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Abstract: This paper reveals the comparative analysis of performability and maintenance 
decision matrix (MDM) for a repairable industrial system. Wrapper forming machine, eye rolling 
machine, lap cutting machine, and eye forming rolling machine are the four subsystems that 
comprise this system. The modelling and performability analysis among various subsystems has 
been done using both stochastic Petri nets (SPN) approach and Markov method. The present 
study used the SPN as an advanced performance modelling tool and validates their results using 
Markov method. In addition, a MDM has been purposed which indicates the maintenance 
priority among various subsystems. This matrix facilitates decision making for various 
maintenance activities. The results of this study can be useful to maintenance management in 
developing a maintenance plan and procedures that achieve the ultimate goal of economical 
maintenance and high level of system availability. 
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1 Introduction 
Modern automation requires the utilisation of  
state-of-the-art equipment to achieve the desired production 
goals of process industries. Performability and 
maintainability became more crucial to preserving the 
market’s equilibrium between demand and supply. 

Reliability, availability, maintainability and safety (RAMS) 
plays an essential role to improve the system performability. 
Failure of these complex systems cannot be completely 
avoided but it can be reduced by appropriate preventative 
maintenance and regular inspections. This helps to reduce 
the plant overall operating costs (Dahiya et al., 2019; Gupta  
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et al., 2008). The manufacturing industry faces formidable 
challenges in maintaining profitability and a competitive 
edge due to market competition and globalisation. With 
time and use of the machinery, the industrial system will 
deteriorate and wear down. The deterioration and wear 
might raise the possibility of machine failure and lower the 
output of the system (Lu et al., 2016). On the other hand, 
poor maintenance procedures can lead to expensive repairs 
and extend the system outages, which reduce the system 
availability and results in large production losses (Su and 
Liu, 2020). There are many tools and techniques for 
performability evaluation, but simulation-based Petri nets 
and Markov method are mostly used by the researchers. The 
novelty of this research work to analyses the system 
performability by using the Petri nets as an advance 
performance modelling tool and validates their results using 
Markov method. 

India’s automobile industry contributes significantly to 
the growth of the national economy. The sector’s 
contribution to the national GDP increased from 2.77 to 
7.1% between 1992 and 2021. It directly and indirectly 
employs around 19 million people (Economic Survey of 
India, 2022-23). A leaf spring is a crucial component of a 
vehicle assembly. This eye rolling line system consists of 
four subsystems such as: wrapper forming machine, eye 
rolling machine, lap cutting machine, and eye forming 
rolling machine. These subsystems are placed in 
combinations of both series and parallel arrangements. 
Performability analysis in terms of availability among 
various subsystems has been done by using simulation 
modelling, i.e., stochastic Petri nets (SPN) and a 
probabilistic approach, i.e., Markov method. In this research 
work, performability analysis in terms of availability was 
done. Further, a MDM has been developed which facilitates 
the decision making to various maintenance activities. 

1.1 Markov method 
Failure rate, repair rate and probability restored to an 
available state are the factors of interest in the reliability and 
availability study. State-space (or state-time) analysis can be 
used to determine the probabilities that a system having two 
states, i.e., failed or non-failed. The probabilities connected 
to these states can be defined either discretely or 
continuously. The most popular approach to state-space 
analysis is Markov analysis. Under the major restrictions 
listed below, the Markov approach can be used: 

1 The process must be homogenous and the probability of 
transitioning from one condition to another must be 
constant. As a result, the technique can only be applied 
when the rate of repair and failure is constant. 

2 Systems will independent of all past and future states 
except the most recent one. When evaluating repairable 
systems, this constraint is essential since it shows that a 
repair restores the system to its original state. 

This method is reliable to use for availability analysis of 
complex systems as compare to reliability block diagram 
(RBD) and fault tree analysis (FTA). 

1.2 Petri nets 
Carl Adam Petri developed PN in 1962 as an advancement 
of state-space analysis methods. In this method, 
mathematical and pictorial tools are used to define 
relationships between different conditions. Since time was 
not considered in the original PN, so enabled transitions 
fires immediately. A variant known as stochastic Petri nets 
(SPN) or time Petri nets (PN) was introduced in the late 
1970s. This method has been improved upon numerous 
times with additional modelling and analysis features. 
Generalised stochastic petri nets (GSPN) were explored as 
an extension of SPN that explained transitions of PN in two 
types, immediate and timed transitions (Marsan et al., 
1984). Extended stochastic petri net (ESPN), a kind of SPN 
that was expanded in 1984 by Dugan et al. was discussed 
(Dugan et al., 1984). A further development of the GSPN is 
the deterministic stochastic Petri net (DSPN) and coloured 
Petri net (CPN) which was introduced by Jensen (1981). 

2 Literature review 
Garg et al. (2010) discussed the model for blackboard 
manufacturing plant to assess the maintenance priorities and 
availability using the Runge-Kutta method. Kleyner and 
Volovoi (2010) developed the model using SPN for the 
availability analysis of electronic airbag controllers. Yang  
et al. (2011) proposed PN model for diagnosing faults in 
wind turbines. Gupta and Tewari (2010) performed 
probabilistic modelling and analysis for steam generator 
system of a power plant. Adhikary et al. (2012) have done 
RAM analysis for determine preventive maintenance 
programs of thermal power plant to improve the availability. 
Thangamani (2012) deals with availability analysis of 
lubricant systems used in combined cycle power plants 
using SPN. Latorre and Jiménez (2013) discussed the 
decision and optimisation problems using PN modelling. 
Kumar (2014) performed an availability analysis of air 
circulation systems using Markov models. Jolly and Singh 
(2014) demonstrated an approach to reduce downtime for 
repairable systems. Bosse et al. (2016) developed a PN 
simulation to evaluate the availability of IT systems. Wan  
et al. (2016) synthesised stochastic models using Markov 
processes in electronic systems (ES). Jiménez-Macías et al. 
(2017) used coloured Petri nets (CPN) for modelling of 
discrete event systems. Alizadeh and Sriramula (2017) used 
Markov analysis to develop a model for security systems. 
Don and Khan (2019) discussed a methodology for 
checking errors using hidden Markov methods. Kumar et al. 
(2019, 2020) attempted to use his PN approach for milk 
processing plant and plywood production plant to enhance  
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system performability. Zhang (2021) developed a Markov 
model to determine the reliability of heat exchangers. 
Kumar et al. (2021) used the PN approach to perform 
performance analysis of complex manufacturing systems. 
Modgil (2022) presented simulation modelling and analysis 
of the container manufacturing industry using (PN). Malik 
et al. (2022) and Malik and Tewari (2023) improved the 
performance of thermal power plants for steam generation 
system and coal ash handling plant based on the Markov 
model. Optimisation of the results has been done using the 
particle swarm optimisation (PSO) technique. The 
methodology of this research work clearly shown in  
Figure 1. 

Figure 1 Graphical representation of methodology used in this 
research work 

 

3 System description 
In the present work, a leaf spring producing plant situated in 
north India has been chosen as the case study. Eye rolling 
line (as shown in Figure 2) is considered as a system which 
comprises the following subsystems: 

1 Wrapper forming machine: there are two wrapper 
forming machine arranged in the parallel in this 
subsystem. If one of the machines fails, the system goes 
into the reduced capacity. 

2 Eye rolling machine: this subsystem has a single 
machine; failure of this machine also leads to failure of 
the complete system. 

3 Lap cutting machine: this is a single-machine 
subsystem. A machine failure causes the entire system 
to fail because no redundancy is provided. 

4 Eye forming rolling machine: this subsystem has two 
eye forming rolling machines in parallel arrangement. 
Failure of either machine reduces system capacity. 

 

Figure 2 Eye rolling line system of leaf spring plant (see online 
version for colours) 

 
 
 
 
 
 
 
 
 
 
  

4 Performance modelling of the eye rolling line 
system using SPN 

SPN modelling of the eye rolling line of leaf spring 
manufacturing plant has been discussed in this section. SPN 
are used to show interactions among different subsystems. 
In the present modelling, two persons are available at repair 
facility. 

Following assumptions are used to simulate the 
performance modelling of the system: 

• the system may operate at reduced capacity 

• standby system have similar status to active system 

• repair services can be started without any delay 

• failure and repair patterns follow an exponential 
distribution 

• restored subsystem is performing as good as new 
subsystem. 

Places: 

• SYSA: indicates the availability of the entire system in 
upstate 

• SYSWFC: indicates working of the system in full 
capacity 

• SYSWRC: indicates working of the system in reduced 
capacity. 

• SYSUA: indicates the unavailability of the entire system 
in downstate 

• RFA: indicates the availability of repair facility 

• WFM up, ERM up, LCM Up, EFRM Up: represents the 
upstate of wrapper forming machine, eye rolling 
machine, lap cutting machine and eye forming rolling 
machine 

• WFM down, ERM down, LCM Down, EFRM Down: 
represents the down state (non-working state) of 
wrapper forming machine, eye rolling machine, lap 
cutting machine and eye forming rolling machine 

• WFM Rep, ERM Rep, LCM Rep, EFRM Rep: represents 
repaired states of wrapper forming machine, eye rolling 
machine, lap cutting machine and eye forming rolling 
machine. 
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Transitions: 

• SYS Ok: represents system is works with full capacity 

• SYS Rec: represents system recovered to full capacity 

• SYS Fail: represents the downstate of system 

• SYS Red: represents the system working, but in reduced 
capacity 

• WFM Fail, ERM Fail, LCM Fail, EFRM Fail: 
represents timid transitions associated with failure 
pattern of wrapper forming machine, eye rolling 
machine, lap cutting machine and eye forming rolling 
machine 

• WFM Ok, ERM Ok, LCM Ok, EFRM Ok: represents 
timid transitions associated with failure pattern of 
wrapper forming machine, eye rolling machine, lap 
cutting machine and eye forming rolling machine 

• WFM Rep, ERM Rep, LCM Rep, EFRM Rep: represents 
immediate transitions associated with availability of 
repair facility for wrapper forming machine, eye rolling 
machine, lap cutting machine and eye forming rolling 
machine. 

Guard functions: 

The associated guard functions for different transitions are 
given below: 

[G1] : ( 2 0 and 13 0) enables the transition
.

# #
Rep Available WFM
= > >

 

[G2] : ( 5 0 and 13 0) enables the transition
.

# #
Rep Available ERM
= > >

 

[G3] : ( 8 0 and 13 0) enables the transition
.

# #
Rep Available LCM
= > >

 

[G4] : ( 11 0 and 13 0) enables the transition
.

# #
Rep Available EFRM
= > >

 

[G5] : ( 1 1 or 4 1 or 7 1 or 10 1)
enables the transition

# # # #
.SYS Fail

= < < < <
 

[G6] : ( 1 0 and 4 0 and 7 0 and 10 0)
disables the transiti

# #
n .

# #
o SYS Ok

= > > > >
 

[G7] : ( 1 2 and 1 0 or 10 2 and 10 0)
enables the transitio

# #
n .

# #
SYS Red

= < > < >
 

[G8] : ( 1 1 and 10 1) disables the transition#
.

#
SYS Rec
= > >

 

 

Figure 3 Modelling of eye rolling line system of leaf spring plant using stochastic Petri nets (see online version for colours) 
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Table 1 Repair and failure data of eye rolling line system 

SUBSYSTEM 
Exponentially distributed 

Average failure 
rate (θ) 

Average repair 
rate (φ) 

Wrapper forming 0.002789 0.05681 
Eye rolling 0.055310 0.36340 
Lap cutting 0.005281 0.54380 
Eye forming rolling 0.000441 0.04980 

The modelling of eye rolling line system of leaf spring plant 
using stochastic Petri nets software is shown in Figure 3. 
The repair and failure data was obtained from maintenance 
log book of the plant with the help of supervisors and 
maintenance personnel. It is presented in Table 1. 

Licensed GRIF predicates Petri module 2022 was used 
to obtain the performability matrix for the various 
subsystems, and the results are shown in Tables 2 to 5. 
MATLAB software produces accurate and 3D-quality 
visualisations, which are illustrated in Figures 4 to 7. 

 

Table 2 Performability matrix for wrapper forming machine 

φ1 
θ1 

0.01681 0.03681 0.05681 0.07681 0.09681 Constant parameters 

0.000989 0.8564 0.8586 0.8589 0.8590 0.8592 θ2 = 0.055310, φ2 = 0.036340 
θ3 = 0.005281, φ3 = 0.54380 
θ4 = 0.000441, φ4 = 0.04980 

0.001889 0.8489 0.8569 0.8583 0.8588 0.8590 
0.002789 0.8385 0.8545 0.8572 0.8581 0.8586 
0.003689 0.8093 0.8462 0.8534 0.8559 0.8571 
0.004589 0.7883 0.8265 0.8334 0.8457 0.8476 

Figure 4 Variation of repair and failure rates of wrapper forming machine on system performability (see online version  
for colours) 

 

Table 3 Performability matrix for eye rolling machine 

φ2 
θ2 

0.16340 0.36340 0.56340 0.76340 0.96340 Constant parameters 

0.015310 0.9029 0.9478 0.9618 0.9685 0.9725 θ1 = 0.002789, φ1 = 0.05681 
θ3 = 0.005281, φ3 = 0.54380 
θ4 = 0.000441, φ4 = 0.04980 

0.035310 0.8120 0.9003 0.9296 0.9443 0.9531 
0.055310 0.7380 0.8572 0.8995 0.9211 0.9343 
0.075310 0.6759 0.8161 0.8735 0.8988 0.9170 
0.095310 0.6237 0.7817 0.8449 0.8768 0.8976 

 

 



 Comparative analysis of performability and maintenance decision matrix for a repairable industrial system 113 

Figure 5 Variation of repair and failure rates of eye rolling machine on system performability (see online version for colours) 

 

Table 4 Performability matrix for lap cutting machine 

φ3 
θ3 

0.01438 0.03438 0.05438 0.07438 0.09438 Constant parameters 

0.001281 0.8579 0.8624 0.8636 0.8642 0.8644 θ1 = 0.002789, φ1 = 0.05681 
θ2 = 0.055310, φ2 = 0.036340 
θ4 = 0.000441, φ4 = 0.04980 

0.003281 0.8466 0.8579 0.8607 0.8621 0.8630 
0.005281 0.8352 0.8527 0.8572 0.8594 0.8608 
0.007281 0.8251 0.8477 0.8541 0.8568 0.8586 
0.009281 0.8133 0.8432 0.8508 0.8542 0.8568 

Figure 6 Variation of repair and failure rates of lap cutting machine on system performability (see online version for colours) 

 

Table 5 Performability matrix for eye forming rolling machine 

φ4 
θ4 

0.00980 0.02980 0.04980 0.06980 0.08980 Constant parameters 

0.000041 0.8621 0.8623 0.8627 0.8631 0.8638 θ1 = 0.002789, φ1 = 0.05681 
θ2 = 0.055310, φ2 = 0.036340 
θ3 = 0.005281, φ3 = 0.54380 

0.000241 0.8588 0.8595 0.8597 0.8609 0.8613 
0.000441 0.8550 0.8570 0.8572 0.8576 0.8578 
0.000641 0.8516 0.8522 0.8528 0.8542 0.8545 
0.000841 0.8487 0.8491 0.8498 0.8508 0.8512 
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Figure 7 Variation of repair and failure rates of eye forming rolling machine on system performability (see online version for colours) 

 

Figure 8 Transitions diagram of eye rolling line system for leaf spring plant (see online version for colours) 
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5 Performance modelling of the eye rolling line 
system using Markov method 

5.1 Mathematical formulation of the system 
A mathematical formulation applying mnemonic rules has 
been used to establish the viability of an eye rolling line 
system of a leaf spring manufacturing facility for all of the 
subsystems. The transition diagram in Figure 8 has been 
used to create a set of differential equations. The notations 
which are used in this diagram are discussed below: 
• A, B, C and D: indicates subsystems are working in full 

capacity 
• A′ and D′: indicates subsystems are working in reduce 

capacity 
• a ,b, c and d: indicates subsystem are in failed state 
• state 0: represents system working in full capacity 
• states 1, 2 and 3: represents system working in reduced 

capacity 
• states 4, 5, …, 19: represent system in failed state. 
• θ1, θ2, θ3, θ4: represents the mean failure rate of 

different subsystems. 
• φ1, φ2, φ3, φ4: represents the repair rate of different 

subsystems. 

5.1.1 Transient state 

[ ]
0 0

1 1 2 3 4 4 0

1 1 2 4 4 1 5 2

6 3 7 4 8 1 15 4

16 1 16 4 19 1 19 4

A (t Δt) A (t)
θ Δt θ Δt θ Δt θ Δt θ Δt θ Δt A (t)

A (t)φ Δt A (t)φ Δt A (t)φ Δt A (t)φ Δt
A (t)φ Δt A (t)φ Δt A (t)φ Δt A (t)φ Δt
A (t)φ Δt A (t)φ Δt A (t)φ Δt A (t)φ Δt

+ −
= − − − − − −
+ + + +
+ + + +
+ + + +

 

Dividing both sides by Δt, we get: 

[ ]
[ ]

0 0

1 2 3 4 0 1 1 2 4

4 1 5 2 6 3 7 4 8 1

15 4 16 1 16 4 19 1 19 4

A (t Δt) A (t) Δt
2θ θ θ 2θ A (t) A (t)φ A (t)φ

A (t)φ A (t)φ A (t)φ A (t)φ A (t)φ
A (t)φ A (t)φ A (t)φ A (t)φ A (t)φ

+ −

= − − − − + +
+ + + + +
+ + + + +

 

On taking limit as Δt → 0, this yield: 

0 0 0 1 1 2 4 4 1

5 2 6 3 7 4 8 1

15 4 16 1 16 4 19 1

19 4

A (t) K A (t) A (t)φ A (t)φ A (t)φ
A (t)φ A (t)φ A (t)φ A (t)φ
A (t)φ A (t)φ A (t)φ A (t)φ
A (t)φ

′ = − + + +
+ + + +
+ + + +
+

 

00 0 0 1 1 4 2 1 4 2 5

3 6 4 7 1 8 4 15

1 16 4 16 1 19 4 19

A (t) K A (t) φ A φ A φ A φ A
φ A φ A φ A φ A
φ A φ A φ A φ A

′ + = + + +
+ + + +
+ + + +

 (1) 

Similarly, 

1 1 1 1 0 2 9 3 10

4 11

A (t) K A (t) θ A (t) φ A (t) φ A (t)
φ A (t)

′ + = + +
+

 (2) 

2 2 2 4 0 1 12 2 13

3 14

A (t) K A (t) θ A (t) φ A (t) φ A (t)
φ A (t)

′ + = + +
+

 (3) 

3 3 3 4 1 2 17 3 18A (t) K A (t) θ A (t) φ A (t) φ A (t)′ + = + +  (4) 

Here, 

0 1 2 3 4K 2θ θ θ 2θ= + + +  

1 1 2 3 4 1K θ θ θ 2θ φ= + + + +  

2 1 2 3 4 4K θ θ θ θ φ= + + + +  

3 1 2 3 4K θ θ θ θ= + + +  

i j i j 0A (t) φ A (t) θ A (t),′ + =  (5) 

where i = 4, 5, 6, 7; j = 1, 2, 3, 4. 

8 1 8 1 0A (t) φ A (t) θ A (t),′ + =  (6) 

i j i j 1A (t) φ A (t) θ A (t),′ + =  (7) 

where i = 9, 10, 11; j = 2, 3, 4 

i j i j 2A (t) φ A (t) θ A (t),′ + =  (8) 

where i = 12, 13, 14, 15; j = 1, 2, 3, 4 

16 1 16 4 16 1 3A (t) φ A (t) φ A (t) θ A (t)′ + + =  (9) 

i j i j 3A (t) φ A (t) θ A (t),′ + =  (10) 

where i = 17, 18; j = 2, 3 

19 1 16 4 16 1 3A (t) φ A (t) φ A (t) θ A (t)′ + + =  (11) 

5.1.2 Steady state 
Steady state probabilities of the system can be obtained by 
imposing the condition that as t → ∞, d/dt → 0. 

In this state, equations (1) to (11) reduce to the 
following system of equations. 

0 0 1 1 4 2 1 4 2 5 3 6

4 7 1 8 4 15 1 16 4 16

1 19 4 19

K A (t) φ A φ A φ A φ A φ A
φ A φ A φ A φ A φ A
φ A φ A

= + + + +
+ + + + +
+ +

 (12) 

Similarly, 

1 1 1 0 2 9 3 10 4 11K A (t) θ A (t) φ A (t) φ A (t) φ A (t)= + + +  (13) 

2 2 4 0 1 12 2 13 3 14K A (t) θ A (t) φ A (t) φ A (t) φ A (t)= + + +  (14) 

3 3 4 1 2 17 3 18K A (t) θ A (t) φ A (t) φ A (t)= + +  (15) 

i j i j 0A (t) φ A (t) θ A (t),′ + =  (16) 

where i = 4, 5, 6, 7; j = 1, 2, 3, 4 

8 1 8 1 0A (t) φ A (t) θ A (t),′ + =  

i j i j 1A (t) φ A (t) θ A (t),′ + =  (18) 

where i = 9, 10, 11; j = 2, 3, 4 

i j i j 2A (t) φ A (t) θ A (t),′ + =  (19) 
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where i = 12, 13, 14, 15; j = 1, 2, 3, 4 

16 1 16 4 16 1 3A (t) φ A (t) φ A (t) θ A (t)′ + + =  (20) 

i j i j 3A (t) φ A (t) θ A (t),′ + =  (21) 

where i = 17, 18; j = 2, 3 

19 1 19 4 19 4 3A (t) φ A (t) φ A (t) θ A (t)′ + + =  (22) 

Solving these equations recursively and we get: 

( )1 1 1 1 4 0A θ φ 2θ θ A ; = + +   

( )2 4 4 4 0A θ φ θ A ; = +   

( ) ( )( )3 1 4 4 1 1 1 4 0A θ θ θ θ φ 2θ θ A ; = + + +   

[ ] [ ] [ ]4 1 1 0 5 2 2 0 6 3 3 0A θ φ A ; A θ φ A ; A θ φ A ;= = =  

[ ] [ ]7 4 4 0 8 1 1 0A θ φ A ;  A θ φ A ;= =  

[ ] ( )9 2 2 1 1 1 4 0A θ φ  θ φ θ θ A ; = + +   

[ ] ( )10 3 3 1 1 1 4 0A θ φ θ φ 2θ θ A ; = + +   

[ ] ( )11 4 4 1 1 1 4 0A θ φ θ φ 2θ θ A ; = + +   

[ ] ( )12 1 1 4 4 4 0A θ φ θ φ θ A ; = +   

[ ] ( )13 2 2 4 4 4 0A θ φ θ φ θ A ; = +   

[ ] ( )14 3 3 4 4 4 0A θ φ θ φ θ A ; = +   

[ ] ( )15 4 4 4 4 4 0A θ φ θ φ θ A ; = +   

( ) ( )
( )

16 1 1 1 4 4 1 4

1 1 4 0

A θ φ 2θ θ θ θ θ

θ φ φ A ;

  = + + +  
 + 

 

[ ] ( ) ( )17 2 2 1 1 1 4 4 1 4 0A θ φ θ φ 2θ θ θ θ θ A ;  = + + +    

[ ] ( ) ( )18 3 3 1 1 1 4 4 1 4 0A θ φ θ φ 2θ θ θ θ θ A ;  = + + +     

( ) ( )
( )

19 1 1 1 4 4 1 4

4 1 4 0

A θ φ 2θ θ θ θ θ

θ φ φ A .

  = + + +  
 + 

 

Under normalising condition the sum of all the probabilities 
has to be equal to one, i.e., 

i 0 1 2 19A 1, i.e., A A A A 1= + + + + = …  (23) 

On re-arranging it as: 
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This yields, 
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The long-run availability (performability) of the system 
P(∞) can now be calculated using: 
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 (25) 
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where X = 1 + {θ1/(φ1 + 2θ1 + θ4)} + {θ4/(φ4 + θ4)} + 
{(θ1θ4)/(θ4 + θ1)(φ1+ 2θ1 + θ4)}. 

In steady state the long run availabilities for various 
permissible combinations of repair and failure rates of eye 
rolling line system can now be obtained using equation (25). 

These values are presented in Tables 6 to 9. Accurate and 
3D quality plots are generated using MATLAB software 
which is illustrative in Figure 9 to 12. 

 

Table 6 Performability matrix for wrapper forming machine 

φ1 
θ1 

0.01681 0.03681 0.05681 0.07681 0.09681 Constant parameters 

0.000989 0.7810 0.8179 0.8301 0.8361 0.8397 θ2 = 0.055310, φ2 = 0.036340 
θ3 = 0.005281, φ3 = 0.54380 
θ4 = 0.000441, φ4 = 0.04980 

0.001889 0.7290 0.7889 0.8099 0.8207 0.8273 
0.002789 0.6863 0.7628 0.7913 0.8062 0.8154 
0.003689 0.6503 0.7393 0.7739 0.7924 0.8040 
0.004589 0.6192 0.7178 0.7576 0.7794 0.7931 

Figure 9 Variation of repair and failure rates of wrapper forming machine on system performability (see online version for colours) 

 

Table 7 Performability matrix for eye rolling machine 

φ2 
θ2 

0.16340 0.36340 0.56340 0.76340 0.96340 Constant parameters 

0.015310 0.8297 0.8668 0.8781 0.8837 0.8869 θ1 = 0.002789, φ1 = 0.05681 
θ3 = 0.005281, φ3 = 0.54380 
θ4 = 0.000441, φ4 = 0.04980 

0.035310 0.7532 0.8273 0.8516 0.8637 0.8709 
0.055310 0.6896 0.7913 0.8266 0.8446 0.8554 
0.075310 0.6359 0.7582 0.8030 0.8263 0.8405 
0.095310 0.5900 0.7279 0.7808 0.8088 0.8261 

Figure 10 Variation of repair and failure rates of eye rolling machine on system performability (see online version for colours) 
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Table 8 Performability matrix for lap cutting machine  

φ3 
θ3 

0.1438 0.3438 0.5438 0.7438 0.9438 Constant parameters 

0.001281 0.7918 0.7950 0.7959 0.7963 0.7965 θ1 = 0.002789, φ1 = 0.05681 
θ2 = 0.055310, φ2 = 0.036340 
θ4 = 0.000441, φ4 = 0.04980 

0.003281 0.7831 0.7914 0.7936 0.7946 0.7952 
0.005281 0.7747 0.7877 0.7913 0.7929 0.7939 
0.007281 0.7665 0.7842 0.7890 0.7912 0.7925 
0.009281 0.7584 0.7806 0.7867 0.7895 0.7914 

Figure 11 Variation of repair and failure rates of lap cutting machine on system performability (see online version for colours) 

 

Table 9 Performability matrix for eye forming rolling machine 

φ4 
θ4 

0.00980 0.02980 0.04980 0.06980 0.08980 Constant parameters 

0.000041 0.7938 0.7956 0.7959 0.7960 0.7961 θ1 = 0.002789, φ1 = 0.05681 
θ2 = 0.055310, φ2 = 0.036340 
θ3 = 0.005281, φ3 = 0.54380 

0.000241 0.7820 0.7916 0.7936 0.7944 0.7949 
0.000441 0.7816 0.7877 0.7913 0.7928 0.7937 
0.000641 0.7811 0.7838 0.7890 0.7912 0.7924 
0.000841 0.7809 0.7810 0.7867 0.7895 0.7910 

Figure 12 Variation of repair and failure rates of eye forming rolling machine on system performability (see online version for colours) 
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Table 10 Maintenance decision matrix (MDM) 

Subsystem Variation in repair rates φ  
(failure rates θ) 

System performability (%) 
using SPN 

System performability (%) 
using Markov method 

Recommend 
maintenance 

priority 

Wrapper forming machine 0.01681–0.09681 
(0.000989–0.004589) 

0.8592–0.7883  
(7.09%) 

0.8397–0.6192  
(22.05%) 

II 

Eye rolling machine 0.16340–0.96340 
(0.015310–0.095310) 

0.9725–0.6237  
(34.88%) 

0.8869–0.5900  
(29.69%) 

I 

Lap cutting machine 0.014380.09438 
(0.001281–0.009281) 

0.8644–0.8133  
(5.11%) 

0.7965–0.7584  
(3.81%) 

III 

Eye forming rolling machine 0.00980–0.08980 
(0.000041–0.000841) 

0.8638–0.8487  
(1.51%) 

0.7961–0.7809  
(1.52%) 

IV 

 
6 Results discussion and MDM 
In the present work, the performability matrix of various 
subsystems for the system concerned is presented in  
Tables 2 to 5 using SPN and Tables 6 to 9 using Markov 
method respectively. The various combinations of repair 
and failure rates for wrapper forming machine subsystem 
decreases the system performability from 0.8592 to 0.7883 
using SPN whereas for Markov method it decreases from 
0.8397 to 0.6192 when the failure rate increases and repair 
rate decreases as presented in Tables 2 and 6, respectively. 
In the similar way, for eye rolling machine the system 
performability varies 0.9725–0.6237 using SPN whereas 
0.8869–0.5900 for Markov method respectively as depicted 
in Tables 3 and 7, respectively. This subsystem has the 
highest impact on system performability. Lap cutting 
machine subsystem varies the system performability from 
0.8644 to 0.8133 using SPN and from 0.7965 to 0.7584 for 
Markov method. For the eye forming rolling machine 
subsystem, the system performability varies 0.8638–0.8487 
using SPN and 0.7961–0.7809 using Markov method 
respectively. This subsystem has the least impact on system 
performability. The accurate 3-D graphs of these 
performability matrices are clearly illustrated in Figures 4 to 
7 for SPN modelling and Figures 8 to 11 for Markov 
method modelling respectively for different combination of 
repair and failure rates. 

A permissible variations in failure and repair rates of 
various subsystems revealed that eye rolling machine 
subsystem has significant impact on the system 
performability by 34.88% using SPN whereas 29.69% while 
using Markov method. This subsystem needs to be placed 
on the top of maintenance priorities. A moderate effect has 
been done by wrapper forming machine having a 
contribution of 7.09% for SPN while 22.05% for Markov 
method. The variation of failure and repair rates of lap 
cutting machine and eye forming rolling machine shows the 
least effect. Based on the above discussion a MDM is 
proposed which clearly shows the comparative results of 
SPN and Markov method in Table 10. This MDM helps the 
practitioners to adopt suitable maintenance strategies. 

 

7 Conclusions 
A comparative study has been carried out which clearly 
highlighted that eye rolling machine subsystem needs the 
utmost attention during maintenance planning. It can be 
observed that the Markov method needs lots of 
computational effort as compared to SPN for determining 
the performability in terms of availability of the system. 
Moreover, SPN follows the dynamic behaviour of the 
system concerned. Therefore, for complex systems SPN is 
better than the Markov method to determine the 
performability. The proposed MDM might be quiet helpful 
in making decisions regarding maintenance policies and 
priorities which further enhance the system performability. 
This reduces the unplanned downtime and maintenance 
costs also. In addition to these benefits, system 
performability analysis can also be used for cost benefit 
analysis and spare parts inventory management purposes. In 
future, some advanced techniques such as spider monkey 
optimisation (SMO), teacher learning-based optimisation 
(TLBO), discrete particle swarm optimisation (DPSO), ant 
colony algorithm (ACA), etc. may be used for optimising 
the results. 
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