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Abstract: Traditional chaotic image encryption methods have certain 
limitations in terms of processing high-dimensional data, computational 
complexity and attack resistance, which limits their widespread promotion and 
use in practical applications. To solve these problems, this paper proposes a 
chaotic colour image encryption method based on differential evolutionary 
deep learning. Firstly, the security and stability of the image encryption 
algorithm is enhanced by introducing a six-dimensional cellular neural network 
(CNN). Secondly, the parameters of the six-dimensional CNN are optimised 
using differential evolutionary algorithms to improve the complexity and 
randomness of the chaotic sequences. The experimental results show that 
compared with the traditional CNN, AES and Chaotic Encryption Algorithm, 
this paper’s method shows significant improvement in NPCR and UACI 
indicators. 
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1 Introduction 

Image encryption is a key technique for securing image data, especially in the process of 
information transmission and storage with important applications (Kaur and Kumar, 
2020). With the wide application of digital images in the internet, cloud computing and 
internet of things, the demand for image encryption is increasing. With effective image 
encryption, unauthorised access to sensitive information can be prevented and personal 
privacy and trade secrets can be protected (Pareek et al., 2006; Gao et al., 2006). In 
addition, image encryption has a wide range of application prospects in fields such as 
medical images (Kumari et al., 2017; Guan et al., 2005), satellite images and military  
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images. In general, the research of image encryption technology not only improves data 
security, but also plays an important role in promoting the development of digital 
information technology. 

Chaotic image encryption exploits the nonlinearity and initial condition sensitivity of 
chaotic systems to provide a highly secure solution for image encryption (Liu et al., 
2014). Traditional chaotic image encryption methods have achieved some success, but 
there are still many challenges to overcome. Salleh et al. (2003) proposed an image 
encryption method based on chaotic mapping, which utilises Logistic mapping to 
generate encrypted sequences and achieves effective encryption of images. However, this 
method has high computational complexity when dealing with high resolution images. 
Liu (2008) proposed an image encryption algorithm based on the Lorenz chaotic system, 
and it was found that the algorithm was excellent in resisting statistical analysis attacks, 
but it was sensitive to the selection of initial conditions. Ye (2010) developed an image 
encryption method based on the chaotic sequences and disambiguation techniques, 
although the method achieved good results in improving the security of images. Method 
achieved significant results in improving image security, but it requires precise initial 
conditions in the decryption process and has high operational complexity. 

In recent years, chaotic image encryption technology has been rapidly developed, and 
researchers have proposed a variety of improved and innovative methods. Lang (2015) 
proposed an image encryption method based on chaos and fractional-order Fourier 
transform, which improves the attack-resistant ability of encrypted images by introducing 
the fractional-order Fourier transform, but has higher requirements on computational 
resources in the implementation process. Zhang (2018) proposed an image encryption 
algorithm based on chaos and DNA coding, which was shown to significantly improve 
the security and complexity of image encryption, but there are some difficulties in 
hardware implementation. Tong et al. (2015) used high-dimensional chaotic systems for 
image encryption, and generated key streams through multi-dimensional chaotic 
mapping, which enhanced the security of encryption algorithms and the resistance to 
attacks, but further optimisation is needed in the selection of high-dimensional system 
parameters. Chen et al. (2018) proposed an image encryption method based on chaos and 
compressed sensing, which combines chaotic system and compressed sensing technology 
to improve the efficiency of the encryption algorithm, but the compressed sensing 
reconstruction accuracy needs to be solved in practical applications. Sang et al. (2022) 
developed an image encryption method that combines chaotic and deep learning 
combined image encryption method, which generates chaotic sequences through deep 
learning models and achieves efficient image encryption, but the limitations of data and 
computational resources need to be considered in the process of model training and 
deployment. Chen et al. (2023) proposed a graph convolutional self-encoder encryption 
algorithm. 

Existing chaotic image encryption methods have achieved some success in improving 
the security of image encryption, but there are still some challenges in dealing with  
high-dimensional data, computational complexity and attack resistance. Traditional 
chaotic image encryption methods tend to have high computational complexity when 
dealing with high-resolution and multi-dimensional images, which makes it difficult to 
meet the real-time demand in practical applications. In addition, the anti-attack capability 
of the existing methods needs to be further improved when facing complex attack 
techniques (e.g., differential attack, statistical analysis attack). The parameter selection 
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and initial condition sensitivity in the chaotic sequence generation process also make the 
decryption process complex and unstable. 

In order to solve the above problems, this paper proposes a chaotic colour image 
encryption method based on differential evolutionary deep learning, which aims to 
improve the security, computational efficiency and attack resistance of image encryption. 
The main innovations and contributions of this work include: 

1 Aiming at the deficiencies of existing chaotic image encryption methods in terms of 
computational complexity and attack resistance, this paper proposes an image 
encryption method based on six-dimensional cellular neural network (CNN). The 
six-dimensional CNN is capable of generating more complex and unpredictable 
chaotic sequences, which enhances the security of the encryption algorithm and 
exhibits higher efficiency and stability in processing high-dimensional image data. 

2 In this paper, the parameters of the six-dimensional CNN are optimised by 
differential evolution (DE) algorithm, which improves the complexity and 
randomness of the chaotic sequences. The DE algorithm effectively solves the 
problems of parameter selection and sensitivity of initial conditions in the traditional 
methods, which makes the generated chaotic sequences more resistant to attacks and 
more stable, and significantly improves the overall performance of image encryption. 
The experimental results show that the optimised method has significant 
improvement in both security and can effectively resist complex attack means. 

The main difference between the DE-6DCNN method proposed in this paper and other 
deep learning encryption technologies is that it can generate more complex chaotic 
sequences and optimise the parameter selection through DE algorithm, thus significantly 
improving the security and efficiency of encryption. This method can effectively process 
high-dimensional data while maintaining high security. 

2 Relevant technologies 

2.1 Basic concepts of chaos 

The core idea of chaotic systems is that even a small difference in the initial value can 
lead to a huge difference in the long-term evolution of the system, a property known as 
the ‘butterfly effect’ (Zhou et al., 2014). In image encryption, this extreme sensitivity to 
initial values can be effectively exploited to construct encryption algorithms with a high 
degree of security. This is because any small change to the encrypted image will lead to a 
huge deviation in the decryption process, thus making the original image unrecoverable 
and ensuring the security of the information. 

The unpredictable long-term behaviour of chaotic systems is also an important reason 
why they are widely used in the field of image encryption. Traditional encryption 
algorithms often rely on fixed mathematical transformations and keys, which makes them 
a security risk in the face of strong computational power and advanced cracking 
techniques. Chaotic systems, on the other hand, due to their intrinsic complexity and 
uncertainty, make the encrypted sequences generated by them highly random and 
unpredictable, thus greatly improving the security of encrypted images. 
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Chaos describes the seemingly random and unpredictable behaviour exhibited by 
dynamic systems under deterministic nonlinear conditions (Gao et al., 2022). Key 
characteristics of chaotic systems include sensitive dependence on initial conditions, 
topological mixing, and fractal nature. The most notable property of chaotic systems is 
their high sensitivity to initial conditions, where even small changes can lead to 
significant differences in long-term behaviour (Lin et al., 2020). This property is usually 
quantified by the Lyapunov exponent, which indicates the sensitivity of the system state 
to changes in the initial conditions. For systems with a positive Lyapunov exponent, 
neighbouring orbits are separated exponentially with the expression: 

( )1lim ln
(0)t

δZ t
λ

t δZ→∞
=  (1) 

where λ is the Lyapunov exponent and δZ(t) is the amount of change in the state at time t. 
Topological hybridity describes the fact that a trajectory in any one region of a 

chaotic system is eventually able to enter any other region of the system. This property 
means that the state space of the system is fully explored, regardless of the initial state. 
The description of topological mixability is shown below: 

, , : , ( )nU V X N n N f U V∀ ⊂ ∃ ∀ ≥ ∩ ≠ ∅  (2) 

where U and V are open sets in the state space X of the system; fn is the state of the 
system after n iterations. 

Many chaotic systems exhibit fractal attractors, which have non-integer dimensions 
called fractal or Hausdorff dimensions. The dimension of a fractal attractor can be 
approximated by the following relation: 

0

log ( )lim
log(1/ )ò

N òD
ò→

=  (3) 

where D is the Hausdorff dimension,   is the size of the scale, and ( )N   is the minimum 
number of - spheres required to cover the attractor of the system. 

The application of chaos theory in encryption algorithms is mainly based on its 
unpredictability and complex system behaviour, which makes the encryption methods 
based on chaotic systems have a natural advantage in security. By combining image 
encryption with chaos theory, the ability of encryption algorithms to resist external 
attacks can be greatly enhanced to ensure the security of transmitted information. 

2.2 Cellular neural network 

A CNN is a parallel computing architecture consisting of a number of simple processing 
units called cells, which transfer and process information through local interconnections 
(Chua and Yang, 1988). Each cell has inputs, outputs, and states, and changes in its state 
are described by nonlinear dynamic equations. CNNs are characterised by high-speed 
parallel processing, easy hardware implementation, and good fault tolerance, and 
therefore have been widely used in image processing, pattern recognition, etc. CNNs, 
with their unique structure and computational capabilities, have shown excellent. The 
design of CNN is inspired by the local connectivity and collective dynamics of biological 
neural systems, and its basic building blocks simulate the functions of biological neurons. 
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In the field of chaotic image encryption, the hyper chaotic nature of CNNs is used to 
generate key streams with a high degree of randomness and complexity. Fourth or higher 
order CNNs is capable of generating hyper chaotic behaviour which provides higher 
security during encryption. Using the hyper chaotic sequences generated by CNNs, the 
image can be disrupted and diffused at pixel level to achieve encryption. 

CNN-based image encryption algorithms usually include two main steps: disruption 
and diffusion. In the disarrangement phase, the algorithm uses the parameters generated 
by the chaotic mapping to randomly rearrange the positions of the image pixels, breaking 
the pixel arrangement of the original image. In the diffusion phase, the algorithm uses the 
super chaotic sequence generated by the CNN to perform point-by-point dissimilarity or 
mode-addition operations on the pixel values of the disordered image, which further 
increases the degree of chaos and randomness of the image. 

Cells are the basic units of CNNs, and each cell can contain a first-order circuit 
consisting of a linear capacitor, a nonlinear voltage-controlled current source, and some 
linear circuit elements (Aizenberg et al., 2001). The cellular elements also include linear 
resistors, where Rx and Ry are linear resistors, Ixy and Iyx are voltage-controlled current 
sources, Eij is a linear power supply, C is a linear capacitor, Ixu(i, j; k, l) and Ixy(i, j; k, l) 
are linear circuit-connected current sources. The internal cellular units of each CNN have 
the same circuit basis and element structure. The cellular unit equivalent circuit is shown 
in Figure 1. 

Figure 1 Cell unit circuit diagram 

Eij Ixy

Vuij Vxij

Rx

Ixy(i, j; k, l)

Ixu(i, j; k, l)

Vyij

Iyx Ry

 

A CNN of size M × N is composed of M rows N columns totalling M × N cells. A CNN 
of size 5 × 5 is given in Figure 2. The C(2, 2) is denoted as the cell in the 2nd row and 
2nd column in the CNN. The neighbourhood Nr(i, j) is defined as the set of all cells 
within r distance around cell (i, j). 

( ){ }( , ) ( , ) max , , 1 , 1rN i j k l k i l j r k M l N= − − ≤ ≤ ≤ ≤ ≤ 0 (4) 

This definition critically supports local interactions between cells that affect the overall 
behaviour and function of the network. For example, when r = 1, the neighbourhood 
includes all directly adjacent cells; when r = 2, the neighbourhood extends to all cells 
within two steps. 
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Figure 2 Structure of CNN at 5 × 5 scale 

 

Based on the above circuit diagram of the cellular unit, the following dynamic behaviour 
of the cellular unit can be obtained by applying KCL and KVL as follows (Arena et al., 
2000): 

The representation of the state equation is shown below: 

( , ) ( , )

( , ) ( , )

( ) 1 ( ) + ( , ; , ) ( )

+ ( , ; , ) ( ) +
r

r

ij
ij kl

x C k l N i j

kl
C k l N i j

dv t
C v t A i j k l v t

dt R

B i j k l u t I
∈

∈

= − 


 (5) 

where C denotes the capacitance of the cell, which determines the charge storage 
capacity; vij(t) denotes the voltage of the cell (i, j) at time t; Rx denotes the resistance of 
the cell, which affects the flow of the current; A(i, j; k, l) denotes the forward coupling 
coefficient from the cell (k, l) to the cell (i, j), which affects how the voltage of the 
neighbouring cell affects the current cell; B(i, j; k, l) denotes the reverse coupling 
coefficient from cell (k, l) to cell (i, j) that affects how inputs from neighbouring cells 
affect the current cell; ukl(t) denotes the external inputs to cell (k, l) at time t; and I 
denotes the externally-applied currents, or bias, that regulate the active state of the entire 
network. 

The output equation defines a threshold activation function as follows: 

( )1( ) ( ) +1 ( ) 1 , 1 ;1
2ij ij ijv t v t v t i M j N= − − ≤ ≤ ≤ ≤  (6) 

where vij(t) denotes the voltage output of cell (i, j) at time t, and a threshold function is 
used here to simplify the conversion of the voltage state to a binary output. 

The representation of the kinetic equations is shown below: 

( ) ( )

( ) ( )
1 1

+ + + +

1 +1 1 ( 1, 2, ..., )
2

n n
i

i i i kf k k k i
k k

i i i

dx x a f x A x S x I
dt

f x x x i n

= =


= −



 = − − =

 
 (7) 

where xi denotes the internal state of cell i; ai is used to regulate the strength of cell i’s 
self-activation; f(xi) denotes the cell i’s activation function, which is usually a nonlinear 
function; Akf denotes the coupling coefficient, which regulates the effect of other cells k 
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on cell i; Sk denotes the self connection weights, describing how cell i is affected by its 
own previous state; Ii denotes the external inputs or biases to a given cell i. 

These equations describe how each cell dynamically changes according to its state of 
charge and its interactions with its neighbouring cells, and these changes are the basis for 
realising the function of the CNN. 

3 Six-dimensional CNN hyperchaotic systems 

This paper proposes an image chaotic encryption algorithm based on a six-dimensional 
CNN. Chaotic sequences are generated by the six-dimensional CNN, and the chaotic 
sequences are processed and used in the encryption algorithm. The designed encryption 
method algorithm adopts the method of disruption-diffusion-disruption, and the diffusion 
process processes the image in chunks, respectively, using different diffusion methods. 
According to the above kinetic equations of CNN, the kinetic model of six-dimensional 
CNN proposed in this paper can be expressed as a set of six-dimensional nonlinear 
differential equations. 

( )

1 3 4

2 2 3

3 1 2

4 1 4

5 2 1 5

6 2

4

6 5

200

+
4 2
11 12 +
18 +
4 4 +100

x x x
x x x
x x x
x x x
x x x x
x x x

x

x

f

= − −
=
= −
= −







= −
=




 −








 (8) 

( ) ( )4 4 4
1 +1 1
2

f x x x= − −  (9) 

The six-dimensional CNN consists of six interconnected cells, each of which is affected 
not only by its own state, but also by the states of the other five cells. This 
multidimensional interaction greatly increases the dynamic complexity of the system, 
enabling it to generate highly complex chaotic sequences. 

Suppose the initial values are set as: x1(0) = 0, x2(0) = 0.2, x3(0) = 0.4, x4(0) = 0.6, 
x5(0) = 0.8, x6(0) = 1. The time step is set to ∆t = 0.02. The numerical solution is 
computed using the Runge-Kutta method, which tracks the time evolution of each 
variable. Special attention is paid to the fact that x4 is strongly influenced by the nonlinear 
function f(x4). The Benettin algorithm is used to estimate the global Lyapunov exponent 
of the system. Specifically, it is necessary to calculate the rate of divergence or 
convergence of the system from the initial state. Tracking the separation velocity of 
neighbouring trajectories usually requires calculations for multiple nearest-neighbour 
trajectories. The time evolution of the system is simulated by numerical methods  
(Runge-Kutta integrals) to see if the trajectories of the system state show behaviour that 
is sensitively dependent on the initial conditions. The trajectories of the system state after 
long time evolution are plotted in phase space to find the presence of strange attractors. 
The presence of strange attractors indicates that the nonlinear differential equation in the 
six dimensions proposed in this paper is a hyperchaotic system, as shown in Figure 3. 
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Figure 3 Partial chaotic attractor phase diagram, (a) y-z-w, (b) x-z-w, (c) x-y-z, (d) x-y-w  
(see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

The main features of six-dimensional CNN include: high-dimensional interconnection 
structure, nonlinear dynamic equation and hyperchaotic behaviour. This structure can 
generate more complex and unpredictable chaotic sequences, thus enhancing the security 
of encryption algorithms. 

4 Optimisation of six-dimensional CNN structure based on DE 

For applications that require high security, such as encryption, chaotic properties are very 
important. DE algorithms can be used to adjust the network parameters so that the 
network exhibits stronger chaotic behaviour and improves security. Therefore, in order to 
improve the performance of six-dimensional CNNs in high-security applications such as 
image encryption, this study uses the DE algorithm to optimise the network parameters to 
enhance its chaotic properties. The enhancement of chaotic behaviour can increase the 
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unpredictability and complexity of the system, thus improving the security of the whole 
system. 

4.1 Optimisation objective function definition 

The goal of optimisation is to maximise the chaotic properties of the system, which is 
usually measured by the Lyapunov exponent. The larger the positive Lyapunov exponent, 
the more significant the chaotic behaviour of the system. Therefore, we define the fitness 
function F of the optimisation as the sum of the positive parts of the Lyapunov exponent 
of the system: 

( )
1

( ) max 0, ( )
n

i
i

F θ λ θ
=

=  (10) 

where θ denotes the parameter vector of the six-dimensional CNN and λi(θ) is the ith 
Lyapunov exponent under the corresponding parameter. 

4.2 Coding of differentially evolved individuals 

In the DE algorithm, each individual is represented as a possible solution to the network 
parameters (Opara and Arabas, 2019). In a six-dimensional CNN, an individual can be 
encoded as a vector containing all the correlation coefficients and function parameters: 

[ ]1 2, , , ,k paramsθ c c c f=   (11) 

where ci denotes the coefficients in the network, e.g., 11, –12, 200 as well as other 
connection weights, and fparams denotes the activation function parameters, e.g., the 
coefficients in the nonlinear function f(x4). 

4.3 Operation of DE 

The DE operation consists of three main steps: mutation, crossover and selection. Each 
step can be specifically defined as follows: 

1 Variants: 

For each individual θi, three different individuals θa, θb, θc are randomly selected 
from the population and the variation vector is calculated: 

( )+mut a b cθ θ F θ θ= ⋅ −  (12) 

where F is the difference weight, usually in the range [0.5, 2.0]. 

2 Cross-cutting: 

The trial vector θtrial is generated by a crossover operation: 

,
,

,

if rand(0, 1) or
otherwise

mut j rand
trial j

i j

θ CR j j
θ

θ
≤ =

= 


 (13) 
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where CR is the crossover probability and jrand is a randomly chosen index that 
ensures that at least one of the dimensions comes from the variation vector. 

3 Selection: 

Renewing populations through greedy selection: 

( ) ( )if
otherwise

trial trial i
i

i

θ F θ F θ
θ

θ
 >

= 


 (14) 

Through the above steps, the algorithm iterates until a stopping condition is met, 
such as reaching the maximum number of iterations or adaptation convergence. 

After completing the optimisation, numerical simulations are required to assess the effect 
of the optimised network parameters, especially the change in Lyapunov exponent. By 
comparing the dynamic behaviour of the system before and after the optimisation, the 
degree of enhancement of the chaotic properties can be verified. By this method, the  
DE-based optimisation of the six-dimensional CNN structure can effectively enhance the 
performance of the network in security applications, making it more effective and reliable 
in dealing with applications with high security requirements. 

5 Design of encryption algorithm for images 

5.1 Generation of the chaos key 

The key is the initial condition for generating a chaotic sequence. Generally, the key is 
input into the chaotic system as the initial value and parameters to generate the chaotic 
sequence. In order to make the ciphertext image more difficult to be deciphered, this 
paper adopts the key associated with the plaintext, which improves the security of the 
algorithm to a large extent. The image of size M × N is divided into six non-overlapping 
parts as shown in Figure 4, and each part is denoted as Ii(i = 1, 2, ···, 6). 

1 ( mod3) / 3m M M= −  (15) 

( ) ( )2 1 1+ mod 2 2m M m M m = − −   (16) 

1 ( + mod 2) / 2n N N=  (17) 

Calculate the sum of the pixel values in Ii separately, denoted as SUMi(i = 1, 2, ···, 6). 
Divide Yi into three parts: SUM1 and SUM2, SUM3 and SUM4, SUM5 and SUM6. Compute 
the key t1(t1 ∈ (–4, 4)), t2(t2 ∈ (–5, 5)), t3(t3 ∈ (–13, 3)). The values of t1, t2 and t3 are 
assigned to the state variables y, z and w respectively in the CNN system, i.e., the key t1, 
t2, t3 is used as the initial value of the CNN system. This method can dynamically 
generate the key by summing the pixel values of different images, thus dynamically 
updating the initial value of the system, and realising that the key is associated with the 
plaintext. 

( )1 1 2 mod5 4t SUM SUM= ⊕ −  (18) 

( )2 3 4 mod 7 5t SUM SUM= ⊕ −  (19) 
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( )3 5 6 mod 23 13t SUM SUM= ⊕ −  (20) 

The highly complex chaotic sequence generated by six-dimensional CNN consists of six 
coupled nonlinear state variables, each of which is influenced by other variables.  
These sequences exhibit multiple positive Lyapunov index, which ensures the high 
unpredictability of the sequences. Specifically, the sequence contains chaotic 
characteristics in space and time, which makes it very suitable for image encryption 
applications. 

5.2 Initial key generation process for the six-dimensional CNN 

The specific steps of image encryption include three phases of disarrangement, diffusion 
and re-disarrangement. The purpose of the encryption process is to ensure the high 
security and complexity of the image information through multiple disarrangement and 
diffusion operations, making the encrypted image difficult to be cracked. The 
disarrangement stage is mainly to disrupt the original structure of the image by changing 
the position of the image pixels. The initial disruption sequence generation is performed 
first. Using the chaotic sequences generated by the six-dimensional CNN, two of these 
sequences are selected to perform the disruption operation. These sequences are 
generated by iterating the initial key. 

5.3 Encryption process 

The specific steps of image encryption include three phases of disarrangement, diffusion 
and re-disarrangement. The purpose of the encryption process is to ensure the high 
security and complexity of the image information through multiple disarrangement and 
diffusion operations, making the encrypted image difficult to be cracked. The 
disarrangement stage is mainly to disrupt the original structure of the image by changing 
the position of the image pixels. The initial disruption sequence generation is performed 
first. Using the chaotic sequences generated by the six-dimensional CNN, two of these 
sequences are selected to perform the disruption operation. These sequences are 
generated by iterating the initial key. 

The new position of each pixel is obtained by calculating the chaotic sequence. 
Assuming that the chaotic sequence is {xi}, the mapping relation can be expressed as. 

( ) ( )NewPos( , ) + mod , + modi ji j i x M j x N=  (21) 

where M and N are the number of rows and columns of the image, respectively. 
The initial disarrangement operation is completed by rearranging the pixels in the 

image matrix according to the generated mapping rules. 
The aim of the diffusion phase is to make a change in one pixel affect the grey values 

of multiple pixels by changing the grey values of the pixels. One of the remaining chaotic 
sequences is selected for the diffusion process. This sequence is used to adjust the grey 
value of each pixel. The operation to generate the diffused grey value using the chaotic 
sequence with the original grey value of the pixel is performed as: 

( )( , ) ( , ) + mod 256kI i j I i j x′ =  (22) 



   

 

   

   
 

   

   

 

   

   68 Z. Cai    
 

    
 
 

   

   
 

   

   

 

   

       
 

where I(i, j) is the original pixel value, xk is the value of the diffusion sequence, and I′(i, j) 
is the pixel value after diffusion. 

Updating each pixel value in the image matrix causes a significant change in the 
statistical properties of the image, increasing the security of the encryption. 

The re-disordering phase is designed to further disrupt the pixel positions after 
diffusion, increasing the complexity and randomness of the encryption. A new chaotic 
sequence is used to generate the mapping rule for the second disruption. Suppose the new 
chaotic sequence is {yi} and the mapping relation is: 

( ) ( )NewPos ( , ) + mod , + modi ji j i y M j y N′ =  (23) 

According to the new mapping rules, the pixels in the image matrix are rearranged again 
to complete the secondary disambiguation. 

Through these three stages of processing, the pixel positions and grey values of the 
image are highly obfuscated, ensuring that the encrypted image is difficult to be restored 
to its original state. Each step relies on the initial key and chaotic sequence, ensuring a 
high degree of randomness and security in the encryption process. The encryption 
process includes three main steps: initial scrambling, diffusion and re-scrambling. Each 
step uses chaotic sequences generated by six-dimensional CNN. Initial scrambling 
changes the pixel position, diffusion changes the pixel value, and then scrambling further 
disrupts the pixel position to ensure high encryption security. 

5.4 Decryption process 

The decryption process is the inverse of the encryption process, and its purpose is to 
restore the encrypted image to the original plaintext image. In order to ensure the 
accuracy of decryption, it is necessary to strictly follow the reverse order of the 
encryption process. The decryption process is also divided into three stages: inverse 
scrambling, inverse diffusion and inverse scrambling again. 

The inverse chaotic phase restores the pixel positions to the pre-encryption state by an 
inverse chaotic operation. Using the same initial key as the encryption process and the 
chaotic sequences generated by the six-dimensional CNN, the same two sequences as in 
the encryption phase are selected. The original position of each pixel is computed based 
on the chaotic sequences generating a mapping relation opposite to the encryption phase. 

( ) ( )OrigPos( , ) + mod , + modi ji j i x M M j x N N= − −  (24) 

According to the above inverse mapping rules, the pixels in the encrypted image matrix 
are rearranged back to their original positions to complete the initial inverse disarray 
operation. The purpose of the counter-diffusion stage is to restore the grey values of the 
pixels to their pre-encryption state by the counter-diffusion operation. The same chaotic 
sequence as in the encryption stage is used for the counter-diffusion operation. The 
original grey value is restored using the chaotic sequence with the encrypted pixel grey 
value by performing an inverse operation. 

( )( , ) ( , ) + 256 mod 256kI i j I i j x′= −  (25) 
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where I′(i, j) is the encrypted pixel value, xk is the value of the diffusion sequence, and  
I(i, j) is the recovered original pixel value. Each pixel value in the image matrix is 
updated to restore it to its pre-encryption state. 

The again inverse chaotic stage further restores the diffused pixel positions to the 
original positions through an inverse chaotic operation. The same chaotic sequence as in 
the encryption phase is used to generate the mapping rules for the second inverse 
disarray. 

( ) ( )OrigPos ( , ) + mod , + modi ji j i y M M j y N N′ = − −  (26) 

According to the new inverse mapping rule, the pixels in the image matrix are rearranged 
back to their original positions to complete the secondary inverse disorder. 

6 Simulation experiment results and analysis 

6.1 Experimental set-up 

The plaintext images chosen for the experiments are the commonly used standard test 
images ‘Lena’, ‘mandrill’ and ‘peppers’. These images are widely used in image 
processing experiments to evaluate the effectiveness and performance of cryptographic 
algorithms. The size of both images is 256 × 256. The initial key of the six-dimensional 
CNN is {0.235, 0.350, 0.735, 0.680, 0.590, 0.472} for the ‘Lena’ image. The initial key 
of the six-dimensional CNN for ‘mandrill’ image is {0.267, 0.445, 0.782, 0.698, 0.567, 
0.487}. The experimental platform parameters are shown in Table 1. 
Table 1 Hardware and software configuration of the experiment 

Assemblies Instructions 
CPU Intel Core i7-9700K @ 3.60 GHz 
RAM 16 GB DDR4 
Stockpile 512 GB SSD 
Operating system Windows 10 Professional 64-bit 
Hardware MATLAB R2020a 

To ensure the reproducibility of our experiments, we provide specific details about the 
parameters utilised in the DE algorithm. The population size was set to 50, which 
balances exploration and exploitation in the search space. The scaling factor F was 
chosen to be 0.8, which controls the amplification of differential variations, promoting 
diversity among the individuals in the population. The optimisation process of DE 
algorithm parameters is as follows: the population size is set to 50, the scaling factor F is 
0.8, and the crossover rate CR is 0.9. These parameters are selected after balancing the 
convergence speed and the quality of the solution through many experiments and 
comparisons. The maximum algebra is set to 1,000 to ensure that the optimisation 
process has enough time to converge to the optimal or nearly optimal solution. These 
settings were chosen based on preliminary experiments and literature review, indicating 
that they provide a good balance between convergence speed and solution quality. 
Furthermore, the maximum number of generations was set to 1,000 to allow sufficient 
time for the optimisation process to converge to optimal or near-optimal solutions. The 
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choice of these parameters ensures that the optimisation process is efficient and effective, 
leading to highly complex and random chaotic sequences for secure image encryption. 

The above experimental platform ensures sufficient processing power and 
environmental stability to accurately assess the performance and effectiveness of the 
encryption algorithm. The simulation results are shown in Figure 4. 

Figure 4 Encryption and decryption simulation results, (a) plain text image Lena, (b) encrypted 
image Lena, (c) decrypted image Lena, (d) plain text image mandrill, (e) encrypted 
image mandrill, (f) decrypted image mandrill, (g) plain text image peppers,  
(h) encrypted image peppers, (i) decrypted image peppers (see online version  
for colours) 

   
(a)   (b)   (c) 

   
(d)   (e)   (f) 

   
(g)   (h)   (i) 

The main limitations encountered in the experiment include: the increase of 
computational overhead when processing high-resolution images, and the scalability 
problem on large-scale data sets. Future research directions include optimising algorithms 
to reduce computational complexity and exploring distributed computing methods to 
improve scalability. 
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6.2 Sensitivity analysis 

In the field of image encryption, sensitivity analysis is an important tool to evaluate the 
sensitivity of encryption algorithms to input changes. This experiment evaluates the 
performance of the differential evolutionary six-dimensional CNN (DE-6DCNN) 
encryption algorithm proposed in this paper by calculating two metrics, number of pixels 
change rate (NPCR) and unified average changing intensity (UACI), and compares it 
with traditional CNN, AES and chaotic encryption algorithm are compared. The 
improvement of NPCR and UACI directly improves the security of image encryption in 
practical application. For example, in medical image transmission, a higher NPCR value 
means that patient data is more difficult to be accessed by unauthorised users. In satellite 
communication, improved UACI has strengthened its resistance to statistical analysis 
attacks. 

NPCR and UACI are standard metrics for evaluating the responsiveness of image 
encryption algorithms to small changes in the initial image. 

1 1

( , )
100%

M N

i j

D i j

NPCR
M N

= == ×
×


 (27) 

where D(i, j) is a difference matrix, if the pixel values of the encrypted two images at 
position (i, j) are different, then D(i, j) = 1, otherwise D(i, j) = 0. M and N are the number 
of rows and columns of the image, respectively. 

1 2

1 1

( , ) ( , )1 100%
255

M N

i j

C i j C i j
UACI

M N = =

−
= ×

×   (28) 

where C1 and C2 are the images generated by the two encryption processes, respectively; 
and |C1(i, j) – C2(i, j)| is the absolute value of the difference in pixel values between these 
two images at the position (i, j). 

In order to effectively test and compare the sensitivity of different encryption 
algorithms, ‘Lena’ and ‘mandrill’ were slightly modified, e.g., by changing the value of 
one pixel (plaintext sensitivity analysis), and the changes in the encryption results were 
observed. The sensitivity comparison of different encryption algorithms is shown in 
Table 2. 

From the data in Table 2, it can be seen that DE-6DCNN shows higher NPCR and 
UACI values compared to conventional CNNs, AES and chaotic encryption when 
processing ‘Lena’ and ‘mandrill’ images NPCR and UACI values. Specifically,  
DE-6DCNN shows an NPCR value of 99.63% on the ‘Lena’ image, compared to 98.53% 
for traditional CNN, 99.51% for AES, and 99.59% for chaotic encryption, which shows 
1.10%, 0.12%, and 0.04% improvement, respectively. On the ‘mandrill’ image, the 
NPCR value of DE-6DCNN is 99.60%, while that of conventional CNN is 98.41%, AES 
is 99.49%, and chaotic encryption is 99.57%, showing 1.19%, 0.11%, and 0.03% 
improvement, respectively. 
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Table 2 Sensitivity analysis of four image encryption algorithms 

Encryption method Image NPCR (%) UACI (%) 
DE-6DCNN Lena 99.63 33.5 

Mandrill 99.6 33.4 
Peppers 99.58 33.4 

CNN Lena 98.53 29.9 
Mandrill 98.41 29.8 
Peppers 98.32 29.7 

AES Lena 99.51 33.15 
Mandrill 99.49 33.09 
Peppers 99.36 33.06 

Chaotic encryption Lena 99.59 33.45 
Mandrill 99.57 33.35 
Peppers 99.55 33.42 

In addition, DE-6DCNN also shows a significant advantage in UACI. On the ‘Lena’ 
image, the UACI value of DE-6DCNN is 33.50%, compared to 29.90% for conventional 
CNN, 33.15% for AES, and 33.45% for chaotic encryption, which show 3.60%, 0.35%, 
and 0.05% improvement, respectively. On the ‘mandrill’ image, the UACI value of  
DE-6DCNN is 33.40%, while that of conventional CNN is 29.80%, AES is 33.09%, and 
chaotic encryption is 33.35%, which shows 3.60%, 0.31%, and 0.05% improvement, 
respectively. It is obvious from these results that DE-6DCNN has a significant 
performance advantage in the sensitivity test of image encryption, proving its 
effectiveness in improving the sensitivity to changes in initial conditions, thus providing 
higher security for image encryption. 

7 Conclusions 

In this paper, an encryption method based on DE-6DCNN is proposed, which effectively 
solves the limitations of traditional chaotic image encryption methods in terms of 
processing high-dimensional data, computational complexity and attack resistance. By 
introducing a six-dimensional CNN, this method is able to generate more complex and 
unpredictable chaotic sequences, thus enhancing the security and stability of the 
encryption algorithm. In addition, the parameters of the six-dimensional CNN are 
optimised using the DE algorithm to improve the complexity and randomness of the 
chaotic sequences, which further enhances the overall performance of image encryption. 
The following conclusions can be drawn from the experiments on ‘Lena’ and ‘mandrill’ 
images: 

1 The use of 6DCNN can significantly improve the security and efficiency of chaotic 
image encryption. 

2 The DE algorithm performs well in optimising the parameters of the six-dimensional 
CNN, resulting in the generation of chaotic sequences with higher complexity and 
randomness. 
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3 Compared with traditional CNN, AES and chaotic encryption, the DE-6DCNN 
proposed in this paper shows significant improvement in both NPCR and UACI 
metrics, which verifies its efficiency and security in image encryption. 

The experimental data in this paper were mainly selected from standard image sets, and 
although the results are satisfactory, the homogeneity of the dataset may limit the 
generalisation ability of the model. Future work should consider introducing more kinds 
of image datasets, including images with different resolutions and application scenarios, 
in order to verify the effectiveness of the model in a wider range of application scenarios. 
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