N

&NDERSCIENCE PUBLISHERS

Linking academia, business and industry through research

International Journal of Simulation and Process Modelling

ISSN online: 1740-2131 - ISSN print: 1740-2123
https://www.inderscience.com/ijspm

A computational offloading algorithm for cloud-edge
collaboration in smart agriculture

Feng Li, Yiyuan Li, Yuging Pan

DOI: 10.1504/I)]SPM.2024.10066644

Article History:

Received: 22 November 2022
Last revised: 11 May 2023
Accepted: 05 September 2023
Published online: 04 October 2024

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijspm
https://dx.doi.org/10.1504/IJSPM.2024.10066644
http://www.tcpdf.org

Int. J. Simulation and Process Modelling, Vol. 21, No. 2, 2024 121

A computational offloading algorithm for cloud-edge
collaboration in smart agriculture

Feng Li*, Yiyuan Li and Yuqing Pan

School of Computer Science and Communication Engineering,
Jiangsu University,

Zhenjiang, Jiangsu, China

Email: fengli@ujs.edu.cn

Email: lyynothing@126.com

Email: panyq@ujs.edu.cn

*Corresponding author

Abstract: To solve the problem that the massive amount of information and real-time processing
in the IoT system puts pressure on the computing resources of the whole system, the industry
often adopts the computation offloading algorithm for cloud-edge collaboration. However,
at this stage, conventional computation offloading algorithms frequently fail to account for
dynamic conflicts between terminal tasks and offloaded tasks, and the results of offloading are
inefficient. To that purpose, this paper introduces the task volume prediction model, the response
time model and the power consumption model to represent the whole computing process of
agricultural activities from various angles. On that basis, the DQN algorithm is used to solve
the model’s mixed-integer nonlinear optimisation issue. Experiments show that the algorithm
proposed in this paper can increase the offloading accuracy and the speed and accuracy of
cloud-edge collaborative computing.

Keywords: smart agriculture; cloud-edge collaboration, computation offloading; deep
reinforcement learning.

Reference to this paper should be made as follows: Li, F., Li, Y. and Pan, Y. (2024)
‘A computational offloading algorithm for cloud-edge collaboration in smart agriculture’,
Int. J. Simulation and Process Modelling, Vol. 21, No. 2, pp.121-129.

Biographical notes: Feng Li obtained his PhD in Engineering in 2011 from the Institute
of Computing Technology, Chinese Academy of Sciences and a post-doctoral researcher of
computer application technology.

Yiyuan Li is a Master candidate at the School of Computer Science and Communication
Engineering, Jiangsu University.

Yuqing Pan is an Associate Professor at the Jiangsu University.

1 Introduction

agriculture has

the computational time delay and data transmission time
delay in the cloud, this will result in the farm being unable

challenges and new to obtain the corresponding data processing results quickly.

opportunities compared to traditional agriculture, which is
pointed out by Ayaz et al. (2019).

However, with the further advancement of agricultural
wisdom, many difficult practical problems have arisen in
the process of agricultural operations, the most prominent
of which is how to process a large amount of perceived
information in a timely manner, providing real-time
data support for various agricultural operations processes.
Since the computing power of terminal farming machines
often does not match the computing power required
for actual computing tasks, large amounts of perceived
information are usually transmitted to the cloud for analysis
and computation, which in turn leads to the need to
concentrate computing resources in the cloud. Considering

Copyright © 2024 Inderscience Enterprises Ltd.

If we simply increase the computing power of the farm
machine terminal, the cost is high on the one hand, and
it is difficult to realise the collaboration between the farm
machine terminals on the other hand. Therefore, how to
deal with a large number of perceived tasks and information
while controlling costs is still an urgent problem in the field
of agricultural wisdom.

With the development and popularisation of
communication technologies such as 5G, as well as the
improvement of various cloud, edge and end computing
capabilities, a computing model based on cloud-edge-end
collaboration provides the possibility of timely analysis and
processing of massive heterogeneous sensory information
generated by various agricultural operation processes

122 F Lietal.

(Gao et al., 2022; Paraforos and Griepentrog, 2021).
Instead of uploading all the computing tasks to the cloud,
the computing capabilities of edge-end nodes can be
used for partial task computation through cloud-edge-end
collaboration. This is the cloud-edge collaboration
model, which reduces the overall time delay and obtains
computation results faster. Based on the cloud-edge
collaboration model, sensory information and agricultural
data computation tasks can be automatically assigned to the
cloud or the edge, which improves the overall computation
efficiency by utilising the computing power of the edge
while greatly reducing transmission costs (Ruan et al,
2019). Finally, the operation efficiency of the overall
intelligent agricultural system is improved. Thus, this paper
proposes a computation offloading algorithm for cloud-edge
collaboration in smart agriculture.

At present, many scholars have proposed many effective
ideas in computation offloading algorithms for cloud-edge
collaboration. Meyer et al. (2021) investigated a method
for classifying applications based on interference levels
and proposed a static interference model and policy for
scheduling co-hosted cloud applications, with preliminary
results showing an average 27% improvement in resource
utilisation efficiency when applying their classification
method in a cloud-side collaboration scenario; Zhang et al.
(2021) designed a fine-grained serverless pipeline, thus
facilitating fine-grained adaptive partitioning of cloud-edge
workloads with multiple concurrent query pipelines. This
particular collaborative cloud-edge design reduced the
overhead of the cloud-only solution by 86.9% and the data
transfer overhead by 74.4%, and increased the analytic
throughput of the edge-only solution by 20.6%; Zhou et al.
(2021) improved the model based on time delay using
the shortest response time priority algorithm and optimised
the update strategy of expected response time based on
their model, and their results showed that it outperformed
the traditional serial processing framework in terms of
processing time delay; Xuewen and Jingxian (2022) present
a computational model that integrates latency, energy
consumption, user priority, and computational resource cost,
and introduces convex optimisation conditional computation
to compute the offloading optimal solution so that the
model can sense user priority, and emergency users
have higher utility and lower latency; Ren et al. (2021)
designed a collaborative task offloading and resource
scheduling framework, including base station collaboration
space (BSCS) and micro BSCS, in order to enhance
the collaboration of nodes in the edge environment
to balance the computational and caching resources in
heterogeneous wireless networks, and this model was
successfully applied in the field of wireless surveillance
cameras, which improved the timeliness and accuracy
of the original scheme to a large extent; Zhang et al.
(2017) developed an access controller management model
to further reduce computational duplication and data
transmission redundancy in mobile edge computing (MEC)
in 5G networks, while proposing a new algorithm to
trade-off between energy consumption and offloaded data
volume under the constraint of total computation time

and calculate the optimal solution of partial critical path
(PCP) by executing the proposed dynamic programming
algorithm, and their experimental results proved the
correctness of the new approach.

However, the above papers of the computational
oftloading algorithm for cloud-edge collaboration use static
modelling mechanisms, which only consider the current
task volume and related states, and do not consider the
future task computation characteristics, so for some tasks
with periodic nature, evaluating offloading tasks based
only on the current states may bring problems such as
inefficiency and task conflicts. Agricultural activities are
often characterised by obvious seasonality and periodicity,
so the common computational offloading algorithms for
cloud-edge collaboration are difficult to meet the actual
computing needs of smart agriculture activities. Because
of this, it is an urgent problem to design a computational
offloading algorithm for cloud-edge collaboration that is
more real-time, more accurate, and better adapted to the
needs of smart agriculture activities.

To address the above issues, we design a computational
oftloading algorithm for cloud-edge collaboration in smart
agriculture, in which we first fully consider the real-time,
accuracy, dynamics, power consumption, and task volume
problems of the whole system. We transform the actual
problems of the system into a basic mathematical model
and design an adaptive prediction task volume algorithm
model. The abstract problem is concretised into the problem
of finding the optimal solution to a mixed-integer nonlinear
optimisation problem while overcoming the conflicts arising
from traditional static modelling. Finally, the defined
adaptive function and deep Q-network (DQN) algorithm
are used to find optimal solutions, which reduce conflicts
dynamically. At the same time, it enhances the real-time
and accurate calculation of agricultural terminal tasks. The
following tasks are completed in this paper:

1 a task volume prediction model is proposed to address
the conflict problem arising from static modelling and
to enhance the accuracy of offloading

2 response time and power consumption models are
designed to capture the overall computational process
of agricultural activities from multiple perspectives

3 the DQN algorithm is employed to solve the
mixed-integer nonlinear optimisation problem in the
model, achieving improved optimisation results.

Experimental results demonstrate that the proposed
algorithm in this paper can significantly improve the
accuracy of offloading, as well as the speed and accuracy
of cloud-edge collaborative computing.

This paper makes several contributions. Firstly, it
proposes a cloud-based collaborative computing offload
algorithm for smart agriculture, which addresses the
challenges of computational pressure and real-time
computational tasks in farm systems. Secondly, it models
the computational process of agricultural operations
from multiple perspectives to reduce the conflict rate of

A computational offloading algorithm for cloud-edge collaboration in smart agriculture 123

offloading computations. Finally, it introduces the DQN
algorithm to improve the speed of finding the optimal
offloading solution within the proposed model.

The remaining part of the paper is organised as follows:
Section 2 briefly introduces some mixed-integer nonlinear
optimisation problems for solving algorithms; Section 3
explains in detail the overall process of constructing task
volume prediction models, response time models, and
power consumption models and using DQN algorithm
to find the optimal solution; Section 4 discusses the
experimental results; finally, the whole paper is concluded
in Section 5 by summarising the whole paper while
discussing ideas for the future.

2 Fundamental knowledge

To facilitate a better understanding of the algorithmic model
and process presented in this paper, this section introduces
and discusses the relevant theories. Firstly, we discuss
the cloud-edge collaboration, followed by the computation
offloading.

2.1 Cloud-edge collaboration

The term ‘cloud-edge collaboration’ refers to the
collaboration between the cloud and the edge nodes in
which some computing tasks are offloaded to the nodes
closer to the production environment. By placing these
tasks at the edge or end nodes, which are in close proximity
to the production environment, the transmission distance is
reduced, resulting in lower latency (Zeyu et al., 2020). This
facilitates faster computation and enables the system to
obtain the required results more quickly, providing critical
data support for real-time decision making.

Figure 1 Process of end node task upload

| l

edge node ecccoe edge node

@ - @

The cloud-edge collaboration framework consists of three
parts: the cloud, edge nodes, and end nodes (Zhao et al.,
2019), as shown in Figure 1. These nodes are distributed
in a tree structure, where multiple end nodes are connected
to an edge node, and multiple edge nodes are connected
to a cloud. All kinds of nodes have computing capabilities,
which means that they can all serve as computing nodes.

As this paper’s algorithm is focused on the field of smart
agriculture, the end nodes in this framework are agricultural
terminals (or farm machines), and the tasks generated by
these agricultural terminals are referred to as agricultural
terminal tasks (or end node tasks).

2.2 Computation offloading

Computation offloading involves transferring computational
tasks from one subject to another for processing and then
returning the result to the original subject. During the early
stages of cloud computing, terminals and edge devices
were the primary entities used to offload computations.
This involved transmitting computing tasks from terminals
or edge devices through networks to the cloud, where
the computations were performed. The results of the
computations were then sent back to the terminals or edge
devices, or directly stored in the cloud.

In this paper, computation offloading refers to the partial
or complete transfer of computation tasks from end nodes
to the edge or cloud for processing.

3 Algorithm and models

3.1 The overall process of algorithm

The overall process of this algorithm is shown in Figure 2.
The whole is divided into three major parts, the first part
is to upload the task information to the cloud from each
agricultural terminal node; the second part is to build the
model in the cloud; the third part is to find the optimal
solution for the model and to distribute the calculated
offloading results.

Figure 2 The overall process of algorithm

‘ Generate tasks I Generate tasks

N

‘ Threshold judgment |

h 4

Modeling

Task volume
prediction model

response time
model

power consumption
model

v

Find the optimal
offloading result

Target function|

E+I

124 F Lietal.

Firstly, each agricultural terminal node generates tasks and
uploads them to the cloud for unified distribution if they
cannot be judged by local thresholds. The cloud builds three
abstract models, namely the task volume prediction model,
the response time model, and the power consumption
model. After the model is built, the DQN algorithm is used
to find the optimal solution for the model through a custom
target function. Finally, the optimal computation offloading
result is obtained.

3.2 End node task upload

For each agricultural terminal node, the first step of the
system is to upload the computing data of each node and
the task information generated by the agricultural terminal
node to the cloud. To abstract this process, we give the
following definition: define a task as i, ¢ € {1,2,...,n}. A
task is abstracted into three task parameters T'a;{Da;, C;
S;}, where Da denotes the task data size, C' denotes the
number of CPU cycles required for this task, and .S denotes
the sensitivity of the task, i.e., the maximum tolerance time
of the task; define a computing node (including terminal
node, edge node, and cloud) as j, j€ {1,2,...,m}, a
computational node is abstracted into three task parameters
Cal;j{M;, F;, Me;}, where M denotes the total memory
of this computing device, F' denotes the main frequency of
this computing device and Me denotes the used memory
of this computing device. Before the task is uploaded, each
agricultural terminal node needs to perform a threshold
judgement for the task, as described in Section 3.5 boundary
constraints below.

Figure 3 Process of end node task upload

Initialize calculation
parameters

Input task
parameters

Y Calculate

N
¥

Upload to the cloud

As shown in Figure 3, regarding the part of end node task
upload, the details are:

1 terminal nodes initialise their own computational
parameters

2 each terminal node inputs the relevant task parameters

3 terminal nodes judge the local threshold value of the
input task, and if the condition is satisfied, they

directly perform local calculation, and if not, they
upload the task parameters to the cloud.

3.3 System model building in the cloud

To process the data uploaded by the agricultural terminal
node to obtain optimal computation offloading results, we
need to build the system model in the cloud according to
the environment of agricultural activity. The overall model
in the cloud consists of three sub-models, which are the
response time model, task volume prediction model, and
power consumption model, as shown in Figure 4.

Figure 4 Task input system model in the cloud

agricultural
terminal

%,

’%tq
\ response sk power
. N volume .
agricultural Task input—»> time + prediction + consumz;lon

terminal

/ model model

\“\
<

agricultural
terminal

System Model in the Cloud

After the statistics of each edge node parameter C'al and
each task parameters T'a in the cloud, the cloud needs to
build the system model. This section specifies the three
sub-models that make up the system model.

3.3.1 The response time model construction

To more accurately calculate the time cost of tasks
offloading, the response time is modelled as follows:

Define D as the cost of time to transfer data between
cloud, edge and end; define Dj as the cost of time to
transfer data from agricultural terminal nodes to the edge
node; define Dj as the cost of time to transfer data from
agricultural terminal node to the cloud.

Define the channel bandwidth as B = {Bj, B}, the
transmission rate of data can be expressed by Shannon’s
formula, which is pointed out by Shannon (1948):

C = B logy ™M (bit/s) (1)
then the general formula for D can be calculated as:

D = Da; /(B «logi" 7/ wte)) @)

where w is the noise power, h is the channel gain between
the user equipment and the wideband channel. p is the user
uplink transmission power, and g is the interference caused
by other tasks in the channel to the task q.

Defining the response time equation @);

Qi = uy * (D + Ci/F) + uz * (D§ + Ci/F) 3)

where u; is 1 when there is data transfer to the edge node,
and 0 otherwise; us is 1 when there is data transfer to the
cloud, and 0 otherwise.

A computational offloading algorithm for cloud-edge collaboration in smart agriculture 125

3.3.2 The task volume prediction model construction

To alleviate errors and conflicts in the offloading process
and to allow the model to calculate offloading decisions
more accurately, a task volume prediction model is added
to the model to take advantage of the periodicity and
concentrated characteristics of agricultural activities with
the basic idea being that historical records predict the
future. It makes the model dynamically adjusted for
feedback on the outcome of each offloading decision. This
task forecasting model is based on the Q-learning algorithm
and combined with a custom task forecasting function
called Static(t) [this function is given later in equation (6)].

To make the task prediction model adaptive to real-time
feedback, we design our T-value by borrowing the Q-value
from the Q-learning algorithm (Clifton and Laber, 2020).
Similar to the Q-value in the Q-learning algorithm, the
T-value is also divided into the realistic value of T and
the actual record of T.

Define the realistic value of T

T (S,41) = Rpyy + 7 * Static()
v € [0,1]

where + is the decay value; R is the feedback value, i.e., the
actual effect statistics for each agricultural terminal node;
Static(t) is the prediction function presented in equation (6)
later. In the realistic value of T, a prediction is also
included. This means that the value of this step not only
contains the estimate of the change for the next step but
also incorporates the return value of this step.
Define the actual record of T:

T (Snt1) = Static(t) + a * [T™ (Sy41) — Static(t)] (5)

“)

the actual record of T is defined using cumulative
variables for future developments, not just realistic values
for the next step, thus enabling forecasting of future task
volumes, bringing a base value to the mode, and avoiding
the conflicts associated with static modelling.

For the task volume prediction function Static(t), two
tables are generated for it: the first table is a queue table
recording the actual record of T at time t for each day;
the other table is a two-dimensional array table with vertical
coordinates in years and horizontal coordinates in offsets in
days, of length m, used to store the actual record of T
for the year. For the first table, we use the feedback
values and the forecast values based on the statistical
values of the second table to generate the T-values to
calculate the horizontal forecast; for the second table, we
use the actual record of T recorded in the first table
to average them to calculate the values for our vertical
forecast.

Define the basic task volume prediction function
Static(t):

m n—1
aq * (ZT&)/WH—@Q* ZTvt /(n—l) (6)
i=1 =1

where the statistical prediction function at time ¢ is Static(t),
TH is the value of the two-dimensional array table with

offset k at year w, T is the value at time ¢ of the queue
list. where «; and ao are the proportionality factors for
the value of the longitudinal forecast and the share of the
cross-sectional forecast, respectively. Sum of a; and as
is 1.

For computational convenience, the task volume
prediction model is incorporated into the response time
model described above, and the response time model
incorporated into the predicted task volume model is

defined as @, then () is defined as follows:

Q= Z (h1 * Qi + hg * Static(t))
i=1 (7)

hi+hy=1

where h; and hy are the proportionality factors for response
time and predicted task volume, respectively.

3.3.3 The power consumption model construction

In order to achieve a more result calculation of the
resource offload cost, a model was developed for the power
consumption as follows:

The power consumption model proposed by Basmadjian
et al. (2011) is used here:
e ®
where Me; is the used memory of the computing device
as defined previously, M; is the total memory of the
computing device as defined previously, and P.,x and
P41 indicate the maximum power consumption (100%
utilisation) and the idle power consumption (no activity) of
the processor respectively.

According to E;, the overall power consumption of the
system can be defined as:

Ei == Pidle + (Pmax -]Didle) *

= Me;/ M,
E= ; (Pidle + (Pmax -]Didle) *]_JO/OJ> (9)
Loj is defined as follows:
Loj = Mej/M; * 100% (10)

where Lo; indicates load factor.

3.4 Calculate the optimal offloading solution

In the course of each iteration, each time the information
about agricultural terminal tasks is entered, the optimal
offloading decision for this iteration should be obtained. As
the system model in the cloud has already been constructed
in the previous section, we can use the constructed system
model to define a suitable target function and then use the
algorithm to find the optimal solution of this target function
to obtain the optimal offloading solution for this iteration.

Among these algorithms used to solve the target
function, the particle swarm algorithm and the Q-learning
algorithm are commonly used, but both algorithms have
their drawbacks when applied here, and we finally used the
DQN algorithm to solve the target function.

126 F Lietal.

3.4.1 Define the target function

We describe the offloading and resource allocation of the
overall system of agricultural activities as an optimisation
problem, and the objective of this part is to minimise the
total cost of the combination of task volume prediction,
response time and power consumption in the system, so
the following equation is defined to represent the target
function of the solution. Also to ensure that the gap between
Q@ and F is not too large, Define m as critical value.

Target = Q + F
Q/m<E<m=xQ (11)
Q>0,E>0

For the target function, we only need to choose a suitable
algorithm to find the optimal solution to the target function.
As this target function is a mixed integer nonlinear
optimisation problem, it is not possible to obtain the optimal
value by derivation, so the DQN algorithm is used to obtain
the optimal solution of this function.

3.4.2 DQON algorithm solving

In order to avoid the slow speed problem of the
particle swarm algorithm and the tendency to fall into
local optima, we used the Q-learning algorithm for the
solution. However, the Q-learning algorithm suffers from
the dimensional catastrophe problem, and we eventually
used the DQN algorithm instead of a particle swarm or
Q-learning method to solve the target function.

For the DQN algorithm, we need to consider three key
elements, namely state, action, reward (Long and He,
2020).

e state: the system state consists of two components,
state = (tc, enc). We define tc(total costs) as the total
cost of the whole system, i.e., the optimal solution for
our target, tc = Target; we define enc(each node
capability) as an array representing the remaining
computational capacity of each computational node.

e action: for the action of the algorithm, which
consists of one part: the part is the offloading
decision for each, denoted by A, which is defined as

e reward: after each iteration, a reward value R(s, a)
is generated. For the overall system, our goal is to
obtain as small a tc as possible and as large a reward
value as possible subject to the boundary constraints.
Therefore, we set the reward to be tc negatively
correlated. We define the immediate reward as
(=tiocal — tc|/tciocat), the tejoeqr here is the sum of
the task volume running costs.

3.5 Boundary constraints

In the process of performing the boundary condition
determination of the agricultural terminal and in the process
of performing the boundary condition determination of the
target function, we need to impose boundary constraints
on some of its values. That is, the computation offloading
under the system needs to take into account task volume
prediction, response time, power consumption, load and
boundary conditions. The specific boundary constraints are
as follows:

Performing boundary condition judgements at the
agricultural terminal, i.e., making S,. (accuracy), S,
(load volume) and S;. (local response time) threshold
judgements:

1 For each computational node, the sum of the memory
used by the calculation task P; and the used memory
capacity should be less than the total amount
available:

P, + Mej < M, (12)

2 The pre-load value should be less than the set load
value threshold:

(Pi—i—Mej)/]Wj < Sk (13)

3 The expected local response time is less than the local
response time threshold set in advance:

Ci/F < Sie (14)

Performing boundary condition judgements on the
target function, i.e., performing Sj,s; (time cost
calculated from task offload), M;,s; (memory cost
calculated from task offload) and S;. (local response
time) threshold judgements:

4 For the calculated time cost, the time cost per task
needs to be less than the pre-determined sensitivity of
each task:

Sast < Si (15)

5 For the calculated memory cost, the memory cost per
task allocated to a compute node needs to be less than
the maximum memory capacity that each compute
node can handle:

M.l — M@J < Mlast (16)

3.6 Algorithm pseudo-code

The algorithm pseudo-code is as shown in Table 1.

A computational offloading algorithm for cloud-edge collaboration in smart agriculture 127

Table 1 The procedure of algorithm

A computation offloading algorithm for cloud-edge
collaboration in smart agriculture

Initialise T(s) arbitrarily
Repeat (for each episode):

Initialise calculation parameters S
Repeat (for each step of the episode):
Generation task parameter ta

Generating functions and models
Calculate the optimal solution by DQN
Get solution and feedback value
Calculate T
Update T of two tables

End Repeat

End Repeat

4 Experimental results and discussion

In this section, we present simulation experiments to
evaluate the performance of the proposed algorithm.

4.1 Experimental environment

The experiments in this paper were completed in a
Python 3.7 environment. The computer used was hosted
with an Intel i7-8750H processor, 32 GB of RAM, an
RTX2060 graphics card with 12 GB of video memory and
Pycharm 2020.3 simulation software.

4.2 Experimental parameter settings

A simulated farm situation is as follows. We use a
bandwidth size of B = 10 MHz and deploy an end server
(which can be connected directly to the cloud) located at the
centre of the farm. The various farm terminals are randomly
distributed within 200 metres of the server. The memory M
= 64 G, the CPU frequency of each agricultural terminal
node is Fi= 1 GHz/s, memory M = 2 G. For the task
the calculated data size is Da and its value lies between
(300, 500).

4.3 Experimental results and analysis

First of all, we need to determine the values of «; and s
in equation (6) for the weights of the following prediction
functions. Since oy + ag = 1, the independent variable is
a1. In order to facilitate comparison of the advantages
and disadvantages between different definitions of «; the
conflict is defined as when the sum of the input and unload
tasks of the farm machine is greater than the computational
capacity of the farm machine, and the conflict rate is
defined as the number of conflicts divided by the number
of agricultural terminals. The impact on the conflict rate
was examined by «; taking [0.1, 0.9] respectively, and the
experimental results are shown in Figure 5.

From Figure 5, it can be seen that the conflict rate
is lowest and the model works best when a7 = 0.4, that
is, when as = 0.6. At this point oy > ag, i.e., when the
weight of recent behaviour is greater, the predicted conflict
rate is lower, which is logical. Therefore, all subsequent
experiments took the value of 0.4 for a; and 0.6 for as.

The experiments in this paragraph compare the
advantages and disadvantages of three models for solving
the problem of conflicting assignment of agricultural tasks
in smart agriculture: FullLocal model, no task volume
prediction model and task volume prediction model.
Defines a model where tasks are not offloaded and are
only computed locally as a FullLocal model (FullLocal);
define a system model with only the response time model
and the power consumption model and no the task volume
prediction model as noPreModel. Define a system model
with the task volume prediction, the response time model
and the power consumption model as PreModel. Four
experiments were carried out, with 200 iterations each, and
the results are illustrated in Figure 6.

Figure 5 Influence of «; values on conflict rate
(see online version for colours)

50

40 |

30

conflict rate(%)

10 A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
al

Figure 6 Comparison of the three models corresponding to the
conflict rate (see online version for colours)

50
—&— FullLocal
noPreModel
—®— PreModel
40 4
_ . k
30 —— — —
3 - i
s *
g
E
o 20
o
10 1
o——— o - e
—8
0 T T T T T T T
1.0 15 2.0 2.5 3.0 35 4.0

Number of experiments

128 F Lietal.

Table 2 Comparison of the three models corresponding to the conflict rate

FullLocal noPreModel
Number
Conflict rate Variance Conflict rate Variance Conflict rate Variance
1 32.10% 0.78 12.60% 0.65 4.20% 0.61
2 25.50% 0.72 16.20% 0.69 3.50% 0.6
3 31.90% 0.77 17.70% 0.69 3.70% 0.62
4 27.50% 0.76 16.50% 0.68 3.00% 0.61

Figure 7 Different algorithms corresponding to sum cost
(see online version for colours)

—&— DQN
12 1 Q-Learning
—e— PSO

10

sumCost

7
the number of agricultural terminals

w
»
u
o
o
o

Figure 8 Computing power of the edge node server
corresponds to sum cost (see online version
for colours)

10
—&— FullLocal

94 Q-Learning
—8— DOQN

sumCost

Computing power of the edge node server(GHz)

It can be seen from Table 2 and Figure 6 that for
the original FullLocal model, there are frequent cases
where its conflict rate remaining between 25% and
30%. This is because the agricultural terminal node
may be stopped for a short period of time, when its
computational resources are plentiful, and static modelling
assigns computational tasks to it. However, when the
owner runs the agricultural terminal node, agricultural
terminal node will generate tasks. At this time, machine’s
own computational resources are occupied, resulting in a
conflict where the required computational resources are
much greater than the computational resources it has; the

improved model, whether without or with the predictive
model, works much better than the FullLocal model, where
the conflict rate with the PreModel is maintained between
3% and 5%, largely avoiding the conflict problem.

In order to compare the advantages and disadvantages of
PSO algorithm, Q-learning algorithm, and DQN algorithm
for finding optimal solutions, we compare them in terms of
the total cost of solving the problem (taking the target value
above as the total cost). The model we have jointly selected
here is PreModel, the task volume prediction model.

Figure 7 shows a graph of the change in total cost
as different algorithms, where the computing power of
the edge nodes is set to 5 GHz/s. Overall, the total
cost of these algorithms is increasing as the number of
agricultural terminals continues to increase. As the number
of agricultural terminals in agricultural activities increases,
so does the number of tasks, which is why the total cost is
increasing. In Figure 7, the DQN algorithm gives the best
results for reducing sum cost, followed by Q-learning with a
smaller gap. Without considering the dimensional explosion
problem of the Q-learning algorithm, the results are similar
for both algorithms. The total cost of the PSO algorithm is
slightly higher than that of Q-learning algorithm and DQN
algorithm when the total number of agricultural terminals
is in [3, 6], but the total cost of PSO tends to increase
more and more as the number of agricultural terminals
increases. This is because the multi-machine computing
task is certainly much better than single-machine computing
when the number of agricultural terminals increases, so in
this case, it is particularly important to choose a strategy
for offloading.

Figure 8 shows the relationship between the computing
power of the edge node server and sum cost when the
number of agricultural terminals is 5. As can be seen
from Figure 8, for the FullLocal, it does not change as
the computing power of the edge node servers increases,
as this approach does not use the cloud-edge computing
offload algorithm to distribute tasks to multiple compute
nodes. For the Q-learning and DQN algorithms the sum cost
decreases as the computing power of the edge node server
increases. As the computing power of the edge node servers
increases to a certain level, the two algorithms are generally
consistent.

5 Conclusions

In this paper, we present a computation offloading
algorithm for cloud-edge collaboration in smart agriculture

A computational offloading algorithm for cloud-edge collaboration in smart agriculture 129

and provide a detailed explanation of the specific process
involved. To address the conflict problem resulting from
static modelling, we developed our own T-value inspired
by the Q-value designed by the Q-learning algorithm and
replaced the original maximum prediction value of Q with
a prediction function of our own design. Additionally,
we introduced the DQN algorithm to find the optimal
solution for the model and expedite the search for the
optimal offloading strategy. The experiments show that the
algorithm we designed overcomes the conflicts generated
by the previous static modelling, improves the accuracy
of the computed offload results, and makes the real-time
performance of the terminal task computation better; in
the experiment of testing the conflict rate, it was shown
that the prediction model we designed is effective and
greatly reduces the conflict rate of the task offload.
In the comparative experiment between FullLocal and
computation offloading, the sum cost of computation
offloading was much lower than FullLocal, highlighting
the superiority of computation offloading. In comparative
experiments with other algorithms for finding the optimal
solution of the model, the use of the DQN algorithm has a
better performance compared to some other algorithms. In
the subsequent research, the optimisation of the DQN model
can be considered to find optimal unloading solution faster.

References

Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A. and
Aggoune, EHM. (2019) ‘Internet-of-things (IoT)-based smart
agriculture: toward making the fields talk’, JEEE Access, No. 7,
pp-129551-129583.

Basmadjian, R., Ali, N., Niedermeier, F., De Meer, H. and
Giuliani, G. (2011) ‘A methodology to predict the power
consumption of servers in data centres’, Proceedings of the 2nd
International Conference on Energy-Efficient Computing and
Networking, May, pp.1-10.

Clifton, J. and Laber, E. (2020) ‘Q-learning: theory and applications’,
Annual Review of Statistics and Its Application, No. 71,
pp-279-301.

Gao, J., Chang, R., Yang, Z., Huang, Q., Zhao, Y. and Wu, Y. (2022)
‘A task offloading algorithm for cloud-edge collaborative system
based on Lyapunov optimization’, Cluster Computing, No. 26,
pp.1-12.

Long, Y. and He, H. (2020) ‘Robot path planning based on
deep reinforcement learning’, 2020 I[EEE Conference on
Telecommunications, Optics and Computer Science (TOCS),
December, pp.151-154.

Meyer, V., Kirchoff, D.F., Da Silva, M.L. and De Rose, C.A.
(2021) ‘ML-driven classification scheme for dynamic
interference-aware resource scheduling in cloud infrastructures’,
Journal of Systems Architecture.

Paraforos, D.S. and Griepentrog, H.W. (2021) ‘Digital farming and
field robotics: internet of things, cloud computing, and big
data’, Fundamentals of Agricultural and Field Robotics, No. 1,
pp.365-385.

Ren, J., Hou, T., Wang, H., Tian, H., Wei, H., Zheng, H. and
Zhang, X. (2021) ‘Collaborative task offloading and resource
scheduling framework for heterogeneous edge computing’,
Wireless Networks, pp.1-13.

Ruan, J., Jiang, H., Zhu, C., Hu, X., Shi, Y., Liu, T,

and Chan, FT.S. (2019) ‘Agriculture IoT: emerging
trends, cooperation networks, and outlook’, /EEE Wireless
Communications, Vol. 26, No. 6, pp.56—63.

Shannon, C.E. (1948) ‘A mathematical theory of communication’,
The Bell System Technical Journal, Vol. 27, No. 3, pp.379-423.

Xuewen, W. and Jingxian, L. (2022) ‘Game-based resource allocation
and task offloading scheme in collaborative cloud-edge
computing system’, Journal of System Simulation, Vol. 34,
No. 7, pp.1468-1481.

Zeyu, H., Geming, X., Zhaohang, W. and Sen, Y. (2020) ‘Survey on
edge computing security’, 2020 International Conference on Big
Data, Artificial Intelligence and Internet of Things Engineering
(ICBAIE), June, pp.96-105.

Zhang, M., Wang, F., Zhu, Y., Liu, J. and Wang, Z. (2021) ‘Towards
cloud-edge collaborative online video analytics with fine-grained
serverless pipelines’, Proceedings of the 12th ACM Multimedia
Systems Conference, July, pp.80-93.

Zhang, Z., Wu, J., Jiang, G., Chen, L. and Lam, SK.
(2017) ‘QoE-aware task offloading for time constraint mobile
applications’, 2017 IEEE 42nd Conference on Local Computer
Networks (LCN), October, pp.510-513.

Zhao, Y., Wang, W. Li, Y, Meixner, C.C., Tornatore, M.
and Zhang, J. (2019) °‘Edge computing and networking:
a survey on infrastructures and applications’, /EEE Access,
pp-101213-101230.

Zhou, B., Huang, H., Xu, Y., Li, X., Gao, H., Chen, T., ... and
Xu, J. (2021) ‘Parallel task scheduling algorithm based on
collaborative device and edge in UAV delivery system’, Jisuanji
Jicheng Zhizao Xitong, Vol. 27, No. 9, pp.2575-2582.

