was very low 
(0.14 kg/m3) using ANN but SVR’s mix design had 110 kg/m3. Similarly, the weight of 
fly ash using ANN was 109.49 kg/m3 but it was nil for the mix proportion using SVR. 
From Table 11, it is observed that the variation of the cost of the economical mix for a 
fixed compressive strength (30 MPa and 50 MPa) is relatively low in the range of 2% to 
4% only while solving using SVR and ANN approaches. The water content in the ANN 
approach in both the cases used is around 36% more in comparison with SVR mix 
proportion. While optimising for cost, the mix proportions obtained by ANN and SVR 
eliminated the use of GGBS and fly ash in both the cases of compressive strength i.e.,  
30 MPa and 50 MPa. 
Table 11 Scenario 2: obtaining economical mix for desirable compressive strength 

Material (kg/m3) 
CS (Expected) = 30  CS (Expected) = 50 

SVR ANN  SVR ANN 
Cost (Rs./m3) 6,100.93 6,395.33  6,769.21 6,626.52 
C 380.00 416.79  380.24 441.39 
GGBS 0.00 0.00  0.00 0.00 
FLYA 0.00 0.00  0.00 0.00 
CA 750.06 750.03  799.82 751.58 
FA 692.38 692.42  870.70 701.89 
W 152.21 207.42  150.01 209.38 

Table 12 Scenario 3: obtaining eco-friendly mix for desirable compressive strength 

Material (kg/m3) 
CS (Expected) = 30  CS (Expected) =50 
SVR ANN  SVR ANN 

Embodied carbon (Kg-e CO2/m3) 354.31 378.95  428.97 405.77 
C 380.01 406.13  460.08 433.58 
GGBS 0.00 0.00  15.12 25.11 
FLYA 0.00 0.00  1.43 0.00 
CA 750.03 752.15  769.89 790.51 
FA 692.56 847.98  722.36 825.46 
W 150.03 154.77  150.01 150.02 

The results of mix proportions obtained in Scenario 3 as shown in Table 12 for embodied 
carbon also didn’t show too much variation while solving using ANN and SVR. SVR 
achieved a lower embodied carbon for compressive strength of 30 MPa and ANN 
achieved the least embodied carbon for compressive strength of 50 MPa. In all these mix 
proportions it was observed that the weights of GGBS and fly ash are zero for 
compressive strength of 30 MPa and relatively low for compressive strength of 50 MPa. 
It can be inferred from all the three scenarios that for obtaining a mix proportion to 
achieve maximum compressive strength, ANN-based bio-inspired optimisation model 
works better. For minimisation of cost as well as minimisation of embodied carbon 
scenarios, both the models were able to produce optimal mix proportions with a very 
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small variation. The optimised SCC mix proportions of ingredients in all the three cases 
are encouraging and can be suitably used for reducing the number of trial mixtures to 
achieve the desired properties of SCC in the field. 

5 Conclusions 

In this research, a combination of machine learning and bio-inspired optimisation 
algorithms were utilised to determine the optimal mix proportions for concrete with 
desired compressive strength. The study involved modelling two machine learning 
algorithms and comparing their efficacy through experimental verification, which 
demonstrated that both models could accurately predict concrete compressive strengths. 
Additionally, two bio-inspired hybrid optimisation algorithms were tested and compared 
to their parent algorithms, concluding that these algorithms provided faster convergence 
and better robustness. 

To determine the mix proportions, the trained models were applied to three different 
scenarios: 

1 maximising compressive strength 

2 minimising cost 

3 minimising embodied carbon. 

The analysis showed that the ANN-based bio-inspired optimisation model performed 
better in obtaining the mix proportion with maximum compressive strength. However, 
both models successfully determined the optimal mix proportions in the minimisation of 
cost and embodied carbon scenarios. 

The optimised mix proportions obtained in all three cases were validated and 
encouraged. This research provides a useful outcome for reducing the number of trial 
mixtures in the field for obtaining the desired properties of self-compacting concrete. The 
findings of this work may serve as a starting point for further research, which may 
involve exploring more supervised machine learning approaches to achieve even better 
mix designs through the integration of one or more techniques 
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